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In this paper we are interested in the numerical approximation of the marginal
distributions of the Hilbert space valued solution of a stochastic Volterra equation
driven by an additive Gaussian noise. This equation can be written in the abstract
Itô form as

dX(t) +
( t∫

0

b(t− s)AX(s) ds
)

dt = dWQ(t), t ∈ (0, T ]; X(0) = X0 ∈ H,

where WQ is a Q-Wiener process on the Hilbert space H and where the time
kernel b is the locally integrable potential tρ−2, ρ ∈ (1, 2), or slightly more general.
The operator A is unbounded, linear, self-adjoint, and positive on H. Our main
assumption concerning the noise term is that A(ν−1/ρ)/2Q1/2 is a Hilbert–Schmidt
operator on H for some ν ∈ [0, 1/ρ]. The numerical approximation is achieved via a
standard continuous finite element method in space (parameter h) and an implicit
Euler scheme and a Laplace convolution quadrature in time (parameter Δt = T/N).
We show that for ϕ : H → R twice continuously differentiable test function with
bounded second derivative,

∣∣Eϕ
(
XN

h

)
− Eϕ

(
X(T )

)∣∣ � C ln
(

T

h2/ρ + Δt

)(
Δtρν + h2ν),

for any 0 � ν � 1/ρ. This is essentially twice the rate of strong convergence under
the same regularity assumption on the noise.
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1. Introduction

Let H = L2(O) be the real separable Hilbert space of square integrable functions on some convex
polygonal domain O of R

d, d � 1, equipped with the usual inner product denoted by (·, ·) and induced
norm ‖ · ‖. For T > 0, we consider the following stochastic Volterra type equation written in the abstract
Itô form as

dX(t) +
( t∫

0

b(t− s)AX(s) ds
)

dt = dWQ(t), t ∈ (0, T ]; X(0) = X0, (1.1)

where −A = Δ is the Dirichlet Laplacian with domain D(A) = H2(O) ∩H1
0 (O) and WQ is an H-valued

Wiener process on the probability space (Ω,F ,P) endowed with the normal filtration {Ft}t�0 generated
by WQ with possibly unbounded covariance operator Q. We note that, strictly speaking, the process WQ

is H-valued if and only if Q is a trace class operator. The initial condition X(0) = X0 is H-valued and
F0-measurable. The convolution kernel b is given by

b(t) = tρ−2/Γ (ρ− 1), 1 < ρ < 2, (1.2)

or could be somewhat more general which is made precise later in Section 2. Such equations are called
stochastic Volterra equations and can be used in the modeling of diffusion of heat in materials with memory
or in viscoelasticity (see [3,15] and references therein). Because of the weak singularity of the kernel b at
0, the deterministic equation exhibit certain smoothing characteristics similar to that of parabolic type
evolution equations.

We study the numerical approximation of {X(t)}t∈[0,T ] by an implicit Euler scheme and a Laplace
transform convolution quadrature in time together with a finite element method in space. Let N � 1 and
Δt = T/N . We set tn = nΔt, n = 0, . . . , N . Let {Th}0<h<1 denote a family of triangulations of O, with
mesh size h > 0 and consider finite element spaces {Vh}0<h<1, where Vh ⊂ H1

0 (O) consists of continuous
piecewise linear functions vanishing at the boundary of O. Let Xn

h ∈ Vh be the numerical approximation of
X(tn) defined via the difference equations

(
Xn

h , vh
)
−

(
Xn−1

h , vh
)

+ Δt
n∑

k=1

ωn−k

(
∇Xk

h ,∇vh
)

=
(
wn, vh

)
, (1.3)

for any n � 1, with the initial condition (
X0

h, vh
)

= (X0, vh),

for any vh ∈ Vh, where we have set wn = WQ(tn) −WQ(tn−1).
Our specific choice of the weights {ωk}k�0 is stemming from the deterministic framework of [12,13].

Indeed, it can be easily seen that most of the qualitative properties of the solution of (1.1) with Q = 0
depend heavily on the way the frequencies of the time kernel b are distributed. For example, in the case
where b is a Dirac mass at 0, we formally recover the heat equation and if b is regular enough, we recover the
wave equation. For that reason, the weights {ωk}k�0 in (1.3) have been chosen such as to mimic, at the level
of the backward Euler scheme, the spectral properties of the time kernel b. Using the Laplace transform b̂

of b, these weights can be obtained via the relation

b̂

(
1 − z

Δt

)
=

∑
ωkz

k, |z| < 1. (1.4)

k�0
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Introducing the “discrete Laplacian”

Ah : Vh → Vh, (Ahψ, χ) = (∇ψ,∇χ), ψ, χ ∈ Vh, (1.5)

and the orthogonal projector

Ph : H → Vh, (Phf, χ) = (f, χ), χ ∈ Vh,

we rewrite (1.3) in the operator form as

Xn
h −Xn−1

h + Δt

(
n∑

k=1

ωn−k AhX
k
h

)
= Phw

n, n � 1, (1.6)

with X0
h = PhX0.

