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We define and study Sobolev spaces associated with Jacobi expansions. We prove 
that these Sobolev spaces are isomorphic to Jacobi potential spaces. As a technical 
tool, we also show some approximation properties of Poisson–Jacobi integrals.
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1. Introduction

Sobolev spaces associated with Hermite and Laguerre expansions were investigated not long ago in [5,
6,13,28]. Recently Betancor et al. [4] studied Sobolev spaces in the context of ultraspherical expansions. 
Inspired by [4], in this paper we define and study Sobolev spaces in a more general situation of Jacobi 
expansions. Noteworthy, analysis related to Jacobi expansions received a considerable attention over the 
last fifty years. For the corresponding developments in the recent years, see for instance [2,3,8–11,14–16,18,
21,22,24–26,31].

Our motivation is, first of all, to extend definitions and results from [4] to the framework of Jacobi 
expansions. Another motivation comes from a question of removing the restriction on the ultraspherical 
parameter of type λ imposed throughout [4]. In this paper we admit all possible Jacobi parameters of 
type α, β, thus also all possible λ. Finally, still another motivation originates in the very definition of the 
ultraspherical Sobolev spaces proposed in [4]. It is based on higher order ‘derivatives’ involving first order 
differential operators related to various parameters of type λ. Here we consider another, seemingly more 
natural, definition of Jacobi Sobolev spaces by means of higher order ‘derivatives’ linked to one fixed pair 
of the type parameters α, β. The concept of higher order ‘derivative’ we employ was postulated recently by 
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Nowak and Stempak [27], and the question of its relevance to the theory of Sobolev spaces was posed there. 
Perhaps a bit unexpectedly, we show that the associated Sobolev spaces are not quite appropriate.

Given parameters α, β > −1, consider the Jacobi differential operator

Lα,β = − d2

dθ2 − 1 − 4α2

16 sin2 θ
2
− 1 − 4β2

16 cos2 θ
2

= D∗
α,βDα,β + A2

α,β ;

here Aα,β = (α + β + 1)/2, Dα,β = d
dθ − 2α+1

4 cot θ
2 + 2β+1

4 tan θ
2 is the first order ‘derivative’ naturally 

associated with Lα,β , and D∗
α,β = Dα,β − 2 d

dθ is its formal adjoint in L2(0, π). It is well known that 
Lα,β , defined initially on C2

c (0, π), has a non-negative self-adjoint extension to L2(0, π) whose spectral 
decomposition is discrete and given by the Jacobi functions φα,β

n , n ≥ 0. The corresponding eigenvalues 
are λα,β

n = (n + Aα,β)2, and the system {φα,β
n : n ≥ 0} constitutes an orthonormal basis in L2(0, π); see 

Section 2 for more details. If α+ 1/2 = β + 1/2 =: λ, then the Jacobi context reduces to the ultraspherical 
situation considered in [4].

When α, β ≥ −1/2, the functions φα,β
n belong to all Lp(0, π), 1 ≤ p ≤ ∞. However, if α < −1/2 or 

β < −1/2, then φα,β
n are in Lp(0, π) if and only if p < p(α, β) := −1/ min(α + 1/2, β + 1/2). This leads 

to the so-called pencil phenomenon (cf. [17,23]) manifesting in the restriction p′(α, β) < p < p(α, β) for Lp

mapping properties of various operators associated with Lα,β (here and elsewhere p′ denotes the conjugate 
exponent of p, 1/p + 1/p′ = 1). Consequently, our main results are restricted to p ∈ E(α, β), where

E(α, β) :=
{ (1,∞), α, β ≥ −1/2,

(p′(α, β), p(α, β)), otherwise.

Let σ > 0. For α+β �= −1, consider the potential operator L−σ
α,β. When α+β = −1, zero is the eigenvalue 

of Lα,β and hence we consider instead the Bessel type potential operator (Id+Lα,β)−σ. In both cases the 
potentials are well defined spectrally and are bounded on L2(0, π) and possess integral representations valid 
not only in L2(0, π), but also far beyond that space. We will show that L−σ

α,β and (Id +Lα,β)−σ are one-to-one
and bounded on Lp(0, π), p ∈ E(α, β). Thus, given s > 0 and p ∈ E(α, β), it makes sense to define the 
Jacobi potential spaces as the ranges of the potential operators on Lp(0, π),

Lp,s
α,β :=

{
L
−s/2
α,β (Lp(0, π)), α + β �= −1,

(Id +Lα,β)−s/2(Lp(0, π)), α + β = −1.

Then the formula

‖f‖Lp,s
α,β

:= ‖g‖Lp(0,π),

{
f = L

−s/2
α,β g, g ∈ Lp(0, π), α + β �= −1,

f = (Id+Lα,β)−s/2g, g ∈ Lp(0, π), α + β = −1,

defines a norm on Lp,s
α,β and it is straightforward to check that Lp,s

α,β equipped with this norm is a Banach 
space.

According to a general concept, Sobolev spaces Wp,m
α,β , m ≥ 1, associated with Lα,β should be defined by

W
p,m
α,β :=

{
f ∈ Lp(0, π) : D(k)f ∈ Lp(0, π), k = 1, . . . ,m

}
and equipped with the norms

‖f‖Wp,m
α,β

:=
m∑∥∥D(k)f

∥∥
Lp(0,π).
k=0
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Here D(k) are suitably defined differential operators of orders k playing the role of higher order derivatives, 
and the differentiation is understood in a weak sense. Thus Wp,m

α,β depends on a proper choice of D(k), which 
is actually the heart of the matter. It was shown in [4] that even in the ultraspherical case seemingly the 
most natural choice D(k) = Dk

α,β is not appropriate since then the spaces Wp,m
α,β and Lp,m

α,β are not isomorphic 
in general.

On the other hand, the isomorphism between Sobolev and potential spaces is a crucial aspect of the 
classical theory (see e.g. [1,7] or [29, Chapter V]) that should be preserved in the present setting. With this 
motivation, inspired by [4], we introduce the higher order ‘derivative’

D(k) := Dα+k−1,β+k−1 ◦ . . . ◦Dα+1,β+1 ◦Dα,β .

Then taking D(k) = D(k) we get Sobolev spaces satisfying the desired property. Denote

W p,m
α,β :=

{
f ∈ Lp(0, π) : D(k)f ∈ Lp(0, π), k = 1, . . . ,m

}
.

We will prove the following.

Theorem A. Let α, β > −1, p ∈ E(α, β) and m ≥ 1. Then

W p,m
α,β = Lp,m

α,β

in the sense of isomorphism of Banach spaces.

