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a b s t r a c t

We study the stability of a robot system composed of two Euler–Bernoulli beamswith non-
collocated controllers. By the detailed spectral analysis, we prove that the asymptotical
spectra of the system are distributed in the complex left-half plane and there is a sequence
of the generalized eigenfunctions that forms a Riesz basis in the energy space. Since there
exist at most finitely many spectral points of the system in the right half-plane, to obtain
the exponential stability, we show that one can choose suitable feedback gains such that all
eigenvalues of the system are located in the left half-plane. Hence the Riesz basis property
ensures that the system is exponentially stable. Finallywe give some simulation for spectra
of the system.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In recent years there has been an increased interest in systems composedofmultiple robots since they exhibit cooperative
behaviors. Such systems are of interest for several reasons: on one hand, the tasksmay be inherently too complex for a single
robot to accomplish, or performance benefits can be gained fromusingmultiple robots; on the other hand, building andusing
several simple robots can be easier, cheaper, more flexible and more fault-tolerant than having a single powerful robot for
each separate task. Therefore, numerous cooperation problems emerge in the engineering. Thus the research on single robot
systems was naturally extended to that on multiple-robot systems since ultimately a single robot, no matter how capable,
is spatially limited. The main questions are how to cooperate to achieve the predictable aim.

The multiple-robot systems are different from other distributed systems because of their implicit ‘‘real-world’’
environment, they have presumably more difficulty in modeling than traditional components of distributed system
environments (i.e., computers, databases, networks). In the present paper, we consider how two robot-arms should
cooperate to be qualified in one stable movement. Our system shown as in Fig. 1 consists of two robot arms, their common
task is to grab stably the huge mass M . To complete this task, we make the exterior forces Fi, i = 1, 2 act on two root ends
such that the other ends can clamp the mass, and we observe the velocity of the mass end so that the system completes the
performance. To model this system, we regard the mass as a tip mass and suppose that the arms are the same and uniform
with length one, whose positions are denoted by wi(x, t) with the root ends x = 0 and the arm motions described by the
Euler–Bernoulli beams. To complete the performance, we observe the rotation angles wix(0, t), rotation angle velocities
wixt(0, t) and the velocity of other ends wit(1, t). As feedback controls we assume the control forces of the form

Fi = Fi(wixt(0, t), wix(0, t), wit(1, t)), i = 1, 2.
The performance requirement is to make the displacement continuous at the other end x = 1, that is,

w1(1, t) = w2(1, t), ∀t > 0,
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Fig. 1. Two robot arms.

here we neglect the size of mass. Thus, the motion of the system is governed by the partial differential equations:

∂2wi(x, t)
∂t2

+
∂4wi(x, t)

∂x4
= 0, i = 1, 2, x ∈ (0, 1), t > 0,

M
∂2w(1, t)

∂t2
=

2
i=1

∂3wi(1, t)
∂x3

, t > 0,

w1(0, t) = w2(0, t) = 0, t > 0,
∂2wi(0, t)

∂x2
= Fi(wixt(0, t), wix(0, t), wit(1, t)), i = 1, 2, t > 0,

w1(1, t) = w2(1, t) = w(1, t),
∂w1(1, t)

∂x
=

∂w2(1, t)
∂x

,

2
i=1

∂2wi(1, t)
∂x2

= 0, t > 0,

wi(x, 0) = wi0, wit(x, 0) = wi1, i = 1, 2,

where x stands for the position and t the time andM is the tip mass at x = 1.
First, we consider the steady state of the system, wi, namely wi satisfy differential equation

d4wi(x)
dx4

= 0, x ∈ (0, 1), i = 1, 2,w1(0) = w2(0) = 0,
d2wi(0)

dx2
= Fi(0, w̃ix(0), 0), i = 1, 2,

w1(1) = w̃2(1),
dw1(1)

dx
=

dw2(1)
dx

,

2
i=1

d2wi(1)
dx2

= 0,

2
i=1

d3wi(1)
dx3

= 0.

From this we can determine the control forcesFi = F(0, wix, 0), i = 1, 2, that are constant forces.
Next we determine the forces Fi, i = 1, 2. Let Fi(z, u, v), i = 1, 2 be twice continuously differentiable functions.

Linearizing Fi at fixed point Wi = (0,wix(0), 0) yields

Fi(wixt(0, t), wix(0, t), wit(1, t)) = Fi(0,wix(0), 0) +
∂Fi
∂z

Wi

wixt(0, t)

+
∂Fi
∂u

Wi

(wix(0, t) − wix(0)) +
∂Fi
∂v

Wi

wit(1, t) + o(wi − wi).

Let yi(x, t) = wi(x, t) − wi(x) and denote by

αi =
∂Fi
∂z

Wi

, τi =
∂Fi
∂u

Wi

, βi =
∂Fi
∂v

Wi

, i = 1, 2.
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Then the behavior of the error system is determined by the following linearized equations

∂2yi(x, t)
∂t2

+
∂4yi(x, t)

∂x4
= 0, i = 1, 2, x ∈ (0, 1),

M
d2y(1, t)

dt2
=

2
i=1

∂3yi(1, t)
∂x3

,

y1(0, t) = y2(0, t) = 0,
∂2yi(0, t)

∂x2
= ui(t), i = 1, 2,

y1(1, t) = y2(1, t) = y(1, t),
∂y1(1, t)

∂x
=

∂y2(1, t)
∂x

,

2
i=1

∂2yi(1, t)
∂x2

= 0,

yi(x, 0) = wi0 − wi, yit(x, 0) = wi1 − wi, i = 1, 2,

(1.1)

where

ui(t) = τi
∂yi(0, t)

∂x
+ αi

∂2yi(0, t)
∂x∂t

+ βi
∂yi(1, t)

∂t
, i = 1, 2.

For simplification, we can take Fi = Fi + ui(t). In control input ui(t), the terms ∂yi(0,t)
∂x and ∂2yi(0,t)

∂x∂t are collocated to the
forceFi, but the term ∂yi(1,t)

∂t is from the tip mass end. In the performance, we ensure the position term y1(1, t) = y2(1, t)
mainly based on the term ∂yi(1,t)

∂t , so βj ≠ 0 is necessary. Therefore the system (1.1) can be regarded as a linear system
with the non-collocated feedback control law (namely, the actuators and the sensor are located at different positions) and
αi, βi, τi can be regarded as the feedback gain constants.

Finally, under guaranteeing the performance, we seek for the conditions on the coefficients τi, αi and βi that ensure the
system (1.1) is exponentially stable. From the description above we see that guaranteeing the performance of the system
requests the coefficientsβj ≠ 0, j = 1, 2. Under these restrictions, the stability of the original nonlinear system is equivalent
to that of (1.1) by determining the parameters τi, αi and βi. Therefore, in the present paper, we mainly pay our attention to
determine the parameters τi, αi and βi.