If ϕ is a twice differentiable real functional on L2(O), not necessarily bounded and with not necessarily
bounded first derivative but with bounded second derivative and A(ν− 1

ρ )/2Q1/2 is a Hilbert–Schmidt operator
on H, then our main result can be stated as follows. Denoting the expectation by E, the so-called weak
error can be estimated as

∣∣Eϕ
(
XN

h

)
− Eϕ

(
X(T )

)∣∣ � C ln
(

T

h2/ρ + Δt

)(
Δtρν + h2ν), (1.7)

where C may depend on T , ϕ and the initial condition X(0) but not on h and N . Hence even in the presence
of memory, similarly to parabolic and hyperbolic stochastic equations [1,5,6,8,9,11,19], the weak order is
essentially twice the strong order, where the latter was studied in [10]. Note that in (1.7) we may even allow
the test function ϕ(x) = ‖x‖2.

In particular, when Q = I (white noise), ν has to be chosen in such a way that A(ν−1/ρ)/2 is a Hilbert–
Schmidt operator on H. Taking the asymptotics of the eigenvalues of the Laplacian into account we must
have ν < 1/ρ − d/2. This yields d = 1 and a rate of convergence in time of (1 − ρ/2)− and in space of
(2/ρ− 1)−.

A popular method used in the study the weak convergence of approximations of stochastic equations
relies on the associated Kolmogorov equation (see [7,16,18]). The global weak error Eϕ(XN

h ) − Eϕ(X(T ))
is usually decomposed in a sum of local weak errors which are then expressed using the solution of the
associated Kolmogorov equation.

Unfortunately, the presence of a non-local term in time in (1.1) prevents us to use the same method
directly because the process {X(t)}t∈[0,T ] is not Markovian and hence no Kolmogorov equation is associated
with (1.1). However, since the equation is linear and the non-local term is in the drift part, we use the same
kind of method as in [5,8,9,11] to remove the drift and obtain an equation which has a Markovian solution.
Hence there is an associated Kolmogorov’s equation with no drift but with a time-dependent covariance
operator.

The outline of the paper is as follows. In Section 2 we introduce basic notations and the main assumptions
on b, together with the existence, uniqueness and regularity properties of {X(t)}t∈[0,T ]. In Section 3 we recall
and prove some deterministic estimates concerning the solutions of (1.1) and (1.6) with Q = 0. In particular,
we recall the discrete mild formulation of (1.6) and establish its regularizing properties (Theorem 3.1). In
Section 4 we introduce the results which are needed in order to accommodate random initial data and
unbounded test functions ϕ. This section ends with a representation formula of the weak error (Theorem 4.3)
which symmetrize the role played by the discrete and the continuous solutions. Finally, in Section 5, we
state and prove the main convergence result (Theorem 5.1).
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2. Preliminaries

In this section we introduce notation and collect some preliminary results. We also state the hypothesis
on the convolution kernel b. We denote the set of bounded linear operators on H by B(H) endowed with
the usual norm ‖ · ‖B(H), where we drop the subscript from the norm if it is clear from the context. Let HS
denotes the Hilbert–Schmidt operators on H; that is, T ∈ HS if T is linear and for an orthonormal basis
(ONB) {ek}k∈N of H

‖T‖2
HS =

∑
k∈N

‖Tek‖2 < ∞.

In this case the sum is independent of the ONB. If a linear operator T on H can be written as

Tx =
∑
k∈N

(x, ak)bk, x ∈ H,

with
∑

k∈N
‖ak‖‖bk‖ < ∞, then T is called a trace-class operator. The trace-norm of T is then defined as

‖T‖Tr = inf
{∑

k∈N

‖ak‖‖bk‖: Tx =
∑
k∈N

(x, ak)bk, x ∈ H

}
.

If T is a trace class operator then for any ONB, the trace of T is defined as

Tr(T ) =
∑

(Tek, ek)

is finite and the sum is independent of the ONB. Both Hilbert–Schmidt and trace class operators are
bounded. If T � 0 is a symmetric trace class operator then, Tr(T ) = ‖T‖Tr. It is well-known that if
T1, T2 ∈ HS, then T1T2 is trace class and∣∣Tr(T1T2)

∣∣ � ‖T1‖HS‖T2‖HS. (2.1)

Furthermore, if T ∈ HS and S ∈ B(H), then TS and ST are in HS and

max
{
‖TS‖HS, ‖ST‖HS

}
� ‖T‖HS‖S‖B(H). (2.2)

For 1 � p < ∞ we denote by Lp(Ω,H) the space of H-valued random variables X such that

‖X‖Lp(Ω,H) =
(
E‖X‖p

)1/p
< ∞.