Notice that the higher order ‘derivative’ D(k) has a philosophical disadvantage that is the dependence on 
the first order ‘derivatives’ related to variable parameters of type. Thus we ask if it is possible to overcome 
this inconvenience by introducing still another notion of higher order ‘derivative’

D(k) := . . . Dα,βD
∗
α,βDα,βD

∗
α,βDα,β︸ ︷︷ ︸

k components

.

This choice resulting from interlacing Dα,β with D∗
α,β was postulated in [27]. The operators D(k) stem 

naturally from the symmetrization procedure proposed there, and their utility lies in a conjugacy scheme 
which is very close to the classical shape. Moreover, D(k) are also supported by a good Lp-theory of the 
corresponding Riesz transforms, see [27] for the case p = 2 and [9,14] in case 1 ≤ p < ∞. Comparing to 
the other higher order Jacobi ‘derivatives’, D(k) have a simpler and more symmetric structure, and thus a 
computational advantage, since D∗

α,βDα,β = Lα,β − A2
α,β . Furthermore, D(k) depend only on Dα,β (with 

only one pair of type parameters involved), do not change much with k, and do not map far from the 
system {φα,β

n }. All these facts motivate the question posed in [27, p. 441] of the relevance of the interlacing 
‘derivatives’ from the Sobolev spaces theory perspective. Unfortunately, D(k) turn out to be unsuitable for 
defining the Sobolev spaces, leading in fact to essentially larger Sobolev spaces than D(k). Let

Wp,m
α,β :=

{
f ∈ Lp(0, π) : D(k)f ∈ Lp(0, π), k = 1, . . . ,m

}
.

Theorem B. Let α, β > −1, p ∈ E(α, β) and m ≥ 1. Then

Lp,m
α,β ⊂ Wp,m

α,β

in the sense of embedding of Banach spaces. However, the reverse inclusion does not hold for all parameters 
values. In particular, for each α, β satisfying 0 �= α, β < 1/p − 1/2 there is f ∈ Wp,2 such that f /∈ Lp,2 .
α,β α,β
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Theorems A and B are the main results of the paper. Proving the first one requires actually more 
technical effort, but we follow a similar strategy to that in [4] aiming at demonstrating that the relevant 
norms are equivalent. Roughly, we shall show estimates of the form ‖D(k)f‖Lp(0,π) ∼ ‖Lk/2

α,βf‖Lp(0,π) or 
equivalently, ‖D(k)L

−k/2
α,β g‖Lp(0,π) ∼ ‖g‖Lp(0,π). Therefore we will need to prove essentially two things: first, 

Lp-boundedness of the operators D(k)L
−k/2
α,β that may be regarded as analogues of the classical higher order 

Riesz transforms; second, existence of a certain inversion procedure that will enable us to write bounds 
of the form ‖g‖Lp(0,π) ≤ C‖D(k)L

−k/2
α,β g‖Lp(0,π). The latter task will require introducing some auxiliary 

operators and studying their Lp mapping properties. The main technical tool applied repeatedly will be a 
powerful multiplier-transplantation theorem due to Muckenhoupt [19]. The same result was used in [4], but 
here we apply it in a slightly simpler way. Another tool we shall need are some approximation properties 
of Poisson–Jacobi integrals. In particular, we will obtain certain results of independent interest for the 
corresponding maximal operators.

The paper is organized as follows. In Section 2 we describe in detail the setting and give some preparatory 
results, including the aforementioned multiplier-transplantation theorem and properties of the Poisson–
Jacobi integrals. Sections 3 and 4 are devoted to the proofs of Theorems A and B, respectively. Finally, in 
Section 5 we study some elementary properties of the Sobolev spaces under consideration and their relation 
to classical Sobolev spaces on the interval (0, π). We also discuss boundedness of the Poisson–Jacobi integral 
maximal operator on some of these spaces.

Throughout the paper we use a standard notation with all symbols referring to the measure space 
((0, π), dθ). In particular, we write Lp for Lp(0, π) and ‖ · ‖p for the associated norm. Further, we set

p(α, β) :=
{∞, α, β ≥ −1/2,
−1/min(α + 1/2, β + 1/2), otherwise

and

Ψα,β(θ) :=
(

sin θ

2

)α+1/2(
cos θ2

)β+1/2

, θ ∈ (0, π).

2. Preliminaries and preparatory results

The Jacobi trigonometric functions are defined as

φα,β
n (θ) := Ψα,β(θ)Pα,β

n (θ), θ ∈ (0, π),

where Pα,β
n are the normalized Jacobi trigonometric polynomials given by

Pα,β
n (θ) := cα,βn Pα,β

n (cos θ);

here cα,βn are normalizing constants, and Pα,β
n denote the classical Jacobi polynomials as defined in Szegö’s 

monograph [32].
Recall that the system {φα,β

n : n ≥ 0} is an orthonormal basis in L2 consisting of eigenfunctions of the 
Jacobi operator,

Lα,βφ
α,β
n = λα,β

n φα,β
n , where λα,β

n := (n + Aα,β)2 and Aα,β := α + β + 1
2 .

Thus Lα,β has a non-negative self-adjoint extension which is natural in this context. It is given by the 
spectral series
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Lα,βf =
∞∑

n=0
λα,β
n aα,βn (f)φα,β

n

on the domain consisting of those f ∈ L2 for which this series converges in L2. Here and elsewhere we 
denote by aα,βn (f) the Fourier–Jacobi coefficients of a function f whenever the defining integrals

aα,βn (f) :=
π∫

0

f(θ)φα,β
n (θ) dθ

exist. For further reference we also denote

Sα,β := span
{
φα,β
n : n ≥ 0

}
.

According to [31, Lemma 2.3], Sα,β is a dense subspace of Lp provided that 1 ≤ p < p(α, β).
The setting related to Lα,β was investigated recently in [21,25,31]. Its importance comes from the fact 

that it forms a natural environment for transplantation questions pertaining to expansions based on Jacobi 
polynomials, see for instance [10,19]. Actually, the following result plays a crucial role in our work. It is 
essentially a special case of the general weighted multiplier-transplantation theorem due to Muckenhoupt 
[19, Theorem 1.14], see [19, Corollary 17.11] and also [10, Theorem 2.5] together with the related comments 
on pp. 376–377 therein. Here and elsewhere we use the convention that φα,β

n ≡ 0 if n < 0.

Lemma 2.1 (Muckenhoupt). Let α, β, γ, δ > −1 and let d ∈ Z. Assume that g(n) is a sequence satisfying for 
sufficiently large n the smoothness condition

g(n) =
J−1∑
j=0

cj n
−j + O

(
n−J

)
,

where J ≥ α + β + γ + δ + 6 and cj are fixed constants.
Then for each p satisfying p′(γ, δ) < p < p(α, β) the operator

f �→
∞∑

n=0
g(n)aα,βn (f)φγ,δ

n+d(θ), f ∈ Sα,β ,

extends to a bounded operator on Lp(0, π).