Non-collocated control has been widely used in engineering practice due to its more feasiblity (e.g. see, [1,4,18,11,
14,5,20,22,27,29]); however, there is few theoretical study including stability analysis on such systems from the view of
mathematical control. The first difficulty for the non-collocated control comes from the non-minimum-phase of the open-
loop form, a small increment of the feedback gain will lead to an unstable closed-loop system. The second difficulty arises
from the non-dissipativity for closed-loop form, which gives rise to difficulty in applying the traditional Lyapunov methods
or the energy multiplier methods to analyze the stability. Comparing with the huge works on the stabilization of collocated
PDEs in existed literature, the study for non-collocated PDEs is fairly scarce. To analyze the stability of the systemwith non-
collocated feedback, some authors used the finite-dimensional approximations of the observers for infinite-dimensional
systems (for analytic systems), we refer the reader to the literature [2,9,10,12,13]. There were some authors using non-
collocated feedback controllers to stabilize the system (e.g. see [17,8,7]). To remove the negative effect of non-collocated
term, however, these authorsmust usemore complex feedback control signal. Themethod used by them, however, does not
fit our model. Recently our paper [3] adopt direct feedback manner to stabilize exponentially a wave system with variable
coefficients, in which the key point is to choose the suitable feedback gains. In the present paper, we shall use the idea in [3]
to determine the parameters τi, αi and βi, i = 1, 2.

In what follows, we describe the method used in this paper. Consider the energy functional of the system (1.1), which is
defined as

E(t) =
1
2

2
j=1

 1

0
[|yjxx(x, t)|2 + |y2jt(x, t)|

2
]dx +

1
2
My2t (1, t) +

2
j=1

1
2
τj|yjx(0, t)|2.

Formally differentiating with respect to t yields

dE(t)
dt

=

2
j=1

 1

0
[yjxxyjxxt + yjtyjtt ]dx + Myt(1, t)ytt(1, t) +

2
j=1

τjyjx(0, t)yjxt(0, t)

=

2
j=1

[−αjy2jxt(0, t) − βjyjt(1, t)yjxt(0, t)].
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Clearly, the energy of the system is not dissipative for all αj, βj, which means a non-minimum-phase system. Our aim is to
choose suitable αj, βj such that the energy of the system decays exponentially, at least decays, i.e., dE(t)

dt < 0. In the present
paper, the main task is to prove that this can be done.

To analyze the stability of (1.1), we employ the asymptotic analysis technique to obtain the asymptotic frequency of the
system (the asymptotic spectrumof the systemoperator). Furthermoreweprove the Riesz basis property of the eigenvectors
of this system. Note that the Riesz basis property implies the spectrum determined growth condition. Hence we can assert
the stability of the system can be determined via spectrum of the system operator. This approach has been extensively used
in the system analysis, for instance, [21,6,19,24,23] for single beam or string system and [25] for the serially connected
Timoshenko beams. Our model is different from the literature mentioned above, however, there may exist finitely many
eigenvalues of the system in the right half-plane, although its asymptotic spectra are in the left half-plane. So we shall
choose suitable parameters αi and βi such that all spectra are located in the left half-plane.

The rest is organized as follows. In Section 2, we discuss the well-posedness of the system (1.1). In Section 3, we carry
out a complete asymptotic analysis for the spectrum of the system operator. In Section 4, we prove the Riesz basis property
of the eigenvectors and generalized eigenvectors of the system operator. In Section 5, we discuss the exponential stability
of the system under some conditions and give some simulation for the spectrum of the system. Section 6 concludes.

2. Well-posedness of the system

In this section, we shall study the well-posedness of system (1.1). We begin with formulating the system into an
appropriate Hilbert state space.

Let Hk(0, 1) be the usual Sobolev space. Set

Y := {y = (y1, y2) ∈ H2(0, 1) × H2(0, 1)|y1(0) = y2(0) = 0, y1(1) = y2(1), y′

1(1) = y′

2(1)}

and Z = {z = (z1, z2) ∈ L2[0, 1] × L2[0, 1]}. Let state space

H = Y × Z × C, (2.1)

equipped the inner product, for any (y, z, p), (f , g, h) ∈ H , via

⟨(y, z, p), (f , g, h)⟩H =

2
j=1

 1

0


y′′

j (x)f
′′

j (x) + zj(x)gj(x)

dx +

2
j=1

τjy′

j(0)f
′

j (0) + Mph,

by which the induced norm is

∥(y, v, p)∥2
=

2
i=1

 1

0
[|y′′

i (x)|
2
+ |vi(x)|2]dx +

2
i=1

τi|y′

i(0)|
2
+ M|p|2. (2.2)

Obviously, (H, ∥ · ∥) is a Hilbert space.
Define the operator A in H by

A(y, v, p) =


v, −y(4),

1
M

2
j=1

y′′′

j (1)


(2.3)

with domain

D(A) =


(y, v, p) ∈ Y ∩ [H4(0, 1)]2 × Y × C,
y′′

j (0) = τjy′

j(0) + αjv
′

j(0) + βjvj(1), j = 1, 2,

p = v1(1) = v2(1),
2

j=1

y′′

j (1) = 0,

 . (2.4)

With the operator A at hand, we can write system (1.1) into an evolutionary equation in HdY (t)
dt

= AY (t), t > 0,
Y (0) = Y0

(2.5)

where Y (t) = (y(·, t), ∂y
∂t (·, t),

∂y
∂t (1, t)) and Y0 = (U0,U1,U2) ∈ H is the initial data given.

To discuss the well-posedness of system (1.1), we need the following definition of dissipative operator.
Let X be a Banach space and X∗ be its dual space, and denote by ⟨x∗, x⟩ the value of x∗

∈ X∗ at x ∈ X . For every x ∈ X , the
duality set of x, F(x) ⊆ X∗, is defined as

F(x) = {x∗
∈ X∗

|⟨x∗, x⟩ = ∥x∥2
= ∥x∗

∥
2
}.

Definition 2.1 ([15]). A linear operator A is dissipative if for every x ∈ D(A), there is a x∗
∈ F(x) such that ℜ ⟨Ax, x∗⟩ ≤ 0.
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Lemma 2.1. Let H and A be defined by (2.1), (2.3) and (2.4) respectively. Then A is a closed and densely defined linear operator
in H . If βj ≤ αjγj, j = 1, 2, then A − ( 1

M

2
j=1 βjγj)I is a dissipative operator in H .

Proof. It is easy to check that A is a densely defined and closed linear operator. Here we only prove A − ( 1
M

2
j=1 βjγj)I is

dissipative.
For any F = (y, v, p) ∈ D(A), a directly calculation gives

⟨AF , F⟩H =

2
i=1

 1

0


v′′

i (x)y
′′

i (x) − y(4)
i (x)vi(x)


dx +

2
i=1

y′′′

i (1)p +

2
i=1

τiv
′

i(0)y
′

i(0)

=

2
i=1


−v′

i(0)y
′′

i (0) + τiv
′

i(0)y
′

i(0)


+

2
i=1

 1

0
v′′

i (x)y
′′

i (x)dx −

 1

0
y′′

i (x)v
′′

i (x)dx


.

