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1. Introduction

The (singly) warped product B X; F' of two pseudo-Riemannian manifolds (B, gp) and (F, gr) with a
smooth function b : B — (0, 0) is a product manifold of form B x F with the metric tensor g = gp ® b?gr.
Here, (B, gg) is called the base manifold and (F, gr) is called the fiber manifold and b is called the warping
function. The concept of warped products was first introduced by Bishop and O’Neill [2] to construct
examples of Riemannian manifolds with negative curvature. In [3], F. Dobarro and E. Dozo had studied
the problem of showing when a Riemannian metric of constant scalar curvature can be produced on a
product manifolds by a warped product construction from the viewpoint of partial differential equations
and variational methods. In [5], Ehrlich, Jung and Kim got explicit solutions to warping function to have a
constant scalar curvature for generalized Robertson—Walker space—times. In [1], explicit solutions were also
obtained for the warping function to make the space—time as Einstein when the fiber is also Einstein.

One can generalize (singly) warped products to multiply warped products. A multiply warped product
(M, g) is the product manifold M = B x;, F} Xp, Fy - - X3, F,, with the metric g = gg ®b2gr, ®b3gp, -+ ®
b2, gr,,, where for each i € {1,---,m}, b; : B — (0,00) is smooth and (F}, gr,) is a pseudo-Riemannian
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manifold. In particular, when B = (¢, d), the metric gg = —dt? is negative and (F}, gr,) is a Riemannian
manifold, we call M as the multiply generalized Robertson—Walker space—time.

Singly warped products have a natural generalization. A twisted product (M, g) is a product manifold of
form M = B x; F, with a smooth function b : Bx F — (0, 00), and the metric tensor g = gg ®b?*gr. In [6], it
was shown that mixed Ricci-flat twisted products could be expressed as warped products. As a consequence,
any Einstein twisted products are warped products. Similar to the definition of multiply warped product, a
multiply twisted product (M, g) is a product manifold of the form M = B X, Fy Xp, Fy - -+ X3 Fy, with the
metric g = g ®bIgr, ®b3gr, - - ® b2, gF, , where for each i € {1,---,m},b; : B x F; — (0, 00) is smooth. So
in this paper, we define the multiply twisted products as generalizations of twisted products and multiply
warped products.

The definition of a semi-symmetric metric connection was given by H. Hayden in [8]. In 1970, K. Yano [15]
considered a semi-symmetric metric connection and studied some of its properties. Then in 1975, Go-
lab [7] introduced the idea of a quarter-symmetric linear connection in differentiable manifold which is a
generalization of semi-symmetric connection. A linear connection V on an n-dimensional Riemannian man-
ifold (M, g) is called a quarter-symmetric connection if its torsion tensor T" of the connection V satisfies
T(X,Y)=n(Y)pX —7m(X)pY, where 7 is a 1-form and ¢ is a (1, 1) tensor field. In particular, if p(X) = X,
then the quarter-symmetric connection reduces to the semi-symmetric connection.

In [4], Dobarro and Unal studied Ricci-flat and Einstein—Lorentzian multiply warped products and con-
sidered the case of having constant scalar curvature for multiply warped products and applied their results
to generalized Kasner space—times. In [10], S. Sular and C. Ozgiir studied warped product manifolds with
a semi-symmetric metric connection, they computed curvature of semi-symmetric metric connection and
considered Einstein warped product manifolds with a semi-symmetric metric connection. In [11], they
studied warped product manifolds with a semi-symmetric non-metric connection. In [14], we considered
multiply warped products with a semi-symmetric metric connection, then apply our results to generalized
Robertson—Walker spacetimes with a semi-symmetric metric connection and generalized Kasner spacetimes
with a semi-symmetric metric connection. In [13], we studied curvature of multiply warped products with a
semi-symmetric non-metric connection. In this paper, we will generalize our result to warped and multiply
warped products with a special quarter-symmetric connection which satisfies equations (2.5) and (2.6) in
[12]. This special quarter-symmetric connection is defined by equation (3). All the work we do is about it.

This paper is arranged as follows. In Section 2, we get a special quarter-symmetric connection and
its curvature, then give the formula of the Levi-Civita connection and curvature of singly warped and
multiply twisted product. In Section 3, we first compute curvature of a singly warped product with this
quarter-symmetric connection, then study the generalized Robertson—Walker space—times with this quarter-
symmetric connection. In Section 4, firstly we compute curvature of multiply twisted products with this
quarter-symmetric connection, secondly we study the special multiply warped product with this quarter-
symmetric connection, finally we consider the generalized Kasner space—times with this quarter-symmetric
connection.

2. Preliminaries

Let M be a Riemannian manifold with Riemannian metric g. A linear connection V on a Riemannian
manifold M is called a quarter-symmetric connection if the torsion tensor 7' of the connection V

T(X7Y)=§XY—§yX—[X,Y] (1)
satisfies

T(X,Y) = n(Y)pX — n(X)oY 2)
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where 7 is a 1-form associated with the vector field P on M defined by #n(X) = ¢(X,P) and ¢ is a
(1,1) tensor field. V is called a quarter-symmetric metric connection if it satisfies Vg = 0. V is called a
quarter-symmetric non-metric connection if it satisfies Vg # 0.

If V is the Levi-Civita connection of M, in equation (2.4) in [12], let p; = M\id, 2 =0, U =P, f; =0,
fa=Xa— A, Uy =P, \; € R\ {0}, A2 € R\ {0}, then we get a linear connection V defined by

VxY =VxY + M7(Y)X — Aag(X,Y)P. (3)

It is easy to see that:

a) when A\ = Ay = 1, V is a semi-symmetric metric connection;
hen A A 1,V y t t tion;
(b) when A\; = Ay # 1, V is a quarter-symmetric metric connection;
c¢) when \; 5, V is a quarter-symmetric non-metric connection.
hen A Ao, V quarter-sy t t t

In [14], we considered case (a). In this paper, we will consider cases (b) and (¢).
Let R and R be the curvature tensors of V and V, respectively. By equation (3.13) in [12], we can get

R(X,Y)Z = R(X,Y)Z + Mg(Z,VxP)Y — \ig(Z,Vy P)X
+ XAg(X, Z)Vy P — Aag(Y, Z)V x P
+ MAem(P)[g(X, 2)Y — g(Y, Z)X]
+X[9(Y, Z)n(X) — 9(X, Z)n(Y)]P
+M7(2) [T (V)X — m(X)Y] (4)

for any vector fields X,Y, Z on M.
Remark 1. When A\; = Ay = 1, we can get equation (4) in [14].
2.1. Warped product

Let (B,gp) and (F,gr) be two Riemannian manifolds and f : B — (0,00) be a smooth function. The
warped product is the product manifold B x F with the metric tensor g = gp® f2gr. The function f is called
the warping function of the warped product, and the Hessian of f is defined by HY (X,Y) = XY f—(VxY)f.

We need the following two lemmas from [9], for later use:

Lemma 2.1. Let M = B x; I be a warped product, V,VE and VT denote the Levi-Civita connection on
M, B and F, respectively. If X, Y € T'(TB) and U,W € I'(TF), then:

(1) VxY = VBY;
(2) VxU =VyX = ZU;
(3) VoW = —2CW grad, f + VEW.

Lemma 2.2. Let M = B x; F be a warped product with curvature R. If X,Y,Z € T'(TB) and U,V,W €
I'(TF), then:

(1) R(X,Y)Z = RE(X,Y)Z;
(2) R(V,X)Y = —HaX) .
(3) R(X,Y)V = R(V,W)X = 0;
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(4) R(X, V)W = VW VWG grady, f ;
(5) R(V,W)U = RF(V, WU — lorda e (g (w, )V — g(v,U)W].

2.2. Multiply twisted product

A multiply twisted product (M, g) is a product manifold of form M = B xy, Fy X, Fy--- Xy, F,, with
the metric g = gg ®b3gr, ®bigr, - Ob2,gF,, , where for each i € {1,---,m},b; : B x F; — (0, 00) is smooth.
Similarly the Hessian of b; is defined by H%(X,Y) = XYb; — (VxY)b;

We need the following two lemmas from [14], for later use:

Lemma 2.3. Let M = B Xy, Fy Xp, Fo -+ Xy, Fpy be a multiply twisted product and let X,Y € T'(TB) and
UeI(TF;),W €I'(TF;), then:

(1)
(2)
(3) VUW—U ZfHéJ,
(4) VuW = U(Inb))W + W (inb;)U

MgradF b; — bng (U W)gmde + VULVVZfZ =17

Lemma 2.4. Let M = B xyp, Fy Xp, Fo - -+ Xp, Fpy be a multiply twisted product and let X,Y,Z € T'(TB) and
V eI(TF;),W € I'(TF;),U € T'(TF}), then:

(1) R(X,Y)Z = RB(X,Y)Z;

(2) R(V,X)Y = MV

(3) R(X,V)W = R(V, W)X R(V, X)W =0 ifi# j;

(4) R(X,Y)V =0;

(5) R(V,W)X = VX(Inb))W — WX (Inb;)V if i = j;

(6) RV,W)U =0ifi=j#kori#j#k;

(7) RUV)W = —g(V, W) 2elordgbearadsbil ;7 g j — j £

(8) RX, V)W = — 2T B (grad ;) + [WX (Inb)[V — g, (W, V) grad g, X (Inb;) if i = j;

(9) R(V.W)U = g(V,U)grad (W (Inb;)) — g(W, U)grad s (V (Inby)) + R™ (V, W)U — 224eb:di (g (v, 1)V —
gV, U)W] ifi=j=k l

Remark 2. It is easy to see that Lemmas 2.1 and 2.2 are corollaries of Lemma 2.3 and 2.4, respectively.
Finally we define the curvature, Ricci curvature and scalar curvature as follows:

R(X)Y)=VxVy = VyVx - Vixy]
Ric(X,Y) = tr R(X,-,Y,"),
S = tr(Ric).