Observe that for f ∈ Sα,β there are only finitely many non-zero terms in the last series. Moreover, since 
Sα,β is dense in Lp for p < p(α, β), the extension from Lemma 2.1 is unique.

The Poisson–Jacobi semigroup {exp(−tL
1/2
α,β)}t≥0 can be written in L2 by means of the spectral theorem 

as

Hα,β
t f =

∞∑
n=0

exp
(
−t

√
λα,β
n

)
aα,βn (f)φα,β

n .

This series converges in fact pointwise and, moreover, may serve as a pointwise definition of Hα,β
t f , t > 0, for 

more general f . In particular, for f ∈ Lp, p > p′(α, β), the coefficients aα,βn (f) exist and grow polynomially 
in n (see [31, Theorem 2.1]) which together with the estimate (cf. [32, (7.32.2)])∣∣φα,β

n (θ)
∣∣ ≤ CΨα,β(θ)(n + 1)α+β+2, θ ∈ (0, π), n ≥ 0, (1)
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implies pointwise convergence of the series in question (actually, the growth property of aα,βn (f) is a direct 
consequence of (1)). Further, Hα,β

t has an integral representation

Hα,β
t f(θ) =

π∫
0

Hα,β
t (θ, ϕ)f(ϕ) dϕ, t > 0, θ ∈ (0, π),

valid for f ∈ Lp with p as before. The integral kernel here is directly related to the Poisson–Jacobi kernel 
Hα,β

t (θ, ϕ) in the context of expansions into Pα,β
n (see [25, Section 2]),

Hα,β
t (θ, ϕ) = Ψα,β(θ)Ψα,β(ϕ)Hα,β

t (θ, ϕ). (2)

Thus sharp estimates of Hα,β
t (θ, ϕ) obtained in [24, Theorem 5.2] and [26, Theorem 6.1] imply readily sharp 

estimates for Hα,β
t (θ, ϕ). Further, known results on the maximal operator associated with Hα,β

t (θ, ϕ) imply 
the following.

Proposition 2.2. Let α, β > −1 and let p ∈ E(α, β). Then the maximal operator

Hα,β
∗ f := sup

t>0

∣∣Hα,β
t f

∣∣
is bounded on Lp(0, π).

The proof of this result refers to the Muckenhoupt class of Ap weights related to the measure dμα,β(θ) =
Ψ2α+1/2,2β+1/2(θ) dθ in (0, π). Denoted by Aα,β

p , this is the class of all nonnegative functions w such that

sup
I∈I

[
1

μα,β(I)

∫
I

w(θ) dμα,β(θ)
][

1
μα,β(I)

∫
I

w(θ)−p′/p dμα,β(θ)
]p/p′

< ∞

when 1 < p < ∞, or

sup
I∈I

1
μα,β(I)

∫
I

w(θ) dμα,β(θ) ess sup
θ∈I

1
w(θ) < ∞

if p = 1; here I is the family of all subintervals of (0, π).

Proof of Proposition 2.2. Let 1 < p < ∞. By [24, Corollary 2.5] and [26, Corollary 5.2], the maximal 
operator

Hα,β
∗ f(θ) := sup

t>0

∣∣∣∣∣
π∫

0

Hα,β
t (θ, ϕ)f(ϕ)Ψ2α+1/2,2β+1/2(ϕ) dϕ

∣∣∣∣∣
is bounded on Lp(wΨ2α+1/2,2β+1/2) for w ∈ Aα,β

p . Letting wr,s(θ) := Ψr−1/2,s−1/2(θ) be a double-power 
weight, the condition wr,s ∈ Aα,β

p is equivalent to saying that −(2α + 2) < r < (2α + 2)(p − 1) and 

−(2β + 2) < s < (2β + 2)(p − 1). The conclusion follows by combining the boundedness of Hα,β
∗ in 

double-power weighted Lp with the relation, see (2), Hα,β
∗ f = Ψα,βHα,β

∗ (Ψ−α−1,−β−1f). �
By standard arguments, Proposition 2.2 leads to norm and almost everywhere boundary convergence of 

the Poisson–Jacobi semigroup; see the proof of Theorem 2.3 below.
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Closely related to the Poisson–Jacobi semigroup is the Poisson–Jacobi integral

Uα,β
r (f) :=

∞∑
n=0

rnaα,βn (f)φα,β
n , 0 < r < 1,

and its ‘spectral’ variant

Ũα,β
r (f) :=

∞∑
n=0

r|n+Aα,β |aα,βn (f)φα,β
n , 0 < r < 1.

The following result extends [30, Theorem 2.2] in the ultraspherical setting. Some parallel results obtained 
recently by different methods can be found in [8].

Theorem 2.3. Let α, β > −1 and let p ∈ E(α, β). Then

(a) the maximal operators

f �→ sup
0<r<1

∣∣Uα,β
r f

∣∣ and f �→ sup
0<r<1

∣∣Ũα,β
r f

∣∣
are bounded on Lp(0, π);

(b) given any f ∈ Lp(0, π),

Uα,β
r f(θ) → f(θ) and Ũα,β

r f(θ) → f(θ) for a.a. θ ∈ (0, π),

as r → 1−;
(c) there exists C > 0 depending only on α, β and p such that∥∥Uα,β

r f
∥∥
Lp(0,π) +

∥∥Ũα,β
r f

∥∥
Lp(0,π) ≤ C‖f‖Lp(0,π)

for all 0 < r < 1 and f ∈ Lp(0, π);
(d) for each f ∈ Lp(0, π), ∥∥Uα,β

r f − f
∥∥
Lp(0,π) → 0 and

∥∥Ũα,β
r f − f

∥∥
Lp(0,π) → 0

as r → 1−.

Proof. Item (c) is an obvious consequence of (a). Then (b) and (d) follow from (a) and (c) and the density 
of Sα,β in Lp. Thus it remains to prove (a).

In case of Ũα,β
r , the conclusion follows immediately from Proposition 2.2 because Ũα,β

r = Hα,β
t , where 

t = − log r. To treat the other case, we split the supremum according to r ≤ 1/2 and r > 1/2, and denote 
the resulting maximal operators by Uα,β

∗,0 and Uα,β
∗,1 , respectively. Then using (1) and Hölder’s inequality we 

get

∣∣Uα,β
∗,0 (f)(θ)

∣∣ ≤ ∞∑
n=0

2−n
∣∣aα,βn (f)

∣∣∣∣φα,β
n (θ)

∣∣
≤ C‖f‖p

∥∥Ψα,β
∥∥
p′Ψ

α,β(θ)
∞∑

n=0
2−n(n + 1)2(α+β+2)

≤ C‖f‖pΨα,β(θ).
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This implies the boundedness of Uα,β
∗,0 . To deal with Uα,β

∗,1 , we write

Uα,β
r (f) = r−Aα,β Ũα,β

r (f) +
(
1 − r|Aα,β |−Aα,β

)
aα,β0 (f)φα,β

0

and use the Lp-boundedness of Ũα,β
r and Hölder’s inequality. It follows that Uα,β

∗,1 is Lp-bounded. �
We remark that a more detailed analysis of the maximal operators of the Poisson–Jacobi integrals and of 

boundary convergence of those integrals is possible via the above mentioned sharp estimates for Hα,β
t (θ, ϕ). 