So we have

2ℜ⟨AF , F⟩H =

2
i=1

−


v′

i(0)y
′′

i (0) + v′

i(0)y
′′

i (0)


+

2
i=1

τi


v′

iy
′

i(0) + y′

i(0)v
′

i(0)

.

Using the connective and boundary conditions, we get that

ℜ⟨AF , F⟩H = −

2
i=1


αi|v

′

i(0)|
2
+ βiℜ(vi(1)v′

i(0))


≤ −

2
i=1

αi|v
′

i(0)|
2
+

2
i=1

βi


γi|vi(1)|2 +

1
γi

|v′

i(0)|
2


≤

2
i=1


−αi +

βi

γi


|v′

i(0)|
2
+

βiγi

M
M|p|2



≤

2
i=1


−αi +

βi

γi


|v′

i(0)|
2
+

βiγi

M
⟨F , F⟩H


where γi > 0. So it holds that

ℜ


A −

1
M

2
i=1

βiγiI


F , F


H

≤

2
i=1


−αi +

βi

γi


|v′

i(0)|
2

≤ 0

if αiγi ≥ βi, i = 1, 2. The desired result follows. �

Lemma 2.2. Let H and A be defined as before. Then 0 ∈ ρ(A) and A−1 is compact on H , and hence the spectrum σ(A) of A
consists of all isolated eigenvalues of finite algebraic multiplicities. In particular, all eigenvalues appear in conjugate pairs on the
complex plane.

Proof. For any F = (f , g, h) ∈ H , we consider the solvability of equation

AY = F , Y = (y, v, p) ∈ D(A),

that is, y, v and p satisfy the equations

v(x) = f (x), (2.6)

−y(4)
i (x) = gi(x), i = 1, 2, (2.7)

1
M

2
i=1

y′′′

i (1) = h, (2.8)

and the boundary conditions
y1(0) = y2(0) = 0, y1(1) = y2(1),
y′′

i (0) = τiy′

i(0) + αiv
′

i(0) + βivi(1), i = 1, 2,
p = v1(1) = v2(1), y′

1(1) = y′

2(1),
2

i=1

y′′

i (1) = 0.

(2.9)
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Solving the differential equation (2.7) yields

yi(x) = yi(0) + xy′

i(0) +
x2

2
y′′

i (0) +
x3

3!
y′′′

i (0) −

 x

0

(x − r)3

3!
gi(r)dr. (2.10)

For simplification, we denote

Gi(x) =

 x

0

(x − r)3

3!
gi(r)dr, i = 1, 2,

and

k1 = G1(x) − G2(x)|x=1, k2 = G1x(x) − G2x(x)|x=1,

k3 = τ1G′

1(x) − G′′

1(x)|x=0 − α1f1x(0) − β1f1(1),
k4 = τ2G′

2(x) − G′′

2(x)|x=0 − α2f2x(0) − β2f2(1),
k5 = G′′

1(x) + G′′

2(x)|x=1, k6 = G′′′

1 (x) + G′′′

2 (x)|x=1 + Mh.

Set 
X = [y′

1(0), y
′′

1(0), y
′′′

1 (0), y′

2(0), y
′′

2(0), y
′′′

2 (0)]T ,
K = [k1, . . . , k6]T .

(2.11)

Substituting (2.10) into the boundary conditions (2.9) leads to the following algebraic equations

CX = K (2.12)

where the coefficient matrix is

C =



1
1
2

1
3!

−1 −
1
2

−
1
3!

1 1
1
2

−1 −1 −
1
2

τ1 −1 0 0 0 0
0 0 0 τ2 −1 0
0 1 1 0 1 1
0 0 1 0 0 1


.

A direct calculation shows det[C] =
1
2τ1 + (1 +

τ1
τ2

) ≠ 0. So Eqs. (2.12) have a unique solution X and hence we can
determine uniquely functions yi(x) ∈ H4(0, 1), i = 1, 2. Clearly, (y, v, p) = (y, f , f1(1)) ∈ D(A) and A(y, v, p) = (f , g, h).
The inverse operator theorem asserts that A−1 is bounded on H , which indicates that 0 ∈ ρ(A). In addition, the fact that
D(A) ⊂ Y ∩[H4(0, 1)]2 ×Y ×C ⊂ H shows thatA−1 is compact due to Sobolev’s Embedding theorem. The spectral theory
of linear compact operator shows that σ(A) consists of all isolated eigenvalues of finite algebraic multiplicities. Note that
A is a real linear operator on H , so its spectrum distributes symmetrically with respect to the real axis. This completes the
proof. �

Thanks to the above lemmas and Lumer–Phillips theorem (see, [15]), we have the following result.

Theorem 2.1. Let A and H be defined as before. Then A generates a C0 semigroup T (t) on H . Hence, the system (1.1) is well-
posed, that is, for any Y0 ∈ H , the system (1.1) has a unique solution Y (t) = T (t)Y0.

3. Asymptotic eigenvalue problem

To investigate the properties of the semigroup T (t) generated by A, we need to find out some spectral properties of
A. We know from Lemma 2.2 that the spectrum of A consists of all isolated eigenvalues, so we need only to discuss the
eigenvalue of A and its asymptotical distribution. In this section, we shall calculate the asymptotic values of eigenvalues
of A.

Let λ ∈ C, we consider the existence of a nonzero solution of the equation

A(y, v, p) = λ(y, v, p), (y, v, p) ∈ D(A).
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This is equivalent to v = λy, p = v1(1) = v2(1) = λy(1) and yi satisfies the following boundary eigenvalue problem

λ2yi(x) + y(4)
i (x) = 0,

y1(0) = y2(0) = 0,
y′′

i (0) − (τi + λαi)y′

i(0) − λβiyi(1) = 0,
y1(1) = y2(1) = y(1), y′

1(1) = y′

2(1),
2

i=1

y′′

i (1) = 0,

2
i=1

y′′′

i (1) − Mλ2y(1) = 0.

(3.1)

To solve the above equations, let λ = µ2, we rewrite above equations into the equations about parameter µ as follows:

µ4yi(x) + y(4)
i (x) = 0,

y1(0) = y2(0) = 0,
y′′

i (0) − (τi + µ2αi)y′

i(0) − µ2βiyi(1) = 0, i = 1, 2,
y1(1) = y2(1) = y(1), y′

1(1) = y′

2(1),
2

i=1

y′′

i (1) = 0,

2
i=1

y′′′

i (1) −
1
2
Mµ4

2
i=1

yi(1) = 0.