In this paper, we use the equivalent representations of Ricci curvature and scalar curvature as follows:

Ric(X,Y) Zsk (X,E)Y, Ey),
S = Zé‘kRic(Ek,Ek),
k

where Ej; is an orthonormal base of M with (Ey, Ey) = ek, € = 1.
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3. Warped product with a quarter-symmetric connection

In this section, we firstly compute curvature, Ricci curvature and scalar curvature of singly warped
product with a quarter-symmetric connection, then study the generalized Robertson—Walker space-times
with a quarter-symmetric connection.

3.1. Connection and curvature

By Lemma 2.1 and equation (3), we have the following two propositions:

Proposition 3.1. Let M = B x5 F be a warped product. If X,Y € I'(TB), U,W € I'(TF) and P € I'(TB),

then:

(1) ?XY =VEY;

(2) VxU = ZLU;

(3) ﬁUX = [% + )\17T(X)} U,

(4) VoW = —fgp(U,W)gradg f + VEW — Xog(U, W) P.

Proposition 3.2. Let M = B x; F' be a warped product. If X, Y € I'(TB), U W € I'(TF) and P € I'(TF),
then:

(1) VxY = VRY — hg(X,Y)P;

(2) VxU = 24U + \r(U)X;

(3) Vo X = 2LU;

(4) VoW = -2 grad f + fPUEW + (1 - f2)VEW.

By Lemmas 2.1, 2.2 and equation (4), we have the following two propositions:

Proposition 3.3. Let M = Bx F be a warped product. If X,Y,Z € I'(TB), U,V,W € I'(TF) and P € I'(TB),
then:

VZ =RB(X,Y)Z;
H(

B
)Y = = [H2E0 10 BLg(X, V) + Adem(P)g(X, V) + Aig(Y, Vx P) = Mr(X)m(Y)|V;

e[~/ ip=v =l

=—g(V,W) {w + A\ PTfX + XM VxP + Man(P)X — )\%W(X)P:| R
R, V)W = RFU, V)W — [229p01h 4 (x4 30)EL 4 Adam(P)| [V, W)U = g, W)V ].

Proposition 3.4. Let M = Bx ¢ F be a warped product. If X,Y,Z € I'(TB), U,V,W € I'(TF) and P € I'(TF),
then:

(1) R(X,Y)Z = RBE(X,Y)Z + X\ [g(X, 7)Y — (v, Z)XTf] P+ A\ dor(P)[g(X, 2)Y — (Y, Z)X];
(2) BV, X)Y = =220y o m(V) XX~ dag(X, V) Vv P = (X, Y) M den(P)V — Nm(V) P];
(3) R(X,Y)V = nn(V) {XT’”Y - YTfX} ;

(4) R(V, W)X =\ 2 [r(W)V — x(V)W];
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s

(5) R(X,V)W = —g(V, >E&$EQ+M%HWWV—MwWVVMX—MmMWW¥P—MMaMWUx
(P)X + X (W)x(V)X

(6) RW,VIW = RF(U,V)W — L I (o (v, W)U — (U, W)V] + M [g(W, Vi P)V — g(W, Yy P)U] +

&[UIWUVVP — gV,W)VuP] + Mer(P)g(UW)V — g(V,W)U] + Mlg(V,W)r(U) —

(U W)r (V)P + N (W)[x(V)U - n(U)V].

By Propositions 3.3 and 3.4 and the definition of the Ricci curvature tensor, we have the following two
propositions:

Proposition 3.5. Let M = B x ¢ F be a warped product, dimB = ny,dimF = ny and dimM = n = ny + na.
If XY eT(TB), VW € I'(TF) and P € T'(TB), then:

(1) Ric(X,Y) = RicB(X,Y) + ny [M F RBLg(XY) + Mden(P)g(X,Y) + Mg(Y,VxP) —
(

X,V) = Ric(V,X) = 0;
) = Ric"(V, W)+{A;?f + (ng — 1) l2de s 4 (75— 1)A\ Ay — A7 (P) + Aadivg P+ [(A— 1) A1 +

f
ny = Ds L bg(v, ),

—~

where divg P = Zl ex(Vg, P, Ey), and E;,1 < k < ny is an orthonormal base of B with ¢, = g(Ek, Ef).
k=1

Proposition 3.6. Let M = B x ¢ F be a warped product, dimB = ni,dimF = ny and dimM = n = ny + na.
If XY eT(TB), VW € I'(TF) and P € T'(TF), then:

(1) Rie(X,Y) = Ric®(X,Y) + na (f Y) 4 [(7 = Ddde — Nn(P)g(X,Y) + Aog(X,Y)divpP;

(2) Ric(X,V) =[(n— 1)\ — o] (V) EL;

(3) Ric(V, X) = [As — (7 — DAJm(V) 2

(4) Rie(V, W) = Ric" (V,W) +g(V, W) { 2L + (n — 1)220p01E 1 [( — )X Ay — AGJr(P) | +[(7 = DA —
A2lg(W, Vv P) + A3 + (1 — ) Af]m (V) m(W )+ /\29(V W)divg P.

By Proposition 3.5 and the definition of the scalar curvature, we have the following:

Proposition 3.7. Let M = B x ¢ F' be a warped product, dimB = n,,dimF = ny and dimM = n = ny + no.
If P € T(TB), then the scalar curvature S has the following expression:

ra 2
S=23%4+2n, ?f+F+”2( 2—1)%+n2(ﬁ—1)(h+m%

+ [n2(A +n1 — DAt A2 — na(A 4+ A3)]7(P) + na (A1 + A2) divp P.
By Proposition 3.6 and the definition of the scalar curvature, we have the following:

Proposition 3.8. Let M = B x ¢ F' be a warped product, dimB = ny,dimF = ny and dimM = n = ny + no.
If P € T(TF), then the scalar curvature S has the following expression:
_ gF
§— 57 pom 28 5 ny -1
f f2 ( )
+ (T_l — 1)(/\1 + /\Q)dZUFP.

|grad s f|%

72 + [A(A — DA\ Ae 4+ (1 —n) (AT + \3)]n(P)
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3.2. Generalized Robertson—Walker space—times with a quarter-symmetric connection

Theorem 3.9. Let M = I x; F' be a warped product, where I is an open interval in R, diml = 1 and

dimF = 7n —1 (72 > 3). Then (M,V) is Einstein if and only if (F, V) is Einstein for P = % or f is a
constant on I for P € T(TF), Ao # (i — 1)\1.
Proof. (a) Assume that P = %. Let f = e2, by Proposition 3.5, we can write
0 0 7, ,, 1, 1, 9 o 0
ch(at at) (1-) [Z@ A0 Rt F A = }gf(at 815) (5)
0
ch(at ) =0;
_ n—1 1
Ric(V,W) = Ric" (V, W) + eQ{" (@7 +3 [( DAy + (7 — )AQ}
1
A3+ (1= WAk + 50" far (V. W) (6)
for any V,W € I'(TF).
Since M is Einstein manifold, we have
——70 0 o 0
Rie(557) = o0t (57 35 )
Ric(V, W) = aelgr(V,W). (8)
From equations (5) and (7), we get
.1 1 1
= (=M [0 + 50" = Sad’ + M — ). ©)
Similarly, from equations (6) and (8), and by the use of (9), we obtain
1—-n n 1—-n 1
. F _ AV} - ! = 2 2| ¢
Rie" (VW) = [~57(0)? = 50" + (7572 + 3 ) + (3 = DAL = 23| egr (V. W)
which implies that (F, V¥ is Einstein manifold.
(b) Assume that P € T'(TF), by Proposition 3.6, we have
——70 L, .
Fic(5:.V) = 501 = DA = dalm(V'); (10)
— ay 1, _
Rie(V,5) = 542 — (= DM (V) (1)
for any V € T'(TF).
Since M is an Einstein manifold, we can write
0 0
e(p21) =0 V) =0 =0 V. ) = (v, ) (12
where 2 € T'(TB) and V € I'(TF).