Assuming for instance that α, β ≥ −1/2, one can easily check by means of [26, Theorem 6.1] that the 
integral kernel Uα,β

r (θ, ϕ) of Uα,β
r satisfies

0 < Uα,β
r (θ, ϕ) ≤ C

1 − r

(1 − r)2 + (θ − ϕ)2 , θ, ϕ ∈ (0, π), 0 < r < 1. (3)

This extends the estimate for the Poisson-ultraspherical kernel used in [30], see also [20, Lemma 1, p. 27]. 
Moreover, (3) shows that when α, β ≥ −1/2, the maximal operators from Theorem 2.3(a) are controlled 
by the centered Hardy–Littlewood maximal operator restricted to (0, π). Consequently, (b) of Theorem 2.3
holds for f ∈ L1. Independently, (3) gives also (c), and so (d), of Theorem 2.3 for f ∈ L1, still under the 
assumption α, β ≥ −1/2.

Finally, we gather some facts about potential operators associated with Lα,β . When α + β �= −1, we 
consider the Riesz type potentials defined for f ∈ L2 by

L−σ
α,βf =

∞∑
n=0

(
λα,β
n

)−σ
aα,βn (f)φα,β

n .

In case α+ β = −1 we have λα,β
0 = 0 and thus consider instead the Bessel type potentials given for f ∈ L2

by

(Id +Lα,β)−σf =
∞∑

n=0

(
1 + λα,β

n

)−σ
aα,βn (f)φα,β

n

(notice that this definition makes actually sense for all α, β > −1). Clearly, these potentials are bounded on 
L2. Further, both L−σ

α,β and (Id+Lα,β)−σ possess integral representations that are valid not only for f ∈ L2, 
but also for f ∈ Lp provided that p > p′(α, β), see [21] for more details.

The following result ensures that the definition of the potential spaces Lp,s
α,β from Section 1 is indeed 

correct.

Proposition 2.4. Let α, β > −1 and let σ > 0. Assume that p ∈ E(α, β). Then

(a) L−σ
α,β is bounded and one-to-one on Lp(0, π) when α + β �= −1;

(b) (Id +Lα,β)−σ is bounded and one-to-one on Lp(0, π).

To prove this we need a simple auxiliary property.

Lemma 2.5. Let α, β and p be as in Proposition 2.4. Assume that f ∈ Lp(0, π). If aα,βn (f) = 0 for all n ≥ 0, 
then f ≡ 0.

Proof. It is enough to observe that the lemma holds for f ∈ Sα,β , and then recall that such functions form 
a dense subspace in the dual space (Lp)∗ = Lp′ . �
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Proof of Proposition 2.4. The Lp-boundedness in (a) and (b) is contained in [21], see [21, Theorem 2.4]
together with comments on Bessel–Jacobi potentials in [21, Section 1]. It can also be obtained with the aid 
of Lemma 2.1. To show the remaining assertions we focus on L−σ

α,β; the case of (Id+Lα,β)−σ is analogous.
As in the proof of [4, Proposition 1], notice that for f ∈ Sα,β

aα,βn

(
L−σ
α,βf

)
=

(
λα,β
n

)−σ
aα,βn (f), n ≥ 0. (4)

Since, by Hölder’s inequality and the Lp-boundedness of L−σ
α,β, the functionals

f �→ aα,βn

(
L−σ
α,βf

)
and f �→ aα,βn (f)

are bounded from Lp to C, and Sα,β is dense in Lp, we infer that (4) holds for f ∈ Lp. Now, if L−σ
α,βf ≡ 0

for some f ∈ Lp, then aα,βn (f) = 0 for all n ≥ 0 and hence Lemma 2.5 implies f ≡ 0. Therefore L−σ
α,β is 

one-to-one on Lp. �
We finish this section by formulating an important consequence of Proposition 2.4 and the fact that Sα,β

coincides with its images under the action of the potential operators.

Corollary 2.6. Let α, β > −1 and let s > 0. Assume that p ∈ E(α, β). Then Sα,β is a dense subspace of 
Lp,s
α,β.

3. Sobolev spaces defined by variable index derivatives

The aim of this section is to prove Theorem A. Thus we let D(k) = D(k) be the higher order ‘derivatives’ 
defined by means of the first order ‘derivatives’ related to variable parameters of type. In what follows we 
shall generalize the line of reasoning from [4, Section 3] elaborated in the ultraspherical case.

To begin with, we look at the action of D(k) and its formal adjoint in L2 on the Jacobi functions.

Lemma 3.1. Let α, β > −1. Then for any k, n ≥ 0

D(k)φα,β
n = (−1)k

√
(n− k + 1)k(n + α + β + 1)kφα+k,β+k

n−k ,(
D(k))∗φα+k,β+k

n = (−1)k
√

(n + 1)k(n + k + α + β + 1)kφα,β
n+k,

where (z)k is the Pochhammer symbol, (z)k = z(z + 1) . . . (z + k − 1) when k �= 0 and (z)0 = 1.

Proof. To get the first identity it is enough to iterate the formula (see [32, (4.21.7)])

Dα,βφ
α,β
n = −

√
n(n + α + β + 1)φα+1,β+1

n−1 . (5)

To prove the second identity, observe that by (5) and the relation

D∗
α,βDα,βφ

α,β
n =

(
Lα,β −A2

α,β

)
φα,β
n =

(
λα,β
n − λα,β

0
)
φα,β
n

we have

D∗
α,βφ

α+1,β+1
n−1 = −

√
n(n + α + β + 1)φα,β

n , n ≥ 1. (6)

Applying this repeatedly we get the desired conclusion. �
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For k ≥ 0 and 1 ≤ j ≤ k, denote by D(k,j) the operator emerging from D(k) by replacing k by j, and 
then α by α + k − j and β by β + k − j, i.e.

D(k,j) := Dα+k−1,β+k−1 ◦Dα+k−2,β+k−2 ◦ . . . ◦Dα+k−j,β+k−j .