It is well known that our assumptions on A and on the spatial domain O implies the existence of a
sequence of nondecreasing positive real numbers {λk}k�1 and an orthonormal basis {ek}k�1 of H such that

Aek = λkek, lim
k→+∞

λk = +∞. (2.3)

Next, we define, by means of the spectral decomposition of A, the fractional powers As of A for s ∈ R.
That is, for s > 0 we set

Asx =
∑

λs
k(x, ek)ek, (2.4)
k�1
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with domain D(As) being all x ∈ H for which the sum converges in H. In particular, D(A0) = H. For s < 0
we define Asx as in (2.4) for all x ∈ H and D(As) to be the completion of H with respect to the norm of
‖x‖s = ‖Asx‖.

Next we state the main hypothesis on the convolution kernel b.

Assumption 1. The kernel 0 	= b ∈ L1
loc(R+), is 3-monotone; that is, b, −ḃ are nonnegative, nonincreasing,

convex, and limt→∞ b(t) = 0. Furthermore,

ρ := 1 + 2
π

sup
{∣∣arg b̂(λ)

∣∣, Reλ > 0
}
∈ (1, 2). (2.5)

In the special case of the Riesz kernel given in (1.2) one can easily show that ρ in the exponent coincides
with the one defined in (2.5). In order to obtain non-smooth data estimates for the deterministic equation
we need the following additional hypothesis.

Assumption 2. The Laplace transform b̂ of b can be extended to an analytic function in a sector Σθ with
θ > π/2 and |̂b(k)(z)| � C|z|1−ρ−k, k = 0, 1, z ∈ Σθ.

In the sequel we discuss properties of the solution of (1.1). The weak solution of (1.1) is a mean-square
continuous H-valued process satisfying

(
X(t), η

)
+

t∫
0

r∫
0

b(r − s)
(
X(s), A∗η

)
ds dr = (X0, η) +

t∫
0

(
η,dWQ(s)

)
,

for all η ∈ D(A∗) almost surely for all t ∈ [0, T ]. Under Assumption 1, if WQ ≡ 0; that is, the deterministic
case, then there exists a resolvent family {S(t)}t�0 ⊂ B(H) which is strongly continuous for t � 0, differ-
entiable for t > 0 and uniformly bounded by 1, see [17, Corollary 1.2 and Corollary 3.3]. The unique weak
solution in the deterministic case is given by X(t) = S(t)X0, t ∈ [0, T ].

The next result, which can be found in [3] and [10] summarizes the existence, uniqueness and regularity
of weak solutions of (1.1).

Proposition 2.1. Let b satisfy Assumption 1 and let ‖A(ν− 1
ρ )/2Q

1
2 ‖HS < ∞ and A

ν
2 X0 ∈ L2(Ω,H) for some

ν � 0. Then (1.1) has a unique weak solution given by the variation of constants formula

X(t) = S(t)X0 +
t∫

0

S(t− s) dWQ(s), t � 0, (2.6)

with ‖A ν
2 X(t)‖L2(Ω,H) � C, for some C > 0 and for all t � 0. Furthermore, X has a version which is

Hölder continuous of order less than min(1
2 ,

ρν
2 ).

Remark 2.1. In particular, the stochastic integral in (2.6) makes sense since SQ1/2 ∈ L2((0, T ),HS) (see the
proof of [10, Theorem 3.6]).

3. Deterministic estimates

In the following proposition we collect some of the smoothing properties of {S(t)}t�0 and {Sh(t)}t�0,
where {Sh(t)}t�0 ⊂ Vh is the resolvent family of the deterministic equation
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u̇h(t) +
t∫

0

b(t− s)Ahuh(s) ds = 0, t > 0, uh(0) = Phu0.

We would like to note that in this paper the constant C denotes a generic nonnegative constant that does
not depend on the parameters h, k, t,Δt and is not necessarily the same at every occurrence.

Proposition 3.1. If b satisfies Assumption 1, then the following estimates hold for the resolvent families
{S(t)}t�0 and {Sh(t)}t�0 for some C > 0.

(i) max{‖Aν/2S(t)‖, ‖Aν/2
h Sh(t)Ph‖} � Ct−νρ/2, 0 � ν � 2/ρ, t > 0, h > 0;

(ii) ‖Ṡ(t)‖ � Ct−1, t > 0;
(iii)

∫ t

0 ‖A1/(2ρ)
h Sh(s)Phx‖2 ds � C‖x‖2, t > 0, h > 0.