(3.2)

Herewe use the equality y(1) = y1(1) = y2(1) =
1
2 (y1(1)+y2(1)). Obviously, the differential equation has general solution

yi(x) =

4
j=1

ai,jeωjµx

where all ωj are the distinct root of equation ω4
= −1. Substituting these expressions into the boundary conditions in (3.2)

leads to

a11 + a12 + a13 + a14 = 0,
a21 + a22 + a23 + a24 = 0,
c11(µ)a11 + c12(µ)a12 + c13(µ)a13 + c14(µ)a14 = 0,
c21(µ)a21 + c22(µ)a22 + c23(µ)a23 + c24(µ)a24 = 0,
eω1µ(a11 − a21) + eω2µ(a12 − a22) + eω3µ(a13 − a23) + eω4µ(a14 − a24) = 0,
ω1eω1µ(a11 − a21) + ω2eω2µ(a12 − a22) + ω3eω3µ(a13 − a23) + ω4eω4µ(a14 − a24) = 0,
ω2

1e
ω1µ(a11 + a21) + ω2

2e
ω2µ(a12 + a22) + ω2

3e
ω3µ(a13 + a23) + ω2

4e
ω4µ(a14 + a24) = 0,

ω3
1 −

M
2

µ


eω1µ(a11 + a21) +


ω3

2 −
M
2

µ


eω2µ(a12 + a22) +


ω3

3 −
M
2

µ


eω3µ(a13 + a23)

+


ω3

4 −
M
2

µ


eω4µ(a14 + a24) = 0

(3.3)

where

cij(µ) = (ωj)
2
−

τiωj

µ
− αiωjµ − βieωjµ.

Denote by dj(µ) = ω3
j −

M
2 µ and

D(µ) = det



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

c11(µ) c12(µ) c13(µ) c14(µ) 0 0 0 0
0 0 0 0 c21(µ) c22(µ) c23(µ) c24(µ)

eω1µ eω2µ eω3µ eω4µ
−eω1µ

−eω2µ
−eω3µ

−eω4µ

ω1eω1µ ω2eω2µ ω3eω3µ ω4eω4µ
−ω1eω1µ

−ω2eω2µ
−ω3eω3µ

−ω4eω4µ

ω2
1e

ω1µ ω2
2e

ω2µ ω2
3e

ω3µ ω2
4e

ω4µ ω2
1e

ω1µ ω2
2e

ω2µ ω2
3e

ω3µ ω2
4e

ω4µ

d1(µ)eω1µ d2(µ)eω2µ d3(µ)eω3µ d4(µ)eω4µ d1(µ)eω1µ d2(µ)eω2µ d3(µ)eω3µ d4(µ)eω4µ


. (3.4)

Then we have the following result.
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Lemma 3.1. Let A be defined as before and D(µ) be defined as (3.4), then λ = µ2
∈ C is an eigenvalue of A if and only if

D(µ) = 0, i.e.,

σ(A) = {λ = µ2
|D(µ) = 0, µ ∈ C}.

We are now in a position to determine the zeros of D(µ). Due to the symmetry of the spectrum of A with respect to the
real axis, we only need to discuss the case that arg λ ∈ (0, π) (complex up-half-plane), or equivalently argµ ∈ (0, π

2 ).
First, we consider the cases that arg λ ∈ (0, π

4 ) and arg λ ∈ ( 3π
4 , π).

When arg λ ∈ (0, π
4 ), we have argµ ∈ (0, π

8 ). We order ωj as follows

ω1 = e
3π
4 i, ω2 = e

5π
4 i, ω3 = e

π
4 i, ω4 = e

7π
4 i

so that

ℜ(ω1µ) ≤ ℜ(ω2µ) < 0 < ℜ(ω3µ) ≤ ℜ(ω4µ), ∀ argµ ∈


0,

π

8


.

When arg λ ∈ ( 3π
4 , π), we have argµ ∈ ( 3π

8 , π
2 ). Taking

ω1 = e
3π
4 i, ω2 = e

π
4 i, ω3 = e

5π
4 i, ω4 = e

7π
4 i,

we have

ℜ(ω1µ) ≤ ℜ(ω2µ) < 0 < ℜ(ω3µ) ≤ ℜ(ω4µ), ∀ argµ ∈


3π
8

,
π

2


.

In both cases, we always have maxµ ℜ(ω2µ) ≤ 0 ≤ minµ ℜ(ω3µ). Therefore when |µ| → ∞ with argµ ∈ (0, π
8 ) ∪

( 3π
8 , π

2 ), we find out

lim
|µ|→∞

D(µ)

µ3e2(ω3+ω4)µ
= det



1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0

−ω1α1 −ω2α1 0 0 0 0 0 0
0 0 0 0 −ω1α2 −ω2α2 0 0
0 0 1 1 0 0 −1 −1
0 0 ω3 ω4 0 0 −ω3 −ω4

0 0 ω2
3 ω2

4 0 0 ω2
3 ω2

4

0 0 −
M
2

−
M
2

0 0 −
M
2

−
M
2


≠ 0.

So there is at most finitely many eigenvalues of A in the region {λ ∈ C| arg λ ∈ (0, π
4 ) ∪ ( 3π

4 , π)}.
For region S = {λ ∈ C| arg λ ∈ (π

4 , 3π
4 )}, corresponding µ-plane domain is argµ ∈ (π

8 , 3π
8 ), we range ωj as follows

ω1 = e
3π
4 i, ω2 = e

5π
4 i, ω3 = e

π
4 i, ω4 = e

7π
4 i, for argµ ∈

π

8
,
π

4


and

ω1 = e
3π
4 i, ω2 = e

π
4 i, ω3 = e

5π
4 i, ω4 = e

7π
4 i, for argµ ∈


π

4
,
3π
8


,

so that

ℜ(ω1µ) ≤ ℜ(ω2µ) < 0 < ℜ(ω3µ) ≤ ℜ(ω4µ), ∀ argµ ∈

π

8
,
π

8


.