Then by the second identity of Lemma 3.1 it follows that

(
D(k,j))∗φα+k,β+k

n = (−1)j
√

(n + 1)j(n + 2k − j + α + β + 1)jφα+k−j,β+k−j
n+j . (7)

Next, we state some factorization identities for D(k) and its adjoint. It is elementary to check that

Dα,βf(θ) = Ψα,β(θ) d

dθ

(
1

Ψα,β(θ)f(θ)
)
, (8)

D∗
α,βf(θ) = − 1

Ψα,β(θ)
d

dθ

(
Ψα,β(θ)f(θ)

)
. (9)

Then with a bit more effort we see that

D(k)f(θ) = Ψα,β(θ)(sin θ)k
(

1
sin θ

d

dθ

)k( 1
Ψα,β(θ)f(θ)

)
,

(
D(k))∗f(θ) = (−1)k

Ψα,β(θ) sin θ

(
1

sin θ

d

dθ

)k(
(sin θ)k−1Ψα,β(θ)f(θ)

)
. (10)

Notice that the last identity implies

(
D(k,j))∗f(θ) = (−1)j

Ψα,β(θ) (sin θ)−k+j+1
(

1
sin θ

d

dθ

)j(
(sin θ)k−1Ψα,β(θ)f(θ)

)
. (11)

Our next objective is to demonstrate that Sα,β is a dense subspace of the Sobolev spaces.

Proposition 3.2. Let α, β > −1 and let m ≥ 1. Assume that p ∈ E(α, β). Then Sα,β is a dense subspace of 
W p,m

α,β .

To prove this we will need the following auxiliary technical result.

Lemma 3.3. Let α, β, m and p be as in Proposition 3.2. Then for each f ∈ W p,m
α,β

aα+k,β+k
n

(
D(k)f

)
=

π∫
0

f(θ)
(
D(k))∗φα+k,β+k

n (θ) dθ, 0 ≤ k ≤ m, n ≥ 0.

Proof. For k = 0 there is nothing to prove, so assume that k ≥ 1. Choose a sequence of smooth and 
compactly supported functions {γl : l ≥ 1} on (0, π) satisfying (see the proof of [4, Proposition 2])

(i) supp γl ⊂ ( 1
2l , π − 1

2l ), γl(θ) = 1 for θ ∈ (1
l , π − 1

l ), 0 ≤ γl(θ) ≤ 1 for θ ∈ (0, π),
(ii) for each r ≥ 0 there exists Cr > 0 such that∣∣∣∣ drdθr

γl(θ)
∣∣∣∣ ≤ Cr(sin θ)−r, θ ∈ (0, π), l ≥ 1.
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By assumption D(k)f ∈ Lp and so, by Hölder’s inequality, the product D(k)fφα+k,β+k
n is integrable over 

(0, π). Since γl → 1 pointwise as l → ∞, the dominated convergence theorem leads to

aα+k,β+k
n

(
D(k)f

)
= lim

l→∞

π∫
0

D(k)f(θ)γl(θ)φα+k,β+k
n (θ) dθ

= lim
l→∞

π∫
0

f(θ)
(
D(k))∗[γl(θ)φα+k,β+k

n (θ)
]
dθ. (12)

We now analyze the last integral. An application of (10) and the Leibniz rule yield(
D(k))∗[γl(θ)φα+k,β+k

n (θ)
]

= (−1)k

Ψα,β(θ) sin θ

(
1

sin θ

d

dθ

)k(
(sin θ)k−1Ψα,β(θ)γl(θ)φα+k,β+k

n (θ)
)

= (−1)k

Ψα,β(θ) sin θ
k∑

j=0

(
k

j

)(
1

sin θ

d

dθ

)j(
(sin θ)k−1Ψα,β(θ)φα+k,β+k

n (θ)
)( 1

sin θ

d

dθ

)k−j

γl(θ).

This combined with (11) gives

(
D(k))∗[γl(θ)φα+k,β+k

n (θ)
]

=
k∑

j=0

(
k

j

)
(−1)k−j(sin θ)k−j

(
D(k,j))∗φα+k,β+k

n (θ)
(

1
sin θ

d

dθ

)k−j

γl(θ).

Furthermore, by a straightforward analysis and (ii) we have∣∣∣∣( 1
sin θ

d

dθ

)r

γl(θ)
∣∣∣∣ ≤ Cr

r∑
i=1

∣∣∣∣ 1
(sin θ)2r−i

di

dθi
γl(θ)

∣∣∣∣ ≤ Cr
1

(sin θ)2r , θ ∈ (0, π), l ≥ 1,

where r ≥ 1. We conclude that∣∣∣∣(D(k))∗[γl(θ)φα+k,β+k
n (θ)

]
− γl(θ)

(
D(k))∗φα+k,β+k

n (θ)
∣∣∣∣

≤ Ck

∣∣∣∣∣
k−1∑
j=0

1
(sin θ)k−j

(
D(k,j))∗φα+k,β+k

n (θ)

∣∣∣∣∣, θ ∈ (0, π).

In view of (7), the right-hand side here is controlled by a constant multiple of Ψα,β(θ), uniformly in l ≥ 1, 
and Ψα,β ∈ Lp′ since p ∈ E(α, β). On the other hand, the left-hand side tends to 0 pointwise, by the choice 
of γl. Thus the dominated convergence theorem implies

lim
l→∞

π∫
0

f(θ)
(
D(k))∗[γl(θ)φα+k,β+k

n (θ)
]
dθ = lim

l→∞

π∫
0

f(θ)γl(θ)
(
D(k))∗φα+k,β+k

n (θ) dθ,

the integrable majorant being cΨα,βf . Taking into account (12), this together with another application of 
the dominated convergence theorem finishes the proof. �
Proof of Proposition 3.2. We will demonstrate that any function from W p,m

α,β can be approximated in the 
W p,m-norm by partial sums of its Poisson–Jacobi integral. The latter functions belong to Sα,β, which is by 
α,β
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Lemma 3.1 a subspace of W p,m
α,β . For this purpose we need to reveal an interaction between D(k) and Ũα,β

r . 
It turns out that these operators, roughly speaking, almost commute, see (13) below. This observation is 
crucial. Then the proof proceeds with the aid of Theorem 2.3(d).

Let f ∈ W p,m
α,β be fixed and let 0 ≤ k ≤ m. Combining Lemma 3.3 with the second identity of Lemma 3.1

we see that

aα+k,β+k
n

(
D(k)f

)
= (−1)k

√
(n + 1)k(n + k + α + β + 1)kaα,βn+k(f).