Proof. The statements for {S(t)}t�0 are shown in [10, Proposition 2.5]. The estimate for {Sh(t)}t�0 in (i)
can be proved exactly the same way while (iii) is shown in the proof of [10, Lemma 3.1.]. �

In the sequel we derive the relevant deterministic error estimates. Using the z-transform, it is shown [10]
that the solution Xn

h of (1.6) can be written using a discrete constant variation formula as

Xn
h = Bh,nPhx +

n−1∑
k=0

Bh,n−kPhwk+1, (3.1)

where, Bh,0 = I and

Bh,kPhx =
∞∫
0

Sh(Δts)Phx
e−ssk−1

(k − 1)! ds for k � 1. (3.2)

Let σ(t) := � t
Δt� and define the piecewise constant operator function

B̃h,N (t) := Bh,σ(t)Ph, 0 � t � T.

Theorem 3.1. If b satisfies Assumptions 1 and 2, then the following estimates hold for some C > 0 where
Eh,N (t) = B̃h,N (t) − S(t), NΔt = T and h > 0.∥∥S(t) − S(s)

∥∥
B(H) � Cs−α|t− s|α, 0 � α � 1, 0 < s � t; (3.3)∥∥A ν

2 B̃h,N (t)
∥∥ � Ct−ρν/2, 0 � ν � 1

ρ
, 0 < t � T ; (3.4)

∥∥Eh,N (t)
∥∥ � Ct−ρν

(
Δtρν + h2ν), 0 � ν � 1

ρ
, 0 < t � T ; (3.5)

∥∥A 1/ρ−ν
2 Eh,N (t)

∥∥ � Ct−
1
2−

ρν
2
(
Δtρν + h2ν), 0 � ν � 1

ρ
, 0 < t � T. (3.6)

Proof. It follows from [17, Corollary 3.3] that ‖Ṡ(t)x‖ � Ct−1‖x‖ for all x ∈ H and t > 0. Thus, for
0 < s � t, we have

∥∥S(t)x− S(s)x
∥∥ �

t∫
s

∥∥Ṡ(r)x
∥∥dr � C‖x‖

t∫
s

r−1 dr � C‖x‖s−1|t− s|.

Since we also have that ‖S(t)x− S(s)x‖ � 2‖x‖, the inequality in (3.3) follows.
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To show (3.4), first note that it follows from (3.2) and Proposition 3.1 (i) with ν = 0 that

‖Bh,k‖ � C, for all k � 1, h > 0. (3.7)

From (3.2) and Proposition 3.1(i) with ν = 2/ρ we conclude that, for k � 2 and h > 0,

∥∥A1/ρ
h Bh,kPhx

∥∥ � C‖x‖(Δt)−1
∞∫
0

e−ssk−2

(k − 1)! ds

= C‖x‖
(
(k − 1)Δt

)−1
∞∫
0

e−ssk−2

(k − 2)! ds

= C‖x‖t−1
k−1 = C‖x‖ k

k − 1 t
−1
k � C‖x‖t−1

k .

For k = 1, by Hölder’s inequality and Proposition 3.1(iii), we have

∥∥A1/(2ρ)
h Bh,1Phx

∥∥ �
∞∫
0

∥∥A1/(2ρ)
h Sh(Δts)x

∥∥e−s ds

� C

( ∞∫
0

∥∥A1/(2ρ)
h Sh(Δts)Phx

∥∥2 ds
)1/2

� C(Δt)−1/2‖x‖. (3.8)

By interpolation, using (3.7), (3.8) and (3.8) we conclude that

∥∥A ν
2
hBh,kPh

∥∥ � Ct
− ρν

2
k , 0 � ν � 1

ρ
, k � 1, h > 0.

Since for δ ∈ [0, 1/2] and vh ∈ Vh we have that ‖Aδvh‖ � ‖Aδ
hvh‖ it also follows that

∥∥A ν
2 Bh,kPh

∥∥ � Ct
− ρν

2
k , 0 � ν � 1

ρ
, k � 1, h > 0.

Finally, for t ∈ (tj−1, tj ], j � 1, we see that

∥∥A ν
2 B̃h,N (t)

∥∥ =
∥∥A ν

2 Bh,jPh

∥∥ � Ct
− ρν

2
j � Ct−

ρν
2 , 0 � ν � 1

ρ
, h > 0,

and the proof of (3.4) is complete.
Next we prove (3.5). First, we write∥∥Bh,kPh − S(tk)

∥∥ �
∥∥Bh,k − Sh(tk)

∥∥ +
∥∥Sh(tk) − S(tk)

∥∥ := e1 + e2.

It is show in [14] that if b satisfies Assumption 2, then

e1 � Ct−1
k Δt and e2 � Ct−ρ

k h2, k � 1, h > 0.