Note that, in that case, it always holds that ω2 = −ω3 and ω1 = −ω4. Thus,

D(µ) = det



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

c11(µ) c12(µ) c13(µ) c14(µ) 0 0 0 0
0 0 0 0 c21(µ) c22(µ) c23(µ) c24(µ)

eω1µ eω2µ eω3µ eω4µ
−eω1µ

−eω2µ
−eω3µ

−eω4µ

ω1eω1µ ω2eω2µ ω3eω3µ ω4eω4µ
−ω1eω1µ

−ω2eω2µ
−ω3eω3µ

−ω4eω4µ

ω2
1e

ω1µ ω2
2e

ω2µ ω2
3e

ω3µ ω2
4e

ω4µ ω2
1e

ω1µ ω2
2e

ω2µ ω2
3e

ω3µ ω2
4e

ω4µ

d1(µ)eω1µ d2(µ)eω2µ d3(µ)eω3µ d4(µ)eω4µ d1(µ)eω1µ d2(µ)eω2µ d3(µ)eω3µ d4(µ)eω4µ



= det



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

c11(µ) c12(µ) c13(µ) c14(µ) 0 0 0 0
0 0 0 0 c21(µ) c22(µ) c23(µ) c24(µ)

eω1µ eω2µ e−ω2µ e−ω1µ
−eω1µ

−eω2µ
−e−ω2µ

−e−ω1µ

ω1eω1µ ω2eω2µ
−ω2e−ω2µ

−ω1e−ω1µ
−ω1eω1µ

−ω2eω2µ ω2e−ω2µ ω1e−ω1µ

ω2
1e

ω1µ ω2
2e

ω2µ ω2
2e

−ω2µ ω2
1e

−ω1µ ω2
1e

ω1µ ω2
2e

ω2µ ω2
2e

−ω2µ ω2
1e

−ω1µ

d1(µ)eω1µ d2(µ)eω2µ d3(µ)eω3µ d4(µ)eω4µ d1(µ)eω1µ d2(µ)eω2µ d3(µ)e−ω2µ d4(µ)e−ω1µ


.
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A direct but complicated calculation gives

D(µ) = −2iµ3e2µω4


−4

√
2α1α2M


[ie2µω2 + e−2µω2 + i + 1] +

−8iα1α2 − 8iα1M − 8iα2M
µ

e2µω2

+
−8iα1α2 + 8iα1M + 8iα2M

µ
e−2µω2 −

16iα1α2 + 8M(α1 + α2)

µ
+ O(µ−2) + O


e−c|ω1µ|


, (3.5)

where c is some positive constant. Therefore, the asymptotic zeros of D(µ) in the region argµ ∈ (π
8 , 3π

8 ) are determined by
−4

√
2α1α2M


[ie2µω2 + e−2µω2 + i + 1] +

−8iα1α2 − 8iα1M − 8iα2M
µ

e2µω2

+
−8iα1α2 + 8iα1M + 8iα2M

µ
e−2µω2 −

16iα1α2 + 8M(α1 + α2)

µ
= 0. (3.6)

In the next theorem, we shall give the asymptotic expression of eigenvalues for A.

Theorem 3.1. Let D(µ) be defined as (3.4) in the sector S with λ = µ2. Then the zeros of D(µ) in S have two branches µ1,n and
µ2,n, they have asymptotic expansion

µ1,n =


n +

1
2


π i

ω2
+ O


1
n


=

m1π i
ω2

+ O

1
n


and

µ2,n =


n +

1
4


π i

ω2
+ O


1
n


=

m2π i
ω2

+ O

1
n


,

whereω2 = e
π i
4 . Hence all eigenvalues of A can be written as {λj,n, λj,n| λj,n = µ2

j,n, j = 1, 2}, they have asymptotic expressions

λ1,n = µ2
1,n = −

α1 + α2

α1α2
+ m2

1π
2i + O


1
n


, m1 = n +

1
2
,

λ2,n = µ2
2,n = −

α1 + α2

α1α2
+


m2

2π
2
+

2
M


i + O


1
n


, m2 = n +

1
4
.

Proof. Let D(µ) = 0, λ = µ2
∈ S. According to (3.5) its asymptotic zeros are determined by (3.6), or equivalently,

−4
√
2α1α2M


[ie2µω2 + e−2µω2 + i + 1] + O


1
µ


= 0, argµ ∈


π

8
,
3π
8


.

Solving function equation ie2µω2 + e−2µω2 + i + 1 = 0 yields

µ1,n =


n +

1
2


π i

ω2
=

m1π i
ω2

, µ2,n =


n +

1
4


π i

ω2
=

m2π i
ω2

.

Let µj,n = µj,n + εj,n, j = 1, 2 be the zeros of (3.6). For j = 1, substituting it into (3.6) yields

−4
√
2Mα1α2[−ie2ω2ε1,n − e−2ω2ε1,n + (i + 1)] −

ω2(−8Mα1i − 8Mα2i − 8α1α2i)
m1π i + ω2ε1,n

e2ω2ε1,n

−
ω2(8Mα1i + 8Mα2i − 8α1α2i)

m1π i + ω2ε1,n
e−2ω2ε1,n +

ω2[−16α1α2i − 8M(α1 + α2)]

m1π i + ω2ε1,n
= 0.

Expanding the exponential function leads to

8
√
2Mα1α2[(i − 1)ω2ε1,n + O(ε1,n)

2
] −

ω2(−8Mα1i − 8Mα2i − 8α1α2i)
m1π + ω2ε1,n

(1 + 2ω2ε1,n + O(ε2
1,n))

−
ω2(8Mα1i + 8Mα2i − 8α1α2i)

m1π i + ω2ε1,n
(1 − 2ω2ε1,n + O(ε2

1,n)) +
ω2[−16α1α2i − 8M(α1 + α2)]

m1π i + ω2ε1,n
= 0

which implies

ε1,n =
α1 + α2

√
2(i − 1)α1α2m1π i

+ O


1
n2


.
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Hence

µ1,n = µ1,n + ε1,n =
m1π i
ω2

+
α1 + α2

√
2(i − 1)α1α2m1π i

+ O


1
n2


.

Similarly, for j = 2, substituting µ2,n into (3.6) yields

−4
√
2Mα1α2


ie2


n+ 1

4


π i+2ω2ε2,n

+ e−


2

n+ 1

4


π i+2ω2ε2,n


+ (i + 1)


+

ω2(−8Mα1i − 8Mα2i − 8α1α2i)
m2π i + ω2ε2,n

e2

n+ 1

4


π i+2ω2ε2,n

+
ω2(8Mα1i + 8Mα2i − 8α1α2i)

m2π i + ω2ε2,n
e−


2

n+ 1

4


π i+2ω2ε2,n



+
ω2[−16α1α2i − 8M(α1 + α2)]

m2π i + ω2ε2,n
= 0.

By simplification, we obtain

8
√
2Mα1α2(1 − i)ω2ε2,n +

ω2i(−8Mα1i − 8Mα2i − 8α1α2i)
m2π i + ω2ε2,n

+
ω2(−i)(−8α1α2i + 8Mα1i + 8Mα2i)

m2π i + ω2ε2,n

+
ω2[−16α1α2i − 8M(α1 + α2)]

m2π i + ω2ε2,n
+ O(ε2

2,n) = 0,

which implies

ε2,n =
2α1α2i − M(α1 + α2)
√
2(1 − i)Mα1α2m2π i

+ O


1
n2


.

So we have

µ2,n = µ2,n + ε2,n =
m2π i
ω2

+
2α1α2i − M(α1 + α2)
√
2M(1 − i)α1α2m2π i

+ O


1
n2


.