Using this and the first identity of Lemma 3.1 we can write

D(k)Ũα,β
r (f)(θ) =

∞∑
n=k

r|n+Aα,β |aα,βn (f)(−1)k
√

(n− k + 1)k (n + α + β + 1)kφα+k,β+k
n−k (θ)

=
∞∑

n=k

r|n+Aα,β |aα+k,β+k
n−k

(
D(k)f

)
φα+k,β+k
n−k (θ)

=
∞∑

n=0
r|n+Aα+k,β+k|aα+k,β+k

n

(
D(k)f

)
φα+k,β+k
n (θ)

= Ũα+k,β+k
r

(
D(k)f

)
(θ), (13)

where 0 ≤ r < 1 and θ ∈ (0, π). Exchanging the order of D(k) and the summation in the first equality of 
the above chain is indeed legitimate, as easily verified with the aid of (1).

Analogous arguments apply to tails of the Poisson–Jacobi integral,

Ũα,β
r,l (f)(θ) :=

∞∑
n=l+1

r|n+Aα,β |aα,βn (f)φα,β
n (θ),

producing

D(k)Ũα,β
r,l (f)(θ) = Ũα+k,β+k

r,l−k

(
D(k)f

)
(θ), l ≥ k,

where r and θ are as before. This identity combined with Hölder’s inequality and (1) leads to the estimates

∥∥D(k)Ũα,β
r,l (f)

∥∥
p
≤

∥∥D(k)f
∥∥
p

∞∑
n=l+1−k

r|n+Aα+k,β+k|
∥∥φα+k,β+k

n

∥∥
p

∥∥φα+k,β+k
n

∥∥
p′

≤
∥∥D(k)f

∥∥
p

∞∑
n=l+1−k

r|n+Aα+k,β+k|n2(α+β+2k+2). (14)

Now, choose an arbitrary ε > 0. By (13) and Theorem 2.3(d)∥∥D(k)[Ũα,β
r0 (f) − f

]∥∥
p
< ε, 0 ≤ k ≤ m,

for some 0 < r0 < 1. Further, by (14), there exists l0 depending on r0 such that∥∥D(k)Ũα,β
r0,l0

(f)
∥∥
p
< ε, 0 ≤ k ≤ m.

Thus ∥∥Ũα,β
r0 (f) − Ũα,β

r0,l0
(f) − f

∥∥
Wp,m

α,β
< 2(m + 1)ε.

Since Ũα,β
r (f) − Ũα,β (f) belongs to Sα,β, the conclusion follows. �

0 r0,l0
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We continue by showing Lp-boundedness of some variants of higher order Riesz–Jacobi transforms and 
certain related operators.

Proposition 3.4. Let α, β > −1 and let k ≥ 0. Assume that p ∈ E(α, β). Then the operators

Rk,1
α,β = D(k)L

−k/2
α,β , α + β �= −1,

R̃k,1
α,β = D(k)(Id +Lα,β)−k/2,

defined initially on Sα,β, extend to bounded operators on Lp(0, π).

Proof. We first focus on Rk,1
α,β. Using Lemma 3.1 we get

Rk,1
α,βf =

∞∑
n=k

g(n)aα,βn (f)φα+k,β+k
n−k , f ∈ Sα,β ,

where

g(n) = (−1)k
√

(n− k + 1)k(n + α + β + 1)k|n + Aα,β |−k = (−1)k
√

w(n)
(n + Aα,β)2k

,

and here w is a polynomial of degree 2k.
Consider now the function

h(x) = g

(
1
x

)
= (−1)k

√
x2kw( 1

x )
(1 + xAα,β)2k .

Here the numerator and the denominator of the fraction under the square root are polynomials, each of 
them having value 1 at x = 0. Thus h(x) is analytic in a neighborhood of x = 0. In particular, for any fixed 
J ≥ 1 we have the representation

g(n) = h

(
1
n

)
=

J−1∑
j=0

cj

(
1
n

)j

+ O
((

1
n

)J)
,

provided that n is sufficiently large. Therefore g satisfies the assumptions of Lemma 2.1 and the 
Lp-boundedness of Rk,1

α,β follows.
The case of R̃k,1

α,β is analogous and is left to the reader. �
The next result states that operators playing the role of conjugates of Rk,1

α,β and R̃k,1
α,β are also bounded 

on Lp.

Proposition 3.5. Let α, β > −1 and let k ≥ 0. Assume that p ∈ E(α, β). Then the operators

Rk,2
α,β =

(
D(k))∗L−k/2

α+k,β+k, α + β �= −1,

R̃k,2
α,β =

(
D(k))∗(Id +Lα+k,β+k)−k/2,

defined initially on Sα+k,β+k, extend to bounded operators on Lp(0, π).
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Proof. Using the second identity of Lemma 3.1 we obtain

Rk,2
α,βf =

∞∑
n=0

g(n)aα+k,β+k
n (f)φα,β

n+k, f ∈ Sα+k,β+k,

where

g(n) = (−1)k

(n + k + Aα,β)k
√

(n + 1)k(n + k + α + β + 1)k.

As in the proof of Proposition 3.4 one verifies that g(n) satisfies the assumptions of Lemma 2.1 and the 
conclusion follows. The treatment of R̃k,2

α,β relies on the same argument. �
A straightforward computation reveals that for f ∈ Sα,β

Rk,2
α,βR

k,1
α,βf =

∞∑
n=k

(n− k + 1)k(n + α + β + 1)k(n + Aα,β)−2kaα,βn (f)φα,β
n ,

R̃k,2
α,βR̃

k,1
α,βf =

∞∑
n=k

(n− k + 1)k(n + α + β + 1)k
(
1 + (n + Aα,β)2

)−k
aα,βn (f)φα,β

n ,

where in the first case we tacitly assume that α + β �= −1. The operators that appear in the proposition 
below are the inverses of Rk,2

α,βR
k,1
α,β and R̃k,2

α,βR̃
k,1
α,β , respectively, on the subspace

{
f ∈ Sα,β : aα,βn (f) = 0 for n ≤ k − 1

}
⊂ Sα,β .

Proposition 3.6. Let α, β > −1 and let k ≥ 0. Assume that p ∈ E(α, β). Then the operators

T k
α,βf =

∞∑
n=k

(n + Aα,β)2k

(n− k + 1)k(n + α + β + 1)k
aα,βn (f)φα,β

n , α + β �= −1,

T̃ k
α,βf =

∞∑
n=k

[1 + (n + Aα,β)2]k

(n− k + 1)k(n + α + β + 1)k
aα,βn (f)φα,β

n ,

defined initially on Sα,β, extend to bounded operators on Lp(0, π).

Proof. The reasoning is based on a direct application of Lemma 2.1, see the proofs of Propositions 3.4 and 
3.5. �

Finally, we are in a position to prove Theorem A.