Furthermore, we also have that max{e1, e2} � C by Proposition 3.1 with ν = 0, and thus∥∥Bh,kPh − S(tk)
∥∥ � Ct−ρν(Δtρν + h2ν), 0 � ν � 1/ρ, k � 1, h > 0. (3.9)
k
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Next, for t ∈ (tk−1, tk], k � 1, we have by (3.3) and (3.9), that∥∥Eh,N (t)
∥∥ �

∥∥Bh,kPh − S(tk)
∥∥ +

∥∥S(tk) − S(t)
∥∥

� Ct−ρν
k

(
Δtρν + h2ν) + Ct−ρν

k Δtρν

� Ct−ρν
(
Δtρν + h2ν), 0 � ν � 1/ρ, k � 1, h > 0,

which finishes the proof of (3.5).
Finally, by interpolation, for 0 � α � 1/(2ρ) have that∥∥AαEh,N (t)

∥∥ �
∥∥Eh,N (t)

∥∥1−2ρα∥∥A1/(2ρ)Eh,N (t)
∥∥2ρα

�
∥∥Eh,N (t)

∥∥1−2ρα(∥∥A1/(2ρ)S(t)
∥∥2ρα +

∥∥A1/2ρB̃h,N (t)
∥∥2ρα)

.

Setting α = 1/ρ−ν
2 , 0 � ν � 1/ρ, and using Proposition 3.1(i), (3.4) and (3.5) all with ν = 1/ρ the estimate

in (3.6) follows. �
4. Error representation

Our main assumptions concerning ϕ, depending on the initial data, are

ϕ ∈ C(H,R), Dϕ ∈ C(H,H) and D2ϕ ∈ Cb

(
H,B(H)

)
(4.1)

or

ϕ ∈ C(H,R), Dϕ ∈ Cb(H,H) and D2ϕ ∈ Cb

(
H,B(H)

)
, (4.2)

where C(X,Y ) and Cb(X,Y ) denote the space of continuous resp. continuous and bounded functions f :
X → Y and D denotes the Fréchet derivative. The next lemma and its corollary are needed in the proof of
Theorem 4.3 to accommodate random initial data and test functions ϕ that are unbounded with possibly
an unbounded first derivative. For bounded test functions ϕ the next result can be found, in for example,
[4, Proposition 1.12].

Lemma 4.1. Let ϕ : H → R be measurable such that |ϕ(x)| � pN (‖x‖) where pN is a real polynomial of
degree N . Let (Ω,F , P ) be a probability space and G ⊂ F is a sub sigma-algebra of F . Let ξ1, ξ2 ∈ LN (Ω,H)
be H-valued random variables such that ξ1 is G-measurable and ξ2 is independent of G. If we define u : H → R

by u(x) = E(ϕ(x + ξ2)), x ∈ H, then, almost surely, u(ξ1) = E(ϕ(ξ1 + ξ2)|G).

Proof. Define ϕn(x) = ϕ(ξBn(0)(x)x) where ξBn(0) is the characteristic function of the closed unit ball
around 0 with radius n. We clearly have that ϕn(x) → ϕ(x) for all x ∈ H. Furthermore, |ϕn(x)| � pN (‖x‖)
for all n ∈ N and x ∈ H. Therefore, if η ∈ LN (Ω,H), then by the dominated convergence theorem
ϕn(η) → ϕ(η) in L1(Ω,R). Let x ∈ H and define u(x) := E(ϕ(x + ξ2)) and un(x) := E(ϕn(x + ξ2)). If we
take η := x + ξ2, then, for all x ∈ H,∣∣un(x) − u(x)

∣∣ �
∣∣E(

ϕn(η) − ϕ(η)
)∣∣ �

∥∥ϕn(η) − ϕ(η)
∥∥
L1(Ω,R) → 0

as n → ∞. We also have that ∣∣un(x)
∣∣ � E

∣∣(ϕn(x + ξ2)
)∣∣ � E

(
pN

(
‖x + ξ2‖

))
� C

(
pN

(
‖x‖

)
+ E

(
pN

(
‖ξ2‖

)))
� C

(
pN

(
‖x‖

)
+ ‖ξ2‖LN (Ω,H)

)
,
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and hence

∣∣un(ξ1)
∣∣ � C

(
pN

(
‖ξ1‖

)
+ ‖ξ2‖LN (Ω,H)

)
∈ L1(Ω;R).

Therefore,

un(ξ1) → u(ξ1) in L1(Ω,R) (4.3)

as n → ∞ by dominated convergence. Since ϕn is a bounded and measurable function it follows from [4,
Proposition 1.12] that un(ξ1) = E(ϕ(ξ1+ξ2)|G). By taking η = ξ1+ξ2 it follows as above that ϕn(ξ1+ξ2) →
ϕ(ξ1 + ξ2) in L1(Ω,R) and thus by the dominated convergence theorem for conditional expectations we
conclude that

un(ξ1) = E
(
ϕn(ξ1 + ξ2)|G

)
→ E

(
ϕ(ξ1 + ξ2)|G

)
in L1(Ω,H)

as n → ∞ which finishes the proof in view of (4.3). �
For any x ∈ H and t ∈ [0, T ], we define

Z(T, t, x) := x +
T∫
t

S(T − s) dWQ(s).