Therefore, we have

λ1,n = µ2
1,n = −

α1 + α2

α1α2
+ m2

1π
2i + O


1
n


and

λ2,n = µ2
2,n = −

α1 + α2

α1α2
+


m2

2π
2
+

2
M


i + O


1
n


.

This completes the proof. �

4. Completeness of (generalized) eigenvectors of A and Riesz basis property

In this section, we shall discuss the completeness of (generalized) eigenvectors of A and its Riesz basis property. First we
establish the completeness of (generalized) eigenvectors of A. For this purpose, we need the following lemma.

Lemma 4.1. Suppose H is defined by (2.1). Let A0 be a new operator in H defined as

A0(y, v, p) =


v, −y(4),

1
M

2
i=1

y′′′

i (1)


, (4.1)

with domain

D(A0) =


(y, v, p) ∈ Y ∩ [H4(0, 1)]2 × Y × C :

y′′

i (0) − τiy′

i(0) = 0, i = 1, 2,

p = v1(1) = v2(1),
2

i=1

y′′

i (1) = 0

 . (4.2)

Then A0 is a skew self-adjoint operator in H , i.e., A∗

0 = −A0.

The proof is a direct verification, we omit the details.
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Theorem 4.1. The (generalized) eigenvectors of A is complete in H , i.e.,

H = Sp(A) = span{E(λk, A)H, ∀λk ∈ σ(A)}

where E(λk, A) is the Riesz projector corresponding to λk.

Proof. Let H and A be defined as before and A0 be defined as (4.1) and (4.2). To prove Sp(A) = H , let U0 = (w0, z0, v0) ∈

H and (w0, z0, v0)⊥Sp(A), we shall show U0 = 0.
Since U0⊥Sp(A), R∗(λ, A)U0 can extend to an entire function on the complex plane C. Thus for any F = (f1, f2, f3) ∈ H ,

the function defined by

G(λ) = ⟨F , R∗(λ, A)U0⟩H , λ ∈ C

also is an entire function. Since A is the generator of semigroup T (t), we have limℜλ→+∞ |G(λ)| = 0. In addition, for
λ ∈ ρ(A),

G(λ) = (R(λ, A)F ,U0)H .

Now for λ ∈ ρ(A) ∩ ρ(A0), we write

Y1 = R(λ, A)F , Y2 = R(λ, A0)F , (4.3)

where Y1 ∈ D(A), Y2 = (z, u, q) ∈ D(A0). Let Y = Y1 − Y2 = (y, v, p), then R(λ, A)F = R(λ, A0)F + Y and Y = (y, v, p)
satisfy the following equations

v(x) = λy(x), p = v1(1) = v2(1),
λ2yi(x) + y(4)

i (x) = 0, i = 1, 2,
y1(0) = y2(0) = 0,
y′′

i (0) − (αiλ + τi)y′

i(0) − λβiyi(1) = αiu′

i(0) + βiui(1), i = 1, 2,
y1(1) = y2(1), y′

1(1) = y′

2(1),
2

i=1

y′′

i (1) = 0,
2

i=1

y′′′

i (1) − Mλ2y1(1) = 0.

(4.4)

In what follows, we shall estimate the norm of Y for real λ, i.e.,

∥Y∥
2

= ∥(y, v, p)∥2
=

2
i=1

 1

0
[|y′′

i (x)|
2
+ |vi(x)|2]dx +

2
i=1

τi|y′

i(0)|
2
+ M|p|2

=

2
i=1

 1

0
[|y′′

i (x)|
2
+ |λyi(x)|2]dx +

2
i=1

τi|y′

i(0)|
2
+ M|λy1(1)|2.

Since 1

0
|y′′

i (x)|
2dx =

 1

0
y′′

i (x)y
′′

i (x)dx = y′′

i (x)y
′

i(x) |
1
0 −y′′′

i (x)yi(x) |
1
0 +

 1

0
y(4)
i (x)yi(x)dx

= y′′

i (1)y
′

i(1) − y′′

i (0)y
′

i(0) − y′′′

i (1)yi(1) − λ2
 1

0
|yi(x)|2dx,

for real λ ∈ R, we have

2
i=1

 1

0
|y′′

i (x)|
2dx + λ2

2
i=1

 1

0
|yi(x)|2dx +

2
i=1

τi|y′

i(0)|
2
+ M|λy1(1)|2

=

2
i=1

y′′

i (1)y
′

i(1) −

2
i=1

(y′′

i (0) − τiy′

i(0))y
′

i(0) −

2
i=1

y′′′

i (1)yi(1) + λ2My21(1)

= −

2
i=1

(αiλy′

i(0) + αiu′

i(0) + λβiyi(1) + βiui(1))y′

i(0)

= −λ

2
i=1

αi|y′

i(0)|
2
−

2
i=1

αiu′

i(0)y
′

i(0) − λ

2
i=1

βiyi(1)y′

i(0) −

2
i=1

βiui(1)y′

i(0).

To estimate ∥Y∥
2, we split it into three steps:
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Step 1. There exists positive constant C such that
2

i=1

αi|y′

i(0)|
2

≤
C
|λ|

2
i=1

(|u′

i(0)|
2
+ |ui(1)|2)

and
2

i=1

βi|yi(1)|2 ≤
C
|λ|

2
i=1

[|u′

i(0)|
2
+ |ui(1)|2],

where C = max{C1, C2, C3}.
According to the analysis in Section 3, we can set

yi(x) =

4
j=1

ai,jeωjµx

where ωj are the distinct root of equation ω4
= −1. Eq. (4.4) becomes

HF = E (4.5)

where

F = [a11, a12, a13, a14, a21, a22, a23, a24]τ ,
y′

i(0)
µ

= ai1ω1 + ai2ω2 + ai3ω3 + ai4ω4, i = 1, 2,

E =


0, 0,

α1u′

1(0) + β1u1(1)
µ3

,
α2u′

2(0) + β2u2(1)
µ3

, 0, 0, 0, 0
τ

where H = (hij)8×8 is the same as D(µ)ij,

H−1
=

1
det H



A11 A12 · · · · · · A18
A21 A22 · · · · · · A28
A31 A32 · · · · · · A38
A41 A42 · · · · · · A48
A51 A52 · · · · · · A58
A61 A62 · · · · · · A68
A71 A72 · · · · · · A78
A81 A82 · · · · · · A88


,

where {Aij|i, j = 1, . . . , 8} is the algebraic complement of matrix H . Directly calculating we find out

detH = D(µ)

≈ O

−µ2ie2µω4


−4

√
2α1α2M


[ie2µω2 + e−2µω2 + i + 1]


,

and

max
i,j=1,...,8

|Aij| ≈ O

µe2µω4eµω2 [4α2M(1 − i)eµω2 +

√
2 − 4


iα2Me−µω2 ]


.