Since Az # (1 — 1)A1, 7(V') # 0, using equations (10), (11), (12), then we can get ¢’ = 0, which means ¢
is a constant on I, then f is a constant on I. O
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Theorem 3.10. Let M = B x; I be a warped product, where I is an open interval in R, diml = 1 and
dimB =7 —1 (7 > 3). Then

(1) If (M, V) is an Einstein manifold, P € T(TB), VBP =0, and f is a constant on B, then:

SB =[(A—1)(A —2)A A2 + AP+ (1 — p)AZ]n(P).

Furthermore, if (7 — 1)(7 — 2)A1 A2 + A2 + (1 — 7)A3 = 0, then SB = 0.

(2) If (M, V) is Einstein manifold, P € T(TI), and Ay # (7 — 1)\ then f is a constant on B.

(3) If f is a constant on B, (B, V) is Einstein, P € T(TI), then (M, V) is Einstein manifold; furthermore,
if \a = (M—1)A1, then @ = ap, where a and ap denote the Einstein constant on M and B, respectively.

Proof. (1) Assume that (M, V) is an Einstein manifold, P € I'(TB), then
Ric(X.Y) = —g(X.Y) (13)
n

for any X,Y € I'(TB). Consider that f is a constant on B and by Proposition 3.7, we can get

Rie(X,¥) = —g(X,Y){S® +[(27 ~ 20da — (43 + )]m(P)}.

Define S = % ic(Ex, Ex), where Ej is an orthonormal base of B, then we have

n—1

n

§:

{EB (27— 2)Ahe — (A2 + A%)]W(P)}. (14)
On the other hand, using Proposition 3.5, we can get
Ric(X,Y) = Ric®(X,Y) + [MAem(P)g(X,Y) = A{m(X)w(Y)),
then we have
S =38+ [(7— DA — Nm(P). (15)
From equations (14) and (15), we can get

SB = [(A—1)(7 —2)M\ o + X2 + (1 — A)\n(P).

(2) Assume that (M, V) is Einstein manifold, P € I'(TI), by Proposition 3.6, we obtain

RE(X,P) = (1~ D = dln(P) (16)
Rie(P,X) = e - (1~ D J(P) 2 (17)

Using the similar proof of Theorem 3.9(b), we can get X f = 0, which means f is a constant on B.
(3) If f is a constant on B, and (B, V?) is Einstein, and P € I'(TI), then

Ric®(X,Y) = apg(X,Y). (18)
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By Theorem 3.6, we have
Ric(X,Y) = Ric®(X,Y) + [(7 — 1)A\ida — M7 (P)g(X,Y). (19)
So by equations (18) and (19), we can easily get
Rie(X,Y) = {ap + [(7 — DAz — XJn(P)}g(X,Y)

which means (M, V) is an Einstein manifold.
Furthermore, if Ay = (7 — 1)\, then Ric(X,Y) = agg(X,Y), and a = ag. O

Now we specially study M = I xy F' with the metric tensor —dt? + f(t)%gr, I is an open interval in R.
Let begin with the following theorem:

Theorem 3.11. Let M = I x ¢ F with the metric tensor —dt> + f(t)*gp, P = 2, dimF = I. Then (M, V) is
Einstein with the Einstein constant « if and only if the following conditions are satisfied

(1) (F, V) is Einstein with the Einstein constant ap;

2) z(w‘% P Alxg) .

(3) ap — ff"+ (1 =D(f)? + [N — IMAa —al f2 + [IA + (L= 1)X] ff/ = 0.

Proof. By Proposition 3.5, we have

! 1

m(%,%) - 4@?7 - “Auda):

Ric(V, W) = Ric" (V,W) + gr(V.W){=f " — (1 = 1) f”* + (A3 — I\ 2o) 2
+ I+ (=D

Then by the Einstein condition, we get Theorem 3.11. O
Remark 3. When \; = A\ = 1, we can get Corollary 21 in [14].
Considering the dimension of F, we get Corollaries 3.12 and 3.13 of Theorem 3.11:

Corollary 3.12. Let M = I x; F with the metric tensor —dt> + f(t)?gp, P = %,dimF = 1. Then (M, V) is
Einstein with the Einstein constant o if and only if f"" = Xof' + (A2 — M) f — af.

Remark 4.

(1) From Theorem 3.11, we can also get: if dimF = 1, then ap = 0;
(2) When A\ = Ay = 1, we can get Corollary 23 in [14].

Corollary 3.13. Let M = I x s F with the metric tensor —dt* + f(t)?gp, P = %, dimF =1> 1. Then (M, V)
is Finstein with the Einstein constant a if and only if the following conditions are satisfied:

(1) (F,VT) is Einstein with the Einstein constant ap;
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(2) f"=Xaf + (A = Mida — %)zf; ]
(3) 45+ (2 + [ ]+ [+ G

=) £f = 0.
Remark 5. When A\; = Ay = 1, we can get Corollary 24 in [14].
By Corollary 3.12 and elementary methods for ordinary differential equations, we get:

Theorem 3.14. Let M = I x s F with the metric tensor —dt* + f(t)?gr, P =
FEinstein with the Einstein constant « if and only if

at,dlmF =1. Then (M, V) is

o < (A1 — LA2)2, £(t) = 1OtV A0/t 4 o=y X2 0 /20t
(2) a = ()\1 — %)\2)2, f(t) = 016()‘2/2)t + czte()‘2/2)
(3) a> (A—3X2)2, f(t) = c1eP2/D cos((/Aar — (2A1 — A2)2/2)t)+coeP2/ D sin((/dar — (2A1 — A2)2/2)t).

Remark 6. When \; = Ay = 1, we can get Corollary 25 in [14].
As a corollary of Theorem 3.14, we have

Corollary 3.15. Let M = I x; F' with the metric tensor —dt? + f(t)%gr, P = %, dimF =1, and Ao = 2)\q,
then (M, V) is Einstein with the Einstein constant o if and only if

(1) a <0, f(t) = creMTV=at 4 crei—v=a)t,
(2) a=0,f(t) = Cle)\lt + coteM?,
(3) a>0,f(t) = cret 1 cos(y/at) + coeM tsin(y/at).

Theorem 3.16. Let M = I x y F' with the metric tensor —dt* + f(t)%gr, P = &, dimF =1 > 1. Then (M, V)
1s Finstein with the Einstein constant o if and only if one of the following conditions is satisfied:

(1) a=(F = Aol ap = SN = A3), f(1) = c2;

())\_A2’Oé_0 CEF—(Z—]_) )‘%7f()_cle)\lt+02,

(3) M3 —2I07+1AAs £ 0, Ag # Ay, o = AN EHDMN A 1 — 0, (1) = coelNEADH —a);
(4) A3

(IA1—X2)?
222410 A =0, a = I(A — $X9)2, ap =0, f(t) = cre Pt

a N \/f _ _\/f N
Proof. Let & = do, &5 = dy, ag = 22VEM A Ade 0 2 VEM AT A ey gy 4 by = Ao,

l 1—
apgbg = dp + A1 Ao — )\1.

(a) do < (A1 — 3XA2)?, then f(t) = cre®! + caet. By Corollary 3.13(3),

= 2( 2 2 A3 ! -2 2a0t
d0+01<a0+aob0+)\1+ + )\1&0+—)\2a0)6 0
l—l 1-1 1-1
/\2 l [—2
B + agbo + N2 + Aibo + T Aabo ) 2!
+Cg( + agbg + l—l Jrl—l 10+1_l 2bg | e
222 — 21)\2 l [—2
+ c1co [4@01)0 + 21 .y L (1 — l)\1 + 1— l>\2) (CLO + bo)] €(a0+b0)t =0. (20)

1) by = 0, we have dy = A? — A Ao < (A1 — 21X2)2, ag = A2, @ = (A} — A1 A2)l. By equation (20), we get

210 = M) oty p M-I T +2?1_)(ZAQ ~ M)

do + ¢ 1-1 1-1

=0.
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22t At

Since e and e*2* are linearly independent, we have

2 IM(A2—A1)
71 0

do + C =0
l(>\2+2/\1)()\2 )\1) — 0

C1C2

1. e1 =0, cg # 0. We have o = (A2 — M \o)l, ap = c3(IN2 — A\3), f(t) = ca.
2. ¢ #0,c3=0. Wehave \; = Ao, = ap =0, f(t) = c;eMt.
3. ¢ #0,c2#0. Wehave \; = Ao, = 0,ar = (I — 1)c3\2, f(t) = creMt + co.