The above stochastic integral makes sense since SQ1/2 ∈ L2((0, T ),HS) (see Remark 2.1). Let ϕ satisfy
(4.1) or (4.2), and define

u(x, t) := E
(
ϕ
(
Z(T, t, x)

))
, x ∈ H, t ∈ [0, T ]. (4.4)

Since Tr(S(T − ·)QS(T − ·)∗) ∈ L1(0, T ) (see Remark 2.1) and D2ϕ ∈ Cb(H,B(H)), it is well known that
u is a solution of the following backward Kolmogorov equation

ut(x, t) + 1
2 Tr

(
uxx(x, t)S(T − t)QS(T − t)∗

)
= 0, x ∈ H, t ∈ [0, T ), (4.5)

with the terminal condition u(x, T ) = ϕ(x), x ∈ H.

Corollary 4.2. Let ξ be Ft-measurable where {Ft}t�0 is the normal filtration generated by W . Let ϕ satisfy
(4.1) and ξ ∈ L2(Ω,H) or let ϕ satisfy (4.2) and ξ ∈ L1(Ω,H). Let u defined by (4.4). Then

u(ξ, t) = E
(
ϕ
(
Z(T, t, ξ)

)∣∣Ft

)
, t ∈ [0, T ].

Proof. The statement follows from Lemma 4.1 with ξ1 = ξ and ξ2 =
∫ T

t
S(T − s) dWQ(s) noting that

ξ2 ∈ L2(Ω,H) ⊂ L1(Ω,H) as, by Itô’s isometry,

E‖ξ2‖2 =
T∫
t

∥∥S(T − s)Q 1
2
∥∥2

HS ds �
T∫

0

∥∥S(t)Q 1
2
∥∥2

HS dt < ∞. �

We quote the following Itô’s formula from [2].
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Proposition 4.1 (Itô’s formula). Let f : [c, d) × H → R, 0 � c < d � ∞, such that f, ∂tf, ∂xf and
∂2
xxf are continuous on [c, d) × H with values in the appropriate spaces. Let a ∈ L1

loc(Ω × (c, d);H) and
ξQ1/2 ∈ L2

loc(Ω × (c, d),HS) and

X(t) = X(c) +
t∫

c

a(s) ds +
t∫

c

ξ(s) dWQ(s), t ∈ [c, d).

Then, for all t ∈ [c, d), almost surely,

f
(
t,X(t)

)
− f

(
c,X(c)

)
=

t∫
c

∂tf
(
s,X(s)

)
ds +

t∫
c

(
∂xf

(
s,X(s)

)
, a(s)

)
ds

+
t∫

c

(
∂xf

(
s,X(s)

)
, ξ(s) dWQ(s)

)
+ 1

2

t∫
c

Tr
(
∂2
xxf

(
s,X(s)

)
ξ(s)Qξ∗(s)

)
ds.

The proof of the main approximation result of the paper relies on the ability to compare the laws of two
different Itô processes of the form

Y (t) := Y (0) +
t∫

0

S(T − s) dWQ(s)

and

Ỹ (t) := Ỹ (0) +
t∫

0

S̃(T − s) dWQ(s),

where {S̃(t)}t>0 denotes another family of bounded operators on H such that S̃Q1/2 ∈ L2((0, T ),HS). We
have the following general error formula for

e(T ) = E
(
ϕ
(
Ỹ (T )

)
− ϕ

(
Y (T )

))
. (4.6)

Theorem 4.3. Let {S(t)}t>0 and {S̃(t)}t>0 two families of bounded operators on H such that SQ1/2, S̃Q1/2 ∈
L2((0, T ),HS). If ϕ satisfies (4.1) and Y (0), Ỹ (0) ∈ L2(Ω,H) or ϕ satisfies (4.2) and Y (0), Ỹ (0) ∈ L1(Ω,H),
then Y and Ỹ are well-defined and the weak error e(T ) in (4.6) has the representation

e(T ) = E
(
u
(
Ỹ (0), 0

)
− u

(
Y (0), 0

))
+ 1

2E
T∫

0

Tr
(
uxx

(
Ỹ (t), t

)
O(t)

)
dt,

where

O(t) =
(
S̃(T − t) + S(T − t)

)
Q
(
S̃(T − t) − S(T − t)

)∗
,

or

O(t) =
(
S̃(T − t) − S(T − t)

)
Q
(
S̃(T − t) + S(T − t)

)∗
.

Proof. The proof is analogous to the semigroup case in [8, Theorem 3.1] and [9, Theorem 3.1] using Propo-
sition 4.1, Corollary 4.2 and the Kolmogorov’s equation (4.5). �
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5. The convergence result

In this section we apply Theorem 4.3 to the approximation scheme (1.6). In order to do so we set

Y (t) = S(T )X0 +
t∫

0

S(T − s) dWQ(s)

and

Ỹ (t) = B̃h,N (T )X0 +
t∫

0

B̃h,N (T − s) dWQ(s).