Hence

∥H−1
∥ ≤ max

i,j=1,...,8

|Aij|

| detH|
≤α,

whereα is a positive constant. We have ∥F∥ ≤ ∥H−1
∥ ∥E∥. Thus we obtain

2
i=1

αi|y′

i(0)|
2

≤
C1

|λ|

2
i=1

(|u′

i(0)|
2
+ |ui(1)|2).

Sincey′′

i (0)
µ2

 = |aijω2
j | ≤ C2

1
µ3

2
i=1

(|u′

i(0)|
2
+ |ui(1)|2)

and

y′′

i (0) − (αiλ + τi)y′

i(0) − λβiyi(1) = αiu′

i(0) + βiui(1), i = 1, 2,
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so we can obtain
2

i=1

βi|yi(1)|2 ≤
C3

|λ|

2
i=1

[|u′

i(0)|
2
+ |ui(1)|2].

Step 2. There exists positive constant C4 such that

2
i=1

αi|u′

i(0)|
2

≤
C4

|λ2| |ℜλ|
∥F∥

2, |ui(1)| ≤
C4

|ℜλ|
∥F∥, i = 1, 2. ∀λ ∈ ρ(A0) ∩ R.

Since A0 is a skew self-adjoint operator in H , we have

∥R(λ, A0)∥ ≤
1

|ℜλ|
, ∀λ ∈ ρ(A0),

Step 3. There exists positive constant C5 such that

∥Y∥ ≤
C5

|λ|
∥F∥, λ ∈ R.

In fact, for λ ∈ R ∩ ρ(A) ∩ ρ(A0),

∥Y∥
2

=

2
i=1

 1

0
|y′′

i (x)|
2dx + λ2

2
i=1

 1

0
|yi(x)|2dx +

2
i=1

τi|y′

i(0)|
2
+ M|λy1(1)|2

= −λ

2
i=1

αi|y′

i(0)|
2
−

2
i=1

αiu′

i(0)y
′

i(0) − λ

2
i=1

βiyi(1)y′

i(0) −

2
i=1

βiui(1)y′

i(0)

≤ |λ|

2
i=1

αi|y′

i(0)|
2
+

1
2


2

i=1

αi|u′

i(0)|
2
+

2
i=1

αi|y′

i(0)|
2



+
|λ|

2


2

i=1

βi|yi(1)|2 +

2
i=1

βi|y′

i(0)|
2


+

1
2


2

i=1

βi|ui(1)|2 +

2
i=1

βi|y′

i(0)|
2



≤


2C +

C
2|λ|

+
1
2

+ C +
βi

|λ|

 2
i=1

αi|u′

i(0)|
2
+ βi|ui(1)|2 by Step 1

≤


2C +

C
2|λ|

+
1
2
C +

βi

|λ|


C4

|λ|3
+

C2
4

|λ|2

2
i=1

βi


∥F∥

2 by Step 2

≤
C2
5

|λ|2
∥F∥

2

where C2
5 = sup|λ|>δ


2C +

C
2|λ|

+
1
2C +

βi
|λ|

 
C4
|λ|

+ C2
4
2

i=1 βi


.

Since

∥Y2∥ = ∥R(λ, A0)F∥ ≤
1
|λ|

∥F∥,

we find out

∥Y1∥ = ∥R(λ, A)F∥ ≤ (∥R(λ, A0)F∥ + ∥Y∥)

≤


C5

|λ|
+

1
|λ|


∥F∥, ∀λ ∈ ρ(A) ∩ ρ(A0) ∩ R−.

Therefore limλ→−∞ ∥R(λ, A)F∥ = 0.
Note that G(λ) is an entire function of finite exponential type, G(λ) is uniformly bounded along the line ℜλ = α > 0.

The Phragmén-Linderlöf theorem (cf. [28]) asserts that

|G(λ)| ≤ M, ∀λ ∈ C.

The Liouville theorem says that G(λ) ≡ 0. Observe that G(λ) = (F , R∗(λ, A)U0)H for any F ∈ H , so it must be
R∗(λ, A)U0 = 0 which implies U0 = 0. Therefore Sp(A) = H . �
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In what follows, we shall study the Riesz basis generation of the (generalized) eigenvectors of A, we need the following
result that comes from [26].

Lemma 4.2. Let H be a separable Hilbert space, and A be the generator of a C0 semigroup T (t) on H . Suppose that the following
conditions are satisfied:

(1) σ(A) = σ1(A) ∪ σ2(A), where σ2(A) = {λk}
∞

k=1 consists of isolated eigenvalues of A with finite multiplicity;
(2) supk≥1 ma(λk) < ∞, where ma(λk) = dim E(λk, A)H and E(λk, A) is the Riesz projector associated with λk;
(3) There is a constant α such that

sup{ℜλ|λ ∈ σ1(A)} ≤ α ≤ inf{ℜλ|λ ∈ σ2(A)}

and

inf
n≠m

|λn − λm| > 0.

Then the following assertions are true.
(i) There exist two T (t)-invariant closed subspaces H1, H2 with the property that σ(A|H1) = σ1(A), σ (A|H2) =

σ2(A), E(λk, A)H2 forms a subspace Riesz basis for H2 and

H = H1


H2.

(ii) If supk≥1 ∥E(λk, A)∥ < ∞, then
D(A) ⊂ H1 ⊕ H2 ⊂ H . (4.6)

(iii) H has the decomposition
H = H1 ⊕ H2 (topological direct sum),

if and only if

sup
n≥1

 n
k=1

E(λk, A)

 < ∞. (4.7)

Applying Theorem 4.1 and Lemma 4.2 to our problem, we have the following result.

Theorem 4.2. Let H and A be defined as (2.1) and (2.3), respectively. Then there is a sequence of eigenvectors and generalized
eigenvectors of A that forms a Riesz basis for H . In particular, the system associated with A satisfies the spectrum determined
growth condition.

Proof. Set σ1(A) = {−∞}, σ2(A) = σ(A). Lemma 2.2 shows that A generates a C0 semigroup and the condition (1) in
Lemma 4.2 holds. Theorem 3.1 shows that, for sufficient large n, λj,n are separable and ma(λj,n) = 1, which means that the
conditions (2) and (3) in Lemma 4.2 are fulfilled. Therefore, according to Lemma 4.2, there is a sequence of eigenvectors and
generalized eigenvectors of A that forms a Riesz basis for H2 due to ma(λj,n) = 1 for sufficient large n. Theorem 4.1 shows
that the eigenvectors and generalized eigenvectors are complete in H , that is, H2 = H . Therefore the sequence is also a
Riesz basis for H .