It is easy to see that the conclusion of 2’ is a special case of 3'. Then we get Theorem 3.16(1) and Theo-
rem 3.16(2).
2)bg #0,1.¢1 =0, co 75 0. Since e2aot e2bot gand e(a0tbo)t are linearly independent we have dy = 0,
2 2
b2 + agby + A2 + 2220 4 Lx by 4 =205b0 = 0, then ap = 0 Dy ’\2b DS qf Ay = l)\l, we have

0 =[)\?, this is a contradictlon to Ap 75 0. So A2 # {1 and by = 22 we get
2 +§i AQ/\ 2172 >0. ap = l)\b(\Ag )\/\1) do (3l+1)>\2>\2(l)\(l+i)>32>\3—2l)\3)\2 o = (312+z)>\2>\2(lf\z +>l\)))\2A3—2l Ao and
1 2 —A2 1 2 1 2
dy satisfies dg < (A1 — 5)\2) . So in this case, we obtain
A2+ 1A e — 2002 324+ DNN2 — (2 + D3 — 21203 ESELY
2+M1 2)\ L0, a= (817 + DATAS (l)\( +)\))21 3 1220 ap =0, f(t)=coe™2st.
1— A2 1— A2
2'. ¢1 # 0, co = 0. Using the same method we can get ag = ;il ;\\z by = % and
A2+ 1A ho — 2102 312+ DNN3 — (IZ+DAA3 — 21223 I3
2 +l)\11 _2)\2 L0, a= (BIF + DATA; (l/\(l _+/\2))21 2 122 ap =0, f(t)=cremi—2s"

So by 1" and 2/, we get Theorem 3.16(3).
3.1 #0, ca # 0. Since 200t 200t and el@0+bo)t gre linearly independent, we have

A2 — )2 l -2

a%—f—aoboﬂ-)\%ﬁ- 2 1 +—)\1a0+—)\2a0:0; (21&)
1-1 1-1 1-1
A2 — )2 l -2

b3 4 apbo + A3 + 21_11 + 1_l>\1b0+—1_l/\2b020. (21b)

By (21a) — (21b) we get (ag — bo) A2 + %(ao —bo) + =2 X5 (ap — by) = 0, since ag # by we have Ay + % +
ll_TQZAQ =0, then \y = [\, using (21a) again we get 0 = IA\?, this is a contradiction to A; # 0. So in case 3’
we have no solution.
A A
(b) do = (A1 — 2X2)2, then f(t) = c1e3t + cote = L. By Corollary 3.13(3), we get

o N N2 (B—DAZ— 41N
d() + (—Cl + co + _Cgt) e + w

2 2
l l )\2 )\2 Aot
+<1fl/\ /\2)(61+62t)(701 +Cg+762t)€ =0

(c1 4 cot)?er2!

1. ¢ =0, ¢y # 0. The coefficient of e*?* is ¢3 = 0, this is a contradiction to ¢y # 0.
2. ¢; # 0, cg = 0. Then dy = 0 and from the coefficient of e*?* we can get A3+ 1A Ay — 2IX2 =0, so

a=dol =1(A — 3IX)% ap =0, f(t) = c1e#t. Then we obtain Theorem 3.16(4).
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3. ¢c1 #0, ca # 0. From the coefficient of t?e*?* we get
A3+ 1M — 200 =0, (22)
by equation (22), the coefficient of te*2? becomes

(l — 3))\2 + 21\ /\2

— 26 =0, 23

21—1) 2 1 o= (23)

the coefficient of e*2? is @clcg +¢3 =0, then ¢y = >‘21 ll)‘lcl, so by equation (23) we get (21 — 7 —
12)A\y = (412 — 100)A;. Considering that 20 — 7 — 2 # 0,412 — 101 # 0, we obtain Ay = %}%%Al. Using

equation (22) again, we have (I — 1)2(31% — 15l +49) =0, but [ — 1 # 0,312 — 151 + 49 # 0, so we have
no solution in this case.

A

(c) do > (M1 — 2X2)% Let ho = 1/4dy — (2\1 — X2)2, then f(t) = e=!(c1 cos(hgt) + casin(hot)). By
Corollary 3.15(3), we get

do + {(%01 + czho) cos(hot) + (%CQ - Clho) Sin(hot)]Qe/\Qt

A3 l l—

A
1-1 1+

)\1> (Cl cos(hot) + c2 Sin(hot)>26>‘2t + (

d AA
<0+12+1l

)

2
—1
(cl cos(hot) + co sin(hot)) {(%cl + 02h0> cos(hot) + (%02 — clho) sin(hot) }eht

The coefficient of cos?(hgt)e*?? is

(l + 1))\% + (4 — 2[)/\1)\2 4)\1:| 2 A — Ao
[do + 0T 2hd — 11 cie2hg =0 (24)
Similarly the coefficient of sin?(hot)e*2! is
(1M +(E-2DAd — 4] 5 oy = -
[do + 41 —1) } i (25)

If ¢; = 0, ca # 0, by equation (24) we get c3h2 = 0, then hg = 0, this is a contradiction to hgy # 0.
If ¢; # 0, ca = 0, by equation (25) we get c3h3 = 0, then ho = 0, this is a contradiction to hg # 0. So
c1#0,c0#0, (24) + (25) we get

(20 — 4) A1 — IX2] (N2 — >\1)

do = 26
: — (26)
Considering dy > (A1 — %)\2)2, we have
A3 — 21\ + 1A A2 > 0. (27)
The coefficient of sin(hgt) cos(hot)e*?* is
A3 — 20102 + I\ A1 — A
2 1 2e100 + 2 ho(3 — 2) =0. (28)

1-1 1-1
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Using (24)—(25), we get

A2 — 2107 4 1A A 2(1A1 — A2)

2 2
— h . 29
30 =1 (1 =)+ = hocrcz (29)
Let a = % <0,b= %ho, T =cl—c% y=cica # 0, from equations (28) and (29) we
obtain
ax + 2by = 0, (30a)
2ay — bz = 0. (30Db)

2 2
Through (30a) x b+ (30b) x a, we have a? + b? = 0, which means %jé)‘m} + [% ho} =0, then

we get

(31+ 1)AZAZ — (14 1)AA3 — 2103,

d =
0 (IA] — A2)?

(31)

Using equations (26) and (31), we have (A1 — A2)[(2 — 1)A1 — A2] (A3 + A1 A2 — 21A3) = 0. By inequality (27),
we get A\ = Ay or Ay = (2 —1)A\q.

1) A1 = A2, by equation (26) we get dg = 0, this is a contradiction to dg > (A1 — %)\2)2 = i)\% > 0.
2) Mg = (2—1)A1, by equation (26) we get dy = E74A2 < L2, On the other hand, do > (A — 1)9)2 = £A2,
this is a contradiction.

In a word, we have no solution in the case of dg > (A — %/\2)2. O
Remark 7. When A; = Ay = 1, we get Theorem 26 in [14].

Proposition 3.17. Let M = I x ¢ F with the metric tensor —dt*>+ f(t)?gp, P = %. Then (M, V) has constant
scalar curvature S if and only if (F,VF) has constant scalar curvature ST and

SF f// (f/)Q /

S="F 20— =11 = 1)~ + PP(Ar + X2) % + AT+ 25 — (L + 1)A Ao, (32)
f f f f
Proof. Considering that M = I x ; F' with the metric tensor —dt?+ f(t)?gp and P = 2, by Proposition 3.7

we get equation (32). With the fact that S is a function defined on F and f is a function defined on I,
using separation of variables we complete the proof of this proposition. 0O

Proposition 3.18. Let M = I x ¢ F with the metric tensor —dt*>+ f(t)2gr, P € T(TF). If (M, V) has constant
scalar curvature S, then

(1) If Ay + X2 # 0 and A2 + A2 — A\ Mo = 0, and divp P is a constant, then ST is a constant;
(2) If \1 = —X2 # 0 and gr(P, P) is a constant, then S¥ is a constant;
(3) If My + X2 # 0 and A2 + A2 —AX Ay # 0, and divp P, gp(P, P) are constants, then ST is a constant.

Proof. Considering that M = I x ; F with the metric tensor —dt+ f(t)?gp, P € I'(TF), by Proposition 3.8
we can get

+ AN Ao — L(A2 + 2D f29r (P, P) +1(A1 + \o)divgP. (33)

2
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Then by separation of variables, we have:

(1) If Ay + Ao # 0 and A2 + A3 — XAy = 0, and divp P is a constant, we can obtain S =

(1 — )(f )’ 4 I(\1 + X2)divp P. Then ST is a constant.

(2) If Ay = 7)\2 # 0 and gp(P,P) is a Constant which means A\; + )\2 =0and A2 + A2 — A\ Ay # 0, and
gr (P, P) is a constant, we can obtain S = ? - QZf -1l - )(f + [IaXiAg — I(A2 + 2] f2gr (P, P).
Then S¥' is a constant.

(3) It is obvious.

(4) If A\p + A2 = 0 and A} + A3 — A \g = 0, then we can get A\; = Ay = 0, which is a contradiction. O

ST ot _
7 2T

In (32), we make the change of variable f(t) = \/v(t) and have the following equation:

1 =30 (1) _ é()\l + X' (t) + [(l +DAAe — AT — A3+ T}U(t) T 0. (34)

4 w(t)

v (t)

Remark 8. When A\; = Ay = 1, equations (32), (33), (34) respectively become (20), (21), (22) in [14], then
by Proposition 3.17, we can get Corollary 27 in [14], and by Proposition 3.18(3), we can get Corollary 28
n [14].