Note that Y (T ) = X(T ) and Ỹ (T ) = XN
h . Our main result is stated below.

Theorem 5.1. Let T > 0, N � 1 an integer and Δt = T/N . For any h > 0, let {Xn
h }0�n�N be defined by

(1.6) and let {X(t)}t∈[0,T ] be the unique weak solution (2.6) of (1.1). Let ϕ satisfy (4.1) and suppose that
X0 ∈ L2(Ω,H) or let ϕ satisfy (4.2) and suppose X0 ∈ L1(Ω,H). If ‖A ν−1/ρ

2 Q
1
2 ‖2

HS < ∞, 0 � ν � 1/ρ,
then there exists a constant C = C(T, ν, ϕ,X0) > 0 which does not depend on h and N such that for
h2/ρ + Δt < T ,

∣∣Eϕ
(
XN

h

)
− Eϕ

(
X(T )

)∣∣ � C ln
(

T

h2/ρ + Δt

)(
Δtρν + h2ν). (5.1)

Proof. We use Theorem 4.3 with Y (0) = S(T )X0, Ỹ (0) = B̃h,N (T )X0, and S̃(t) = B̃h,N (t). Using (2.2)
and (3.4) with ν = 0, we have that∥∥B̃h,N (t)

∥∥
HS =

∥∥PhB̃h,N (t)
∥∥

HS � C‖Ph‖HS, t ∈ (0, T ).

Therefore, as Vh is finite dimensional, it follows that S̃Q1/2 ∈ L2((0, T ),HS). Furthermore,

T∫
0

∥∥S(t)Q 1
2
∥∥2

HS dt � C
∥∥A− 1

2ρQ
1
2
∥∥2

HS � C
∥∥A− ν

2
∥∥
B(H)

∥∥A ν−1/ρ
2 Q

1
2
∥∥2

HS < ∞,

where the first inequality is shown in the proof of [10, Theorem 3.6] and the second inequality follows from
(2.2). Thus, Theorem 4.3 is applicable.

We estimate the trace term first. Using that the operators A, B̃h,N , and S are self-adjoint, and taking
inequalities (2.1) and (2.2) into account, we have

∣∣∣∣∣E
T∫

0

Tr
(
uxx

(
Ỹ (t), t

)[
B̃h,N (T − t) + S(T − t)

]
Q
[
B̃h,N (T − t) − S(T − t)

]∗) dt

∣∣∣∣∣
=

∣∣∣∣∣E
T∫

0

Tr
(
uxx

(
Ỹ (t), t

)[
B̃h,N (T − t) + S(T − t)

]∗
×A

1/ρ−ν
2 A

ν−1/ρ
2 Q

1
2Q

1
2A

ν−1/ρ
2 A

1/ρ−ν
2 Eh,N (T − t)

)
dt

∣∣∣∣∣
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=

∣∣∣∣∣E
T∫

0

Tr
(
uxx

(
Ỹ (t), t

)(
A

1/ρ−ν
2

[
B̃h,N (T − t) + S(T − t)

])∗
×A

ν−1/ρ
2 Q

1
2Q

1
2A

ν−1/ρ
2 A

1/ρ−ν
2 Eh,N (T − t)

)
dt

∣∣∣∣∣
� E

T∫
0

∥∥uxx

(
Ỹ (t), t

)(
A

1/ρ−ν
2

[
B̃h,N (T − t) + S(T − t)

])∗
A

ν−1/ρ
2 Q

1
2
∥∥

HS

×
∥∥Q 1

2A
ν−1/ρ

2 A
1/ρ−ν

2 Eh,N (T − t)
∥∥

HS dt

� sup
(x,t)∈H×[0,T ]

∥∥uxx(x, t)
∥∥
B(H)

∥∥A ν−1/ρ
2 Q

1
2
∥∥2

HS

×
T∫

0

∥∥A 1/ρ−ν
2

(
B̃h,N (t) + S(t)

)∥∥
B(H)

∥∥A 1/ρ−ν
2 Eh,N (t)

∥∥
B(H) dt. (5.2)

Next we split the integral from 0 to Δt+ h2/ρ and from h2/ρ + Δt to T . Then, using Proposition 3.1(i) and
(3.4),

Δt+h2/ρ∫
0

∥∥A 1/ρ−ν
2

(
B̃h,N (t) + S(t)

)∥∥
B(H)

∥∥A 1/ρ−ν
2 Eh,N (t)

∥∥
B(H) dt

� 2
Δt+h2/ρ∫

0

(∥∥A 1/ρ−ν
2 B̃h,N (t)

∥∥2
B(H) +

∥∥A 1/ρ−ν
2 S(t)

∥∥2
B(H)

)
dt

� C

Δt+h2/ρ∫
0

t−1+ρν dt � C
(
Δρν + h2ν).