Note that when n is sufficient large, all λj,n are simple eigenvalues of A. There are probably finitely many eigenvalues
of multiplicity two. The Riesz basis property of the eigenvectors and generalized eigenvectors of A ensures that the system
associated with A satisfies the spectrum determined growth condition. The desired result follows. �

5. Stability analysis of the cooperation system

5.1. Stability analysis

In this section, we shall discuss the stability of the system (1.1). It is well known that if (β1, β2) = 0, then the system is
exponentially stable. However, the performance of the nonlinear system requires βj ≠ 0. So the requirement is inherited to
the system (1.1). So we only need to consider the cases of (β1, β2) > 0.

We know from Theorem 4.2 that the growth rate of the system is determined via the maximal real part of spectrum of
A. We denote by

s(α, β) = sup
λ∈σ(A)

ℜλ, (5.1)

where α = (α1, α2), β = (β1, β2). Then we have the following result.

Theorem 5.1. Let H and A be defined as (2.1) and (2.3), respectively. If we can choose the gain coefficients α and β such that
s(α, β) < 0, then the closed loop system (2.1) is exponentially stable.
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Fig. 2. The spectrum graph.

For sufficient small δ > 0, denote by γ the negative real

γ = −
α1 + α2

α1α2
+ δ.

According to the asymptotic expression of the eigenvalues of A in Theorem 3.1, we see that there are at most finitely
many number of eigenvalues of A in the half plane ℜλ > γ . Since the asymptotic values of eigenvalues are not obviously
dependent on β , we can assert that only the finite eigenvalues ofA depend upon the value of β strongly. Therefore, we have
to check whether there exist β > 0 such that s(α, β) < 0. Obviously, if β = 0, From the proof of Lemma 2.1 we can see that
A is a dissipative operator in H . In this case, we have s(α, 0) < 0.

To obtain the stability of (1.1) for β > 0, we need the following result, which comes from [16, Theorem 2.1].

Lemma 5.1. Suppose that B ⊂ Rn is an open and connected set, h(λ,
−→r ) is continuous in (λ,

−→r ) ∈ C × B and analytic in
λ ∈ C, and zeros of h(λ,

−→r ) in the right half plane {λ ∈ C|ℜλ ≥ 0} are uniformly bounded. If for any −→r ∈ B1 ⊂ B, where
B1 is a bounded, closed and connected set, h(λ,

−→r ) has no zero on the imaginary axis, then the sum of the orders of the zero of
h(λ,

−→r ) in the open right half plane (ℜλ > 0) is a fixed number for B1, that is, it is independent of the parameter −→r ∈ B1.

To apply Lemma 5.1 to our case, we take

h(λ,
−→r ) = D(µ, α, β)

where D(µ, α, β) = D(µ) is defined as in (3.4) and λ = µ2. Here we only consider the case that α > 0 is fixed and β varies
in neighbor of the original point, B1 ⊂ O(r) ⊂ R2, that is, −→r = β . Obviously, h(λ,

−→r ) is analytic in λ and continuous in
−→r . Theorem 3.1 ensures that zeros of h(λ,

−→r ) in the right half-plane are uniformly bounded. By Lemma 5.1, there exists a
small neighbor B1 ⊂ O(r) in which the zeros of h(λ,

−→r ) are constants in the right half-plane. Since −→r = β = 0, there are
no zeros of h(λ,

−→r ) in the right half-plane. Therefore, there is no zero of h(λ,
−→r ) in the right half-plane for all−→r = β ∈ B1.

Applying Lemma 5.1 to our model, using the continuity of s(α, β) with respect to β , there exists δ(α) > 0 such that
0 < ∥β∥ < δ(α), it holds that s(α, β) < 0 since s(α, 0) < 0. Therefore, we have the following result.

Theorem 5.2. Let A be defined by (2.3) and (2.4). Then for each α > 0, there exists δ(α) > 0 such that s(α, β) < 0 provided
that 0 < ∥β∥ < δ(α). Hence the closed loop system (1.1) is exponentially stable.

From Theorem 5.2 we know that one can choose smaller β such that the system (1.1) is exponentially stable. However
we cannot obtain an estimate for δ(α) or the relation between α and β . Therefore, how to choose the gain parameters is still
an important question in practice. In the next subsection, we shall give some simulations to show the relationship between
α and β that make the closed-loop system (1.1) stable exponentially.

5.2. Simulation

In this subsection, we give some simulations for the eigenvalues of the system (1.1) to show the relation between α
and β .

(1) The first simulation is to check the stability of the system for (α1, α2) < (β1, β2).
Set α = (1, 1) and β = (5, 5) or set α = (0.1, 0.1) and β = (2, 2). By Matlab scientific calculation, we obtain the

finitely many number spectral points of the system (1.1), whose distributions are shown in Figs. 2 and 3, respectively. In
Figs. 2 and 3, the notation ∗ denotes all spectral points.
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Fig. 3. The spectrum graph.

Fig. 4. The relation between β and the spectrum.

The simulation results (see Figs. 2 and 3) show that all eigenvalues are located on the left hand side of the imaginary
axis. Hence the system (1.1) is exponentially stable with such feedback gains. These results also show that the feedback
controllers are feasible for (β1, β2) reasonable large.

(2) The second simulation is to describe change of s(α, β) with β = (β1, β2).
In order to study the behavior of the rightmost eigenvalue of the system with the change of gain parameter β , we keep

α = (α1, α2) fixed and change the value of β .
Set α = (1, 1), we take β of the form β = (1, 1)ξ where ξ ∈ R. Let ξ change from 0 to 20 and take step length h = 0.1,

calculate the value of s(α, β). We obtain the calculation results whose graphics are shown in Fig. 4. But we cannot obtain
an analytic expression between β and the maximal real part of the spectrum since the figure is so complex.

The simulation result (see, Fig. 4) shows that all eigenvalues of the system (1.1) are in the left half-plane. In this case,
the maximal real part of spectrum of A is still negative. This implies that the system is still exponentially stable. However,
when ξ changes in interval [6, 8], s(α, β) has a singular variety. The rightmost eigenvalue approximates to −0.2 when ξ is
about 7.

6. Conclusion

Westudied the stability problemof a robot systemcomposed of twoEuler–Bernoulli beamswith non-collocated feedback
controllers. The advantage of this class of the non-collocated feedback controllers is simpler and more feasible in practice.
With the help of the Riesz basis approach and the asymptotic analysis technique, we proved the exponential stability of
uniform Euler–Bernoulli beam equations under non-collocated boundary feedback controllers with suitable choice of the
feedback gains. The key point of this kind of controllers is the suitable choice of the feedback gains. Although we do not
obtain an analytic expression of relation between (α1, α2) and (β1, β2), we have proved that such a relation exists.
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The simulation result (see, Fig. 4) shows that for the variables α and β of the form α = (1, 1) and β = (1, 1)ξ , ξ ∈ R,
all eigenvalues of the system (1.1) are in the left half-plane. Hence the corresponding closed loop systems are exponentially
stable. We observe that β and α need not have this form. Our further work will determine (α1, α2) for certain fixed
β = (β1, β2).
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