Theorem 3.19. Let M = I x; F with the metric tensor —dt*> + f(t)*gp, P = %, and dimF = [ = 3. Then
(M, V) has constant scalar curvature S if and only if (F, V) has constant scalar curvature ST and

(1) S < ZL(A +X2)2 4+ 302 + 303 — 120 X2 and S # 3A2 + 33 — 12\ \s,

o(t) = Cle((%(>\1+)\2)+\/%(A1+A2)2—%5‘+4)\%+4>\§—16/\1)\2)/2)t

((3O+22)—/F 1+ 02)2— §5+403 +4X3- 1671 22) /2)1 St .
1220102 —3X2 —3)\2 + 5’

+ coe

(2) 5=2L(A1 + X2)? + 3AF + 373 — 12X )\,

SF
120102 — 302 =3X\3 + S’

v(t) = cle%()‘ﬁAQ)t + cztego‘l+)‘2)t

(3) 5> 2L(A1 + A2)? + 3A + 3A3 — 12\1 ),

’U(t) — Cle%(A1+A2)t Cos(((\/gg — 4)\% — 4)\% + 16X — %()\1 + )\2)2) /2)t)

3 4 _
4 epefGutro)t sin(((\/§S AN D2+ 160 g — %(/\1 n /\2)2>/2)t)

SF
+ =
1220102 —3X2 —=3X\3+ S

(4) § =3\ 43X — 1201, and Ay + Aa £ 0, v(t) = 1 — 525 + cpeF 1)L,
— F
(5) S =3AF+3X — 12\ X2, and A1 + X2 =0, v(t) = Z-t2 + e1t + co.
Proof. If [ = 3, then we have a simple differential equation as follows:
i 3 / 2 _ 5 SF
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(a) If S # 322 + 3)2 — 12X\ Ao, putting h(t) = (4\1A2 — A — A3+ g)v(t) — %, we get B(t) — 2(A\ +
X)W (t) + (4M A2 — AF — A3 + £)h(t) = 0. The above solutions (1)-(3) follow directly from elementary
methods for ordinary differential equations.

(b) If S = 3X2 +3)2 — 12\ g, and A\; + Ay # 0, then v”(t) — %(/\1 + X))V (t) — % = 0, and we get
solution (4).

(c) If S = 3X2 + 3)\3 — 12\1 )2, and A1 + Ao = 0, then v"(t) — ST =0, and we get solution (5). O

Remark 9. When A\; = Ay = 1, we get Theorem 29 in [14].

Theorem 3.20. Let M = I x; F with the metric tensor —dt*> + f(t)%gp, P =
S =0. Then (M,V) has constant scalar curvature S if and only if

8t7 and dimF =1 # 3 and

(1) S<

Er O+ 22)2 =11+ DAde — A2 = A,

oft) = {cle((%()\1+>\2)+\/ 2 OntAa)2— (4D (DA A~ N -2+ 5] ) /2)¢

+ coe

7

((é()\1+)\2)7\/%(/\1+)\2)2 (+1)[(I+1) A1 Aa— A2 — A3+ ])/2)]

4

i A+ A2)? =+ DA = AT = A3], o) = {cleé(M“?)t + cﬂei(h“"‘)t] A
(3) 8> gy (M +A2)” — {1+ DA de — AT = A3,

o(t) = [eref ) cos ((\/(l D[+ DAde =M =M+ % - g(xl +22)?) /2)t

o) Z o xp2) 2]

71"

+ C264(>\1+/\2) 51n(<\/(l +1) [(l + DA — )\% - )\% +

Proof. In this case, (34) is changed into the simpler form

v (t) + I_T?’“;((tt)) - é(Al + AV () + [(l + DA — AT = A3+

}v(t) —0. (36)

Putting u(t) = w(t)l%7 w(t) satisfies the equation w”(t) — L(A1 + A2)w'(t) + BL[(1 4+ 1)Aida — AT — A3 +
%] w(t) = 0. By the elementary methods for ordinary differential equations, we prove the above theorem. O

Remark 10. When A\; = Ay = 1, we get Theorem 30 in [14].

4

When dimF = [ # 3, and S¥ # 0, then putting v(t) = w(t)™1, w(t) satisfies the following equation:

l+1

1 _
w’ (t) — 5(/\1 + Ao)w'(t) + I+ DA do — X2 = A2+ Zw(t) — ——STw! 1 = 0. (37)

4. Multiply warped product with a quarter-symmetric connection
In this section, firstly we compute curvature of multiply twisted product with a quarter-symmetric con-

nection, secondly we study the special multiply warped product with a quarter-symmetric connection, finally
we consider the generalized Kasner space-times with a quarter-symmetric connection.
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4.1. Connection and curvature

By Lemma 2.3 and equation (3), we have the following two propositions:

Proposition 4.1. Let M = B xy, F1 Xp, Fo--- Xy, Fp, be a multiply twisted product. If X, Y € T'(TB),
UeI(TF;),W €I'(TF;) and P € I'(TB), then:

(2) VxU = 34U;

(3) VuX = [?gb n Am(X)} U;

(4) VoW =0 ifi #j;

(5) VoW = U(lnb))W +W (Inby)U — 800 grad . by —bigr, (U, W) grad gbi+ V& W —Xag(U, W)P if i = j.

Proposition 4.2. Let M = B xy, F1 Xp, Fo--- Xy, Fp, be a multiply twisted product. If X, Y € T'(TB),
UeI(TF;),W €I(TF;) and P € I'(TF,) for a fized r, then:

(1) VxY = VEY — \g(X,Y)P;

(2) VxU = 35U+ \7(U)X;

(3) VuX = 3U;

(4) VoW = \g(W, P)U if i # j;

(5) VoW = U(lnb)W + W (Inb))U — 2247 grad by — bygr, (U, W) grad gy + b3V EW + (1 - 2)VEW if
i=7.

By Lemmas 2.3, 2.4 and equation (4), we have the following two propositions:

Proposition 4.3. Let M = B Xy, Fy Xp, Fa--+ Xy, Fyy be a multiply twisted product. If X,Y,Z € T'(TB),
V eI(TF;),W e I(TF;),U € I'(TFy) and P € I'(TB), then:

(1) R(X,Y)Z = RB(X,Y)Z;

2) RV, X)Y = — [W + 2B g(X,Y) + MAam(P)g(X, Y) + Mg(Y, Vx P) = Xer(X)m(V)| V5
(3) R(X,Y)V =0;

(4) R(V,W)X = VX(inb))W — WX (Inb;)V if i = j;

(5) RV,W)U =0ifi=j#kori#j#k;

(6) R(X,V)W = R(V,W)X = R(V, X)W =0 if i # j;

(7) R(X, V)W = WX(Inb;)V — g(V, W) [M + grady, 2t 4\ B X 4+ 0V P+ M dom(P) X

Nr(X)P| if i = j;

(8) R(U, V)W = —g(V, W)[QB(QTadlzbZ)kyradek) N Pbl +>\2Pbk A en(P )}U iz itk

9) RU,VI)W = g(UW)gradg(V(inb;)) — g(V,W)gmdB(U(lnbi)) + RR(U V)W — [\qmde N
(A1 +A2) B+ A dor(P)] [9(V, W)U = (U, W)V] if i = j = k.

Proposition 4.4. Let M = B Xy, Fi Xp, Fo -+ Xy, Fiy be a multiply twisted product. If X,Y,Z € T'(TB),
V e(TF;),W € I(TF;),U € I'(TFy) and P € T'(TF,) for a fized r, then:

(1) R(X,Y)Z =RB(X,Y)Z + X\, [g(X, 7)Yk — (v, Z) 3= | P+ M dam(P)[9(X, 2)Y — g(Y, Z)X;



Q. Qu, Y. Wang / J. Math. Anal. Appl. 431 (2015) 955-987 971

_ by
2) RV, X)Y = 22Xy X Don(P)g(X,Y)V if i #r;
_ b;
(3) RV, X)Y = LTy (V)X X — Mag(X,Y)Vy P — g(X,Y) [ Mdon(P)V = N3n(V)P) if i = r;
(4) ROCY)V = am(V)[52Y = = X];
(5) R(V,W)X = =\d; 3um(VIW + M5 Sa(W)V if i # j;
(6) R(V, W)X = VX (Inb;)W — WX (Inb;)V — MO} S (V)W —n(W)V] if i = j;
(1) RV, W)U =0ifi=j#kori#j#k;
(8) R(X, V)W = A\ Jl=n(W)V if i # j;
9) RX, V)W = WX(lnb)V — g(V.W)¥x0edeb) - graq (Xinb,)gp, (VW) + M Zen(W)V -

A g(W, VyP)X — Aag(V,W) 3L P— X Xog(V, W) (P)X + X3n(W)n(V)X if i = j;

r

(10) R(U, V)W = —g(V, W) 2eleradsboordabi) {7\, o(W, Vy P)U —Aag(V, W)V P— M dom(P)g(V, W)U +
NBg(V.W)n(U)P + Mr(W)[x(V)U —a(U)V] if i = j # ki

(11) R(U, V)W = g(U, W)grad g(V (inb;)) — g(V, W) grad g (U (Inb;)) + R" (U, V)W — “’T—“‘Z’?bi—'é[g(‘& W)U -
g(UW)V] + M don(P)[gU, W)V — g(V, W)U ifi = j =k #r; o

(12) R(U, V)W = g(U, W)gradg(V (inb;)) — g(V, W) grad g (U (Inb;)) + R" (U, V)W — “’T—“‘Z’f’i—'é[g(w W)U -
g(U, WV + M [g(W,VuP)V — g(W,VyP)U] + Xfg(UW)VyP — g(V,W)ViyP] + AAor(P) x
[g(U W)V —g(V, W)U+ A3[g(V, W)n(U) —g(U,W)x (V)| P+Xin(W)[n(V)U—-n(U)V] ifi=j =k =r,
where 6] denotes the Kronecker symbol.