Proof of Theorem A. Recall that Sα,β is a dense subspace of W p,m
α,β (Proposition 3.2) and of Lp,m

α,β (Corol-
lary 2.6). Moreover, if fn → f , either in W p,m

α,β or in Lp,m
α,β , then also fn → f in Lp. This implication is trivial 

in case of convergence in W p,m
α,β , and in the other case it follows by Proposition 2.4. Hence the two spaces 

have the same elements and to prove that they coincide as Banach spaces it suffices to show that the norms 
in W p,m

α,β and Lp,m
α,β are equivalent on Sα,β, i.e. there is C > 0 such that

C−1‖f‖Wp,m
α,β

≤ ‖f‖Lp,m
α,β

≤ C‖f‖Wp,m
α,β

, f ∈ Sα,β .

To proceed, we assume that α + β �= −1. The complementary case requires only minor modifications 
(including replacements of Rm,1, Rm,2 and Tm

α,β by their tilded counterparts) and is left to the reader.
α,β α,β
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Let f ∈ Sα,β and take g ∈ Sα,β such that f = L
−m/2
α,β g. We write g = g1 + g2, where g1 =∑m−1

n=0 aα,βn (g)φα,β
n =

∑m−1
n=0 |n +Aα,β |maα,βn (f)φα,β

n . Then observing that Rm,1
α,β g2 = Rm,1

α,β g and using Propo-
sitions 3.5 and 3.6 we obtain

‖f‖Lp,m
α,β

= ‖g‖p ≤ ‖g1‖p + ‖g2‖p

≤ ‖f‖p
m−1∑
n=0

|n + Aα,β |m
∥∥φα,β

n

∥∥
p

∥∥φα,β
n

∥∥
p′ +

∥∥Tm
α,βR

m,2
α,βR

m,1
α,β g

∥∥
p

≤ C
(
‖f‖p +

∥∥Rm,1
α,β g

∥∥
p

)
= C

(
‖f‖p +

∥∥D(m)f
∥∥
p

)
≤ C‖f‖Wp,m

α,β
.

To prove the reverse estimate we apply Propositions 3.4 and 2.4 and get

‖f‖Wp,m
α,β

=
m∑

k=0

∥∥D(k)f
∥∥
p

=
m∑

k=0

∥∥D(k)L
−m/2
α,β g

∥∥
p

=
m∑

k=0

∥∥Rk,1
α,βL

−(m−k)/2
α,β g

∥∥
p

≤ C
m∑

k=0

∥∥L−(m−k)/2
α,β g

∥∥
p
≤ C‖g‖p = C‖f‖Lp,m

α,β
.

The proof of Theorem A is complete. �
4. Sobolev spaces defined by interlacing derivatives

In this section we prove Theorem B. Thus the higher-order ‘derivative’ under consideration is D(k) = D(k), 
the operator emerging from interlacing Dα,β and its adjoint. We start with a simple result describing the 
action of D(k) on the Jacobi functions.

Lemma 4.1. Let α, β > −1. Then for any k, n ≥ 0,

D(k)φα,β
n = (−1)k

[
n(n + α + β + 1)

]k/2 {φα,β
n , k even,

φα+1,β+1
n−1 , k odd.

Proof. A direct computation based on (5) and (6). �
Next, we show that higher-order Riesz–Jacobi transforms defined by means of D(k) are bounded on Lp.

Proposition 4.2. Let α, β > −1 and let k ≥ 0. Assume that p ∈ E(α, β). Then the operators

Rk
α,βf = D(k)L

−k/2
α,β f, α + β �= −1,

R̃k
α,βf = D(k)(Id +Lα,β)−k/2f,

defined initially on Sα,β, extend to bounded operators on Lp(0, π).

Proof. Consider first the case of k even. According to Lemma 4.1, we have

Rk
α,βf =

∞∑
g(n)aα,βn (f)φα,β

n , f ∈ Sα,β ,

n=0
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where the multiplier sequence is given by

g(n) =

√
[n(n + α + β + 1)]k

(n + Aα,β)2k .

As easily verified (see the proof of Proposition 3.4), the sequence g(n) satisfies the assumptions of Lemma 2.1
and hence the Lp-boundedness of Rk

α,β follows.
The case of k odd, as well as the treatment of R̃k

α,β, is analogous. The conclusion is again a consequence 
of Lemma 2.1. �

We are now ready to prove Theorem B.

Proof of Theorem B. To show the inclusion we assume that α + β �= −1. The opposite case requires 
essentially the same reasoning and thus is left to the reader.

Let f ∈ Lp,m
α,β . By the definition of the potential space, there exists g ∈ Lp such that f = L

−m/2
α,β g and 

‖f‖Lp,m
α,β

= ‖g‖p. Using Proposition 4.2 and then Proposition 2.4 we see that, for each k = 0, 1, . . . , m,

∥∥D(k)f
∥∥
p

=
∥∥D(k)L

−m/2
α,β g

∥∥
p

=
∥∥Rk

α,βL
−(m−k)/2
α,β g

∥∥
p
≤ C

∥∥L−(m−k)/2
α,β g

∥∥
p
≤ C‖g‖p = ‖f‖Lp,m

α,β
.

It follows that Lp,m
α,β is continuously included in Wp,m

α,β .
To demonstrate that the reverse inclusion does not hold in general, we give an explicit counterexample. 

For α, β > −1, consider the function

f(θ) = Ψ−α,−β(θ) =
(

sin θ

2

)−α+1/2(
cos θ2

)−β+1/2

.

Assume for simplicity that α �= 0 and β �= 0. A direct analysis based on formulas (8) and (9), and the 
elementary estimates sin θ

2 � θ, cos θ
2 � π − θ, θ ∈ (0, π), show that

f(θ) ≤ Cθ−α+1/2(π − θ)−β+1/2,∣∣Dα,βf(θ)
∣∣ =

∣∣αΨ−α−1,−β+1(θ) − βΨ−α+1,−β−1(θ)
∣∣ ≤ Cθ−α−1/2(π − θ)−β−1/2,∣∣D∗

α,βDα,βf(θ)
∣∣ = |α + β|Ψ−α,−β(θ) ≤ Cθ−α+1/2(π − θ)−β+1/2,∣∣Dα+1,β+1Dα,βf(θ)

∣∣ + 1 =
∣∣α(1 + α)Ψ−α−2,−β+2(θ) − 2αβΨ−α,−β(θ) + β(1 + β)Ψ−α+2,−β−2(θ)

∣∣ + 1

≥ Cθ−α−3/2(π − θ)−β−3/2,

where C > 0 is independent of θ ∈ (0, π). It is now clear that if p ∈ E(α, β), and α �= 0 and β �= 0 are 
such that α < 1/p − 1/2 and β < 1/p − 1/2, then f ∈ Wp,2

α,β . On the other hand, D(2)f /∈ Lp, so in view of 
Theorem A one has f /∈ Lp,2

α,β . �
Combining Theorem B with Theorem A reveals that the Sobolev spaces defined by means of D(k) = D(k)

are contained in those related to D(k) = D(k), but they do not coincide in general.