Furthermore, by 3.1(i), (3.4) and (3.6), it follows that

T∫
Δt+h2/ρ

∥∥A 1/ρ−ν
2

(
B̃h,N (t) + S(t)

)∥∥
B(H)

∥∥A 1/ρ−ν
2 Eh,N (t)

∥∥
B(H) dt

� C

T∫
Δt+h2/ρ

t−1/2+ρν/2(Δρν + h2ν)t−1/2−ρν/2 dt = C ln
(

T

Δt + h2/ρ

)(
Δρν + h2ν).

This finishes the estimate of the trace term considering that

sup
(x,t)∈H×[0,T ]

∥∥uxx(x, t)
∥∥
B(H) � sup

x∈H

∥∥D2ϕ(x)
∥∥
B(H).

To estimate the initial error term first assume ϕ satisfies (4.1) and E‖X0‖2 < ∞. Note that under assumption
(4.1) it follows from Taylor’s Formula that

∣∣ϕ(x) − ϕ(y)
∣∣ �

∥∥Dϕ(y)
∥∥ · ‖x− y‖ + C‖x− y‖2,
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where C = supx∈H ‖D2ϕ(x)‖B(H) and that ‖Dϕ(x)‖ � K(1+‖x‖) where K = max{C, ‖Dϕ(0)‖}. Therefore,∣∣ϕ(x) − ϕ(y)
∣∣ � C

(
1 + ‖y‖

)
· ‖x− y‖ + C‖x− y‖2.

Then, using the law of double expectations, and noting that

X(T ) = S(T )X0 +
T∫

0

S(T − s) dW (s),

we have, using Corollary 4.2, Proposition 2.1 with ν = 0 and (3.5), that∣∣E(
u
(
Ỹ (0), 0

)
− u

(
Y (0), 0

))∣∣
=

∣∣E(
u
(
B̃h,N (T )X0, 0

)
− u

(
S(T )X0, 0

))∣∣
=

∣∣∣∣∣E
(

E
((

ϕ

(
B̃h,N (T )X0 +

T∫
0

S(T − s) dWQ(s)
)

− ϕ

(
S(T )X0 +

T∫
0

S(T − s) dWQ(s)
))∣∣∣∣∣F0

))∣∣∣∣∣
� CE

(∥∥B̃h,N (T )X0 − S(T )X0
∥∥ ·

(
1 +

∥∥X(T )
∥∥)) + CE

(∥∥B̃h,N (T )X0 − S(T )X0
∥∥2)

� CT−ρν
(
Δtρν + h2ν)(1 + E

(∥∥X0
∥∥2 +

∥∥X(T )
∥∥2)) + CT−2ρν(Δt2ρν + h4ν)E‖X0‖2.

Finally, if ϕ satisfies (4.2) and E‖X0‖ < ∞, then, again by Taylor’s Formula, |ϕ(x) − ϕ(y)| � C‖x − y‖
with C = supx∈H ‖Dϕ(x)‖. Thus, similarly to the above calculation, we have that∣∣E(

u
(
Ỹ (0), 0

)
− u

(
Y (0), 0

))∣∣
=

∣∣E(
u
(
B̃h,N (T )X0, 0

)
− u

(
S(T )X0, 0

))∣∣
=

∣∣∣∣∣E
(

E
((

ϕ

(
B̃h,N (T )X0 +

T∫
0

S(T − s) dWQ(s)
)

− ϕ

(
S(T )X0 +

T∫
0

S(T − s) dWQ(s)
))∣∣∣∣∣F0

))∣∣∣∣∣
� CE

(∥∥B̃h,N (T )X0 − S(T )X0
∥∥) � CT−ρν

(
Δtρν + h2ν)E‖X0‖,

and the proof is complete. �
Remark 5.2. Below we give examples of the rate of convergence obtained in Theorem 5.1 in some typical
cases.

(i) If Q = I (white noise), then, as mentioned in the introduction, we must have d = 1 and the rate of
weak convergence in time is (1 − ρ/2)− and in space it is (2/ρ− 1)−.

(ii) If Q is of trace class, then we may take ν = 1/ρ and recover the finite dimensional order; that is, 1−
in time and 2− in space.

(iii) Suppose that there exists some real numbers κ and α > 0 such that AκQ ∈ B(H), Tr(A−α) < ∞ and
α− 1/ρ < κ � α. Then, since

∥∥A ν−1/ρ
2 Q

1
2
∥∥2

HS �
∥∥AκQ

∥∥
B(H)Tr

(
Aν−1/ρ−κ

)
,

we recover a space weak order of convergence (2/ρ−2(α−κ))− and a time weak order of (1−ρ(α−κ))−.
These are twice the strong orders (modulo the logarithmic term) respectively in space and in time found
in [10].
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