By Propositions 4.3 and 4.4 and the definition of the Ricci curvature tensor, we have the following two
propositions:

Proposition 4.5. Let M = B Xy, Fy Xy, Fo -+ X3, F, be a multiply twisted product, dimM = n, dimB = n,
dimF; =;. If X,Y,Z € I(TB), V € I(TF;),W € I'(TF;) and P € T(TB), then:

. . S
(1) Ric(X,Y) = Ric®(X,Y) + > zi[%f’y’ + M Blg(X,Y) + Mdem(P)g(X,Y) + Mg(Y,VxP) —
=1

ANr(X)m Y)} ;
(2) Ric(X,V) = Ric(V,X) = (I — 1)[VX(Inb;)];
(3) Ric(V.W)=0ifi #j;
(4) Rie(V,W) = Ric" (V. W)+ { 82+ (1, —1) gl 37 g anlmmdghomedib) 4 [(5—1)2 00 =M J(P)+
‘ s#£1
NodivpP + o 3 LT 4 (7= DA+ (= DAl B ha(ViW) if i = j,

sF#4

where divgP = Y ei(Vg, P, Ey), and E,1 < k <n is an orthonormal base of B with ¢y, = g(Ey, Ex).
k=1

As a corollary of Proposition 4.5, we have:
Corollary 4.6. Let M = B Xy, F1 Xp, Fo--- Xp, Fiy be a multiply twisted product, and dimF; = 1; > 1,
P € T(TB), then (M, V) is mized Ricci-flat if and only if M can be expressed as a multiply warped product.
In particular, if (M, V) is Einstein, then M can be expressed as a multiply warped product.

Proof. By Proposition 4.5(2) and (3), similarly to the proof of Theorem 1 in [6], we get this corollary. O

Proposition 4.7. Let M = B Xy, F1 Xp, Fo -+ Xy Fy be a multiply twisted product, dimM = n, dimB = n,
dimF; =1,. If X,Y,Z € T(TB), V € I(TF;),W € I'(TF;) and P € T(TF,) for a fized r, then:
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(1) Ric(X,Y) = Ric®(X,Y) + f) [ HE XY) ) 4 [(7— DMde — AJn(P)g(X,Y) + Aag(X, Y) divp, P;

(2) Ric(X,V) = (I — D[VX(Inb,)] + [(7 — )As — AgJ(V) X

(3) Ric(V,X) = (zi — D[VX(Inb)] + [A2 — (7 — DAy]m(V) b

(4) Ric(V,W)=0ifi#j;

(5) Ric(V.W) = Ric" (VW) +g(V. W){ Bt 4 (1; — 1) ol 4 37 g amlardgbaredote) 4 (7 1)A 0, -

s#1
%]W(P)} 4+ [(7 = DA = A]g(W, Vy P) + [\ + (1 — )N (V)7 (W) + Aag(V, W) divg, P if i = j.

>

As a corollary of Proposition 4.7, we have:

Corollary 4.8. Let M = B xy, F} Xp, Fo -+ Xy, Fyy be a multiply twisted product, and dimF; = [; > 1,
P eT(TF,), then (M,V) is mived Ricci-flat if and only if one of the following two conditions is satisfied:

(m—1)A\1, and M can be expressed as a multiply warped product;

(1) A=
Ao # (= 1)1, M can be expressed as a multiply warped product and b, is only dependent on F,.

(2)
In particular, if (M, V) is Einstein, then M can be expressed as a multiply warped product.

Proof. By Proposition 4.7(2) and (3), we have that (M, V) is mixed Ricci-flat if and only if VX(Inb;) =0
[(m—1)A — Ag]W(V)Xb—ET = 0. Similarly to the proof of Corollary 4.6, we get that

(a) A2 = (m — 1)A1, and M can be expressed as a multiply warped product.
(b) A2 # (m—1)\1, M can be expressed as a multiply warped product. When ¢ # r, 7(V) = 0. When i = r,
by (V)5 Xbe — (), then b, depends only on F,.. O

By Proposition 4.5 and the definition of the scalar curvature, we have the following:

Proposition 4.9. Let M = B Xy, F1 Xp, Fo - Xy Fy be a multiply twisted product, dimM = n, dimB = n,
dimF; = l;. If P € T(TB), then the scalar curvature S has the following expression:

m

S = 53-5-221 ABb +ZSF Zl (i — 1) gmde |B +ZZ” 9B (gradgb;, grad gbs)

bibs
i=1 s#i
m B PbS m B
+ D LA =DM+ (41— )Ag] —|—)\QZZlil3b—+Zli[(n+n— 1A\
i=1 i=1 s#i 8 i=1

— AT+ AT (P) + (M + A2) i l;divg P.

i=1

By Proposition 4.7 and the definition of the scalar curvature, we have the following:

Proposition 4.10. Let M = B X, Fy Xy, Fy -+ - X3, Fyy be a multiply twisted product, dimM = n, dimB = n,
dimF; = I;. If P € T(TF,) for a fived r, then the scalar curvature S has the following expression:

Apb; = ST & |gmd b;|2 9B (gradgb;, grad gbs)
S=88+4+2% |,—— — Ll — 1 BB Lils BL o B
P S T g S el

+ AR — DM dg + (1 = 7) (A + AD)|7(P) + (7 — 1) (M1 + Xo) divp, P.
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Remark 11. (1) It is easy to see that Propositions 3.1-3.8 are corollaries of Propositions 4.1, 4.2, 4.3, 4.4,
4.5, 4.7, 4.9, 4.10, respectively.

(2) When \; = Ay = 1, we get Propositions 1, 2, 4, 5, 7, 9, 12, 13 in [14], by Propositions 4.1, 4.2, 4.3,
4.4, 4.5, 4.7, 4.9, 4.10, respectively.

4.2. Special multiply warped product with a quarter-symmetric connection

Let M = I xy, F} Xy, Fy--- X3, Fy, be a multiply warped product with the metric tensor g = —dt? @
bigr, ®bigr, - ®b2 gr,, and I is an open interval in R, and b; € C*°(I), dimM = 7, dimI = 1, dimF; = [;.

m

Similarly to the proof method of Theorem 3.11, we have:

Theorem 4.11. Let M = I x3, Fy Xp, Fo--- Xp,, Fp, be a multiply warped product with the metric tensor
g=—dt?®blgr ®bigr, - ®b2.9F,, P = 2. Then (M,V) is Einstein with the Einstein constant « if and
only if the following conditions are satisfied

(1) (F;, V) is Einstein with the Einstein constant o, i € {1,...,m};
m ’ "
() L (AQZ—;; W AMQ) = o

(3) ai—bibf 4+ (1 —1;) (b)) + (A2b7 — bib}) 3 lsz—; + A3+ (1 =) A Xo]bF + (7 — 1) A1 + (I — 1) Ao]bib; = b}
Ss#£1 s

Theorem 4.12. Let M = I xy, F Xp, Fo -+ Xy, Fp, be a multiply warped product with the metric tensor
g=—dt? ®b2gp, ®b3gr, - ®b2,gF, , P € T(TF,) with g, (P,P) =1 and i > 2. Then (M, V) is Einstein
with the Einstein constant « if and only if the following conditions are satisfied for any i € {1,...,m}:

(1) (F;, VE) (i # r) is Einstein with the Einstein constant oy,i € {1,...,m};
(2) b, is a constant and i li{z);_g = po; dive, P = p1; po — Aapin + o = [( — 1)\ g — N3]02, where o, p11
are constants; =
(3) Ric™ (V,W)+agr, (V, W) = (A= )N~ NJr(V)m(W)—[(A— 1) —Aslg(W; Vv P), for V, W € T(TF,),
where & = b2{[(W — 1)\ A2 — A6 4+ Xopy — a};
(4) a; —bb! + (7 — 1)A1Ag — A3]62b2 — bb > ZSZ_E — (l; = 1)(0})? = (@ — Agpq)b2.
s#i

Proof. By Proposition 4.7(2) and gg, (P, P) = 1, we have that b, is a constant. By Proposition 4.7(1), we
have

ch(at Bt) iz (1 — WM A2 — Aedivp, P = —

By separation of variables, we have
AN . _ 2772
ZZT = pio; dive, P = p1; po — Aapn +a = [( — 1)\ g — A3]2,
i=1

then we get (2). By Proposition 4.7(3), we have

/!
RIC(V. W) = RicP (V.W) + b (V. W) { = + (1~ 1)

- g U (- DM - AP

+[(7 = 1A — AJg(W, Vo P) + [N + (1 - mmﬂvwm + Xog(V, W) div, P
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When i # r, then Vy P =n(V) =0, so

/!
RIC(V.W) = Ric (V. W) + Vg (V. W) {1 + (s -

b’b'
+ Zz
+ (7 — 1A A2 — )\g]bf} + Ao bl gr, (V, W) = ab?gFi(V, W).