5. Final comments and remarks

We first point out some natural monotonicity properties of the potential spaces. Analogous facts are 
easily seen to be true also for the Sobolev spaces.
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Proposition 5.1. Let α, β > −1. Assume that p, q ∈ E(α, β). Then

(a) if p ≤ q, then Lq,s
α,β ⊂ Lp,s

α,β for all s ≥ 0;
(b) if 0 ≤ s ≤ t, then Lp,t

α,β ⊂ Lp,s
α,β for all p.

Moreover, the embeddings in (a) and (b) are continuous.

Proof. To get (a) it is enough to use the fact that ‖ · ‖p is dominated by a constant times ‖ · ‖q when 
p ≤ q. Item (b) is a consequence of Proposition 2.4, see the proof of [13, Proposition 6.3] for the analogous 
argument in the Laguerre case. �

Next, we comment on the relation between the Sobolev spaces defined in this paper and the classical 
Sobolev spaces W p,m(a, b) related to the interval (a, b). The result below shows that there is only a local 
connection, and in general W p,m

α,β and Wp,m
α,β cannot be compared with W p,m(0, π) in terms of inclusion.

Proposition 5.2. Let α, β > −1, p ∈ E(α, β) and m ≥ 1. Assume that f is in Wp,m
α,β , the Sobolev space defined 

either by means of D(k) = D(k) or by means of D(k) = D(k). Then

(a) f ∈ W p,m(a, b) whenever 0 < a < b < π;
(b) f ∈ W p,m(0, π), provided that supp f ⊂⊂ (0, π).

Furthermore, none of the inclusions Wp,m
α,β ⊂ W p,m(0, π) and W p,m(0, π) ⊂ W

p,m
α,β is true in general. In 

particular, for (α, β) �= (−1/2, −1/2) there exists f ∈ W p,m(0, π) such that f /∈ W
p,m
α,β , and for each α, β

satisfying −1/2 �= α ≤ 1/2 − 1/p or −1/2 �= β ≤ 1/2 − 1/p there is f ∈ W
p,m
α,β such that f /∈ W p,m(0, π).

Proof. It is not hard to check that f ∈ W
p,m
α,β implies dk

dθk f ∈ Lp(K) for each compact set K ⊂ (0, π) and 
0 ≤ k ≤ m. Thus (a) and (b) follow.

To prove the remaining part, we give explicit counterexamples. Let f(θ) ≡ 1. Clearly, f ∈ W p,m(0, π). 
However, a simple computation shows that Dα,βf /∈ Lp unless α = β = −1/2. Thus f /∈ W

p,m
α,β when 

(α, β) �= (−1/2, −1/2).
To disprove the other inclusion, consider g = Ψα,β . Since g is up to a constant factor the Jacobi function 

φα,β
0 , we know that g ∈ W

p,m
α,β . On the other hand, d

dθg /∈ Lp if −1/2 �= α ≤ 1/2 −1/p or −1/2 �= β ≤ 1/2 −1/p, 
so g /∈ W p,m(0, π) for the indicated α and β. �

Another issue that we would like to clarify pertains to the Sobolev spaces Wp,m
α,β defined by means of the 

interlacing ‘derivatives’ D(k)
α,β and the Sobolev spaces based on the iterated ‘derivatives’ Dk

α,β. Let us denote 
the latter spaces by W p,m

α,β . We already know that neither Wp,m
α,β nor W p,m

α,β is suitable from a general theory 
perspective, since in general these spaces are not isomorphic with the potential spaces Lp,m

α,β . Nevertheless, 
it is interesting to ask if, perhaps, Wp,m

α,β = W p,m
α,β . This, however, turns out to be false. In fact, the two 

kinds of spaces are not related by inclusions in general, as shown below.
To see that the inclusion Wp,m

α,β ⊂ W p,m
α,β does not hold in general assume that p ∈ E(α, β), and α �= 0

and β �= 0 are such that −1/2 �= α < 1/p − 1/2 and −1/2 �= β < 1/p − 1/2. From the proof of Theorem B
we know that the function f = Ψ−α,−β belongs to Wp,2

α,β. On the other hand, by an elementary analysis we 
get

∣∣D2
α,βf(θ)

∣∣ + 1 ≥ Cθ−α−3/2(π − θ)−β−3/2, θ ∈ (0, π),
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and consequently f /∈ W p,2
α,β . To disprove the reverse inclusion W p,m

α,β ⊂ Wp,m
α,β we take into account p ∈

E(α, β), where α, β > −1 are such that −1/2 �= α ≤ 1/2 − 1/p or −1/2 �= β ≤ 1/2 − 1/p. Similarly as in 
the proof of Theorem B we find that the function g = Ψα+1,β+1 satisfies the bounds

g(θ) +
∣∣Dα,βg(θ)

∣∣ +
∣∣D2

α,βg(θ)
∣∣ ≤ Cθα+1/2(π − θ)β+1/2,∣∣D∗

α,βDα,βg(θ)
∣∣ + 1 ≥ Cθα−1/2(π − θ)β−1/2,

with C > 0 independent of θ ∈ (0, π). It follows that g ∈ W p,2
α,β , but g /∈ Wp,2

α,β .
Finally, we observe that the tools established in this paper allow to generalize the results proved in [4, 

Section 5] in the context of ultraspherical expansions.

Theorem 5.3. Let α, β > −1 and assume that p ∈ E(α, β). Then the maximal operator

f �→ sup
0≤r<1

∣∣Uα,β
r (f)

∣∣
is bounded on the Sobolev space Wp,1

α,β defined by means of D(1) = D(1) = D(1) = Dα,β.

Proof. We argue in the same way as in the proof of [4, Theorem 3], replacing the relevant ultraspherical 
results by their Jacobi counterparts. More precisely, instead of [30, Theorem 2.2] one should use Theorem 2.3. 
Further, (13) should be applied in place of [4, (19)], and Proposition 5.2 in place of [4, Proposition 3]. Finally, 
smoothness of the Poisson–Jacobi integral can be justified directly. Indeed, in view of (1) and (5), the defining 
series can be differentiated term by term arbitrarily many times. �

Following the ideas of [4, Section 5], we also note that (13) together with [12, Theorem F] allow one to 
conclude boundedness on W p,1

α,β = Wp,1
α,β of the maximal operator associated with partial sums of Jacobi 

expansions, at least when α, β ≥ −1/2.

Theorem 5.4. Let α, β ≥ −1/2 and let 1 < p < ∞. Then the maximal operator

f �→ sup
N≥0

∣∣∣∣∣
N∑

n=0
aα,βn (f)φα,β

n

∣∣∣∣∣
is bounded on the Sobolev space appearing in Theorem 5.3.
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