By separation of variables, we have that (F;, V) (i # r) is Einstein with the Einstein constant a; and
o — b + [(71 — 1) A1 Ag — A2]b20% — byb], Zl = (I, = 1)(5)? = (@ — Aopg 2.
sF#4 S

Then we get (1) and (4).
When ¢ = r and b, is a constant, then

Ric™ (V, W) + 62{[( — )M da — A3]b} + Aapr — a}gr, (V, W)
= [(7 = DA = XJn(V)r(W) — [(7 — DA = Ao]g(W, Vv P),

let @ = b2{[(7n — 1)A1 A2 — A3]b2 + Aapy — @}, we get (3). O

m

has constant scalar curvature S, then each (F;, Vi) has constant scalar curvature S

Theorem 4.13. Let M = I xp, Fy Xp, Fo--- X, Fyy be a multiply warped product and P = %. If (M, V)

Proof. By Proposition 4.9, we have

_ _2Zl b// + Z SF illal B m b/b/

=1 5751
+le[(ﬁ—1)>\1+lz>\2 +)\szll_
i=1 i=1 s#i
= LiAMA — (A + A3)]. (38)
=1

Note that each S** is function defined on Fj, using separation of variables we complete this proof. O

Theorem 4.14. Let M = I xy, Iy Xy, Fy - -- %3, Fy, be a multiply warped product and P € T(TF,). If (M, V)
has constant scalar curvature S, then

(1) each (F;, V) (i # r) has constant scalar curvature S¥;

(2) If M + X2 # 0 and A3 + A3 — i\ Aa = 0, and divg, P is a constant, then ST is a constant;
(3) If \y = —X2 # 0 and g, (P, P) is a constant, then STr is a constant;
(4)

4) If M1+ X2 # 0 and A2 + N3 — il Ay # 0, and divg, P, gr. (P, P) are constants, then STr is a constant.

Proof. By Proposition 4.10, we have

_ m b m SFi m b/b/
S = _QZlib_i +Zb—2 “rZh(l
i=1 =1 i=1 i=1 .5751
+ A - DA + (1 - ) (A + A%)]bngT(Pv P)+ (7 — 1)(A1 + A2) divp, P (39)

then similarly to the proof of Proposition 3.18, we complete this proposition. O



Q. Qu, Y. Wang / J. Math. Anal. Appl. 431 (2015) 955-987 975

Remark 12. When A; = Ay = 1, we get Theorems 15, 16 and Propositions 18, 19 in [14] by Theo-
rems 4.11-4.14, respectively.

4.3. Generalized Kasner space—times with a quarter-symmetric connection

In this section, we consider the Einstein and scalar curvature of generalized Kasner space-times with a
quarter-symmetric connection. We recall the definition of generalized Kasner space—times in [4].

Definition 4.15. A generalized Kasner space-time (M, g) is a Lorentzian multiply warped product of the
form M = I X g1 Fy Xgp2 Fo -+ X gom Fyy, with the metric tensor g = —dt? @ ¢*P1 gp, © ¢*P2gp, - - ®¢*Pmgp,
where ¢ : I — (0,00) is smooth and p; € R, for any i € {1,...,m} and also I = (1, t2).

We introduce the following parameters ¢ = Z lip; and n = Z 1;p? for generalized Kasner space—times.
i=1 i=1
By Theorem 4.11 and direct computations, we get the following:

Proposition 4.16. Let M = I Xgr1 F1 Xgp2 Fo -+ Xgom Fp, be a generalized Kasner space-time and P = dt
Then (M, V) is Einstein with the Einstein constant o if and only if the following conditions are satisfied

foranyie{l,...,m}:

is Einstein wzth the FEinstein constant oy, i € {1 L,m};
2 (Az%—%) +(/\2—/\1)\2)(TL—1) =
(3) - — (- 1)pz ¢2 +{AaC + (A= D — Az]pi}%ﬁ =a =N+ 7 - DA

By equation (38), we obtain the following:

Proposition 4.17. Let M = I Xgv1 F1 Xgv2 Fo -+ Xgpm Fp, be a generalized Kasner space-time and P = at
Then (M, V) has constant scalar curvature S if and only if each (F;, V%) has constant scalar curvature S¥:
and

(¢')°
¢2

+ (M1 + A)C(R — 1)% + (@ —1)A2+ A2 -7\ ). (40)

_ m SF» "
S:Z&pl —%%—(Wréz—?é)
=1

Next, we first give a classification of four-dimensional generalized Kasner space-times with a quarter-
symmetric connection and then consider Ricci tensors and scalar curvatures of them.

Definition 4.18. Let M = I X, Fy Xp, Fy -+ Xy, Fp, be a multiply warped product with the metric tensor
g=—dt> ®b3gr, ®b3gr, - ®b2,gF, . Then:

(1) (M,g) is said to be of type (I) if m =1 and dimF = 3;
(2) (M, g) is said to be of type (II) if m = 2 and dimF} = 1 and dimFy = 2;
(3) (M, g) is said to be of type (/II) if m = 3 and dimF; = 1, dimF = 1, dimF3 = 1.

4.3.1. Classification of Einstein type (I) generalized Kasner space—times with a quarter-symmetric
connection

By Theorem 3.16, we have given a classification of Einstein type (I) generalized Kasner space—times with
a quarter-symmetric connection.
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4.3.2. Type (I) generalized Kasner space—times with a quarter-symmetric connection with constant scalar
curvature

By Theorem 3.19, we have given a classification of type (I) generalized Kasner space—times with a
quarter-symmetric connection with constant scalar curvature.

4.3.8. Classification of Einstein type (II) generalized Kasner space—times with a quarter-symmetric
connection

Let M = I xgp1 F1 Xy4p2 F> be an Einstein type (II) generalized Kasner space-time and P = %. Then
a1 = 0 because of dimF; = 1. ¢ = p1 + 2pa, n = p? + 2p3. By Proposition 4.16, we have

/ " /\2
(- 2) - -0 4308 -2 —a (11a)
1 /\2 /
_pl% —(C-1)p (‘22) + A2+ (3M — Ag)pl]% =a =23+ 3\, (41b)
/! /\2 /
% - pQ% — (¢~ 1)ps (‘2)2) + [XaC + (BM — )\2)?2]% =a— X3+ 3\, (41c)

where s is a constant. Consider the following two cases:

4.8.83.1. When ¢ =0 In this case, ps = f%pl, n= %p% Then by equations (41a)—(41c), we have:

\2
—n(‘ig +3002 = Ado) = a, (42a)
i /\2 /
n- % + (‘22) +(3M —Az)%] = a— X} +3As, (42b)
/1 \2 /
= - [~ %+ (‘ZQ +(3M1 —Az)%] —a— N +3M . (42¢)

(a) 7 =0. We have p; = 0, by equation (42a), we get a = 3\ — 3\;)\g; by equation (42b), we get

a = A3 — 3\ )\2; then we have A3 = 3)\? and by equation (42¢), we get az = 0. So we have

A =3)2 p; =0, a =3\ =3\ A= A2 — 3\ )2, a1 = =0. [A]

(b) n # 0. We have p; # 0.
1) az = 0. By equations (42b), (42c), we get a = A2 — 3A; Ao and

11 \2 /
—%-‘r (23 +(3A1—A2)% =0 (43a)
¢/ 2 3)\2_)\2
) _ 982 (430)

1. 3)\} — A2 < 0, we have no solution;
2. 30?2 — \3 =0, we have ¢ = ¢, then by equation (42b), we get a = A3 — 3\; \o.

So we have

AN2=3X p1#0, pa A0, a =72 -3\, g =0 =0, ¢ =c. [B]
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[3x2 -3
3. 30 — A3 > 0, we have ¢ = coei g t, by equation (43a), we get Ao = 3)\;, considering that
3A2 — A2 > 0, we have \? < 0, which is a contradiction.

2) ag # 0. By equations (42b), (42c), we get 2% = 3(a@—A343A\1\2), s0 ¢ = ¢; then by equation (42Db),
we get @ — A3 + 3\ Mg = 0, then ay = 0, this is a contradiction.

4.8.8.2. When ( #0 Then n # 0. Putting ¢ = 1/J%, we have " — Xt + (a+3A1 A2 73)\%)%1/) = 0. Hence:

\2¢2 Ao+ A%—4(a+3>\1)\2—3A%)g§ Ag— A%—4(o¢+3)\1/\2—3>\%)é’5
(1) a< j—2+3)\%73>\1>\2, P =ce P bt coe p b
2 +2
(2) a= )‘22 +3A7 — 3\ A2, ¥ = cle%z’5 + czte%%;
22
(3) a> 2 4303 = 3M\ Ay,
" \/4(a +3MA2 — 300 & — A3 " \/4(a +3MA — 30D & — A3
Y =cre 2" cos( 5 t) 4 coe ? “sin( 5 t).
We make equations (41a)—(41¢) into
2 Mot — "
CA T g — 3A%; (44a)
n (4
p1(69)" | Aol 4 (BA1 — Aa)p1 (¢°) 2
—— =a—A\ +3)\1)\2; 44b
¢ ¢ ¢ ¢° ? (44b)
ay  p2(¢9)" | AaC+ (BA1 = Ao)p2 (6°)" 2
o C et ¢ g AT o
When p; = po, type (II) spaces turn into type (I) spaces, so we assume p; 5. By (44b) X pa — (44c¢) X p1
p b2, typ P Yp P ) p p Yy p p1,
we get
I e % 12828 +—a_)‘§+3/\1/\2% . (45)
Xa(p2 —p1) € A2 ¢
Now we consider the following three cases to solve this problem:
A2+, A3—4(a+3X1A2—3X3)
48821 o < % £ 307 — 3\ Ae. Then ¢ = e + epe!”, where a = = YAl e =
Aa— ., AZ—4(a+3A A2—372) 2
M 5 e By equation (45), we get
at bt _ P12 n at pry1— 2228 | o — A3 +3MA 1 at bt
acie”” + bCQ@ = mg(Cl@ + coe ) o+ )\—2?(816 + coe ) (46)
1) ¢ = 0. We have
a—XA+3)M)N 7 prQ n _2pa¢
b—2——}c et = 22 L (el n 47
Ao ¢l A2(p2 — p1) CQ( 2¢") (47)

1. b#0,p1jas #0. By equation (47), we get po = 0, so ( = p1, n = pi and 5 o= 1L Then
b— A2—/A3—4(a+3A122—3XF)
= 2

, SO

b2 - )\gb = 3)\% — 3)\2)\2 — Q. (48)
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On the other hand, ¢¢ = 1) = coe’, so by equations (44b), (44c), we get

—b% +3M1b = a — A2 + 3\ \g; (49a)
a2+ Aob = a — X2 + 3\ o (49b)

By (48) + (49a), we get (3\; — /\Q)b = 3M\? — A3, if A\a = 3\1, then 0 = —6A?, this is a contradiction
4 3 242 3
to A1 # 0, 80 Ao # 3\, b = 3/\ _/\ . Then by equation (48), we have a = 1821 =360, A9 #2405 25 -6y

(331—Xg)? =

621 (A1=X2) (BAT=3A122+23 i I8AT—18M3 X2 +6XM105—2X7 _ 2(3AT—23)(BA]—3A1)a+)3
1 (é))\(l S LE ) by equatlon (49b), we get az = S YEs vy (833 f%&l T 2),
since 3A7—3A Ao+ A3 # 0, and ap # 0, we have 303 # A3. Considering that b < 22, we get % < 0.

So we obtain

6AZ =371 Ao — A3 18A%—36A3 Mo +2422 02 —6A1 03
3)&%)\2 PAUOMRTN () gy £0, pp=0, o= 1 1A2+24A1 A5 125

3)\1 )\2 (3>\1_>\2)2 ?
2 2
18A% 1823 Ap+6A, A3 — 223 B -
a; =0, ag = . (3312,—;2)2} 2 , @ = coeCri- 2’ [C]

2. b ;é 0,p1042 =0.
a—A2+3)\1 )2

1°. py = 0. Then ¢ = 2py, n = 2p3, % = % By equation (47), we get b = e , on the other hand,
b _ )\27\/)\%72(&2+3A1A273>\f)7 50 we get
24 (6A1 A2 — 202)a + 3M2X2 — 6A3N, + 30T = 0. (50)

When \; = \g, we get a? +4\3a =0, then a = 0 or a = —4)}. If « = 0, we have b = \; = X3 < 0, by
equation (44c), we get ag = 0; ¢ = 1/)7% = coe;_;t. If = —4)2, then \; = Ay > 0, b = —\y, and by equation
(44c), we get Ay = 0, which is a contradiction.

When A\; # A2, A = 8M\3(302—)2), if A2 > 3)\2, we have no solution; if A2 = 32, we have b = 0, which is a
contradiction; if A3 < 32, we have o = A2 — 3\ 1 Ao +1/2A3(3)%2 — A2) or a = A3 —3X 1 Ao — /2)A2(3)\2 — \2).
By equation (44c), we have as = 0 and

—202 4+ (3A1 + A2)b = o — AZ + BA; Ao (51)

When o = A3 — 3\ A2 + /2A2(3)\? — \3), we have b = 2>‘%(2+%_A§), by equation (51), we have A\; = A,
which is a contradiction. When a = A3 — 3A\1 A2 — 1/2A3(3A2 — A\2), we have the same contradiction.

So we get

A
/\1:)\2<07 plzoa p2#07 042041:()42:0, ¢:Coeit~ [D]

2°. ag = 0. Since p; = 0 we have discussed, so we assume that p; # 0. By equation (47), we have

b= %j)‘w & ¢ = ce® 5 * then by equation (44b), we have a(a — A2 +3X;1\2) = 0. So when Ay = 3\,
we have a = 0; when Ay # 3)\1, we have a = 0 or @ = A3 — 3\ Ay # 0.
When Ay = 3\{, a = 0, then b = 0, which is a contradiction;

When Ay # 3A\1, a = A3 — 3\ A2 # 0, then b = 0, which is a contradiction;

2 2
When Ay # 3A1, @« = 0, then b = (3A; — A2) = by equation (44a), we get (33):\7)2, then b = iliiz.
Sj b Ao t 6>\1 3A1 A2 — )\2 0 b A2 C 3)\2 3)\ \ " /\2 3)\2 . 3>\1 3A1-Xoy
ince b < 57, we get —5——2 < v a < + — 2, We ge < ¢ = z/m ce
So we have
2_ A2 3N — A
>\§<3)‘%7 %<07 pl?éoa pQ#_%ply a:a1:a2:o7 (b:ce 1< Qt' [E]




Q. Qu, Y. Wang / J. Math. Anal. Appl. 431 (2015) 955-987 979

3. b=0. Then ¢ = cy, by equation (44a), we have a = 3A? — 3\1)\2; by equation (44Dh), we have
a = A3 — 3\ \2; 50 A3 = 30\%, by equation (44c), we have ag = 0.
So we have

AN2=3), C#0, n#0, a=X -3\ 2 =3\ =3\ X2, a1 =ay =0, ¢ =c. [F]

2) ¢g = 0. We have

1— 2p2¢

[a M 77} Lett = &i(cleat) m (52)

A2 ¢2 Xa(p2 —p1) ¢?

1". piag #0. By equation (52), we get po = 0, so ( = pi, n = p; and % = 1. Then a =

2 a2
A2t A3 4(a2+3>‘1>‘2 3/\1), using equation (52) again, we get a — “— Az +3)‘1)‘2 = pla? = —3\“—;, SO (g =
a — A2 43X\ X2 — Aaa. By equation (44b), we get (3\; — A\2)?a = 18)\4 — 6)\1)\3 —|— 24)\2)\2 — 36A3 )\, if
- 3 2 3
3A\1 = )g, then 0 = —36A2, which is a contradiction, so 3\; # X2 and o = 183} GAl(’\?)/\t%;‘?));Q 36 ’\2 SO
[ (622 —3X1 A5 —132)2
a = A2t 1(3>\1 X2)2 s )
63 -3\ ,\ A2 3AT-\2 18AT—2A54+6A1 A5 —18A3 ) 3AZ_A2)(BAZ—3A1 Ao+ A2 .
If =572 > 0, then @ = 571=52, a2 = 1 (:231\_17;\2?2 e BN 2()53()\11&)21 212) | since
3N =3\ 2 + A3 = 3(/\1 - l)\g) i)\% # 0, and ag # 0, we have 3\} # A3, so a # 0.
622 —3X1 Ag— A2 3A1A2—A2 18AT—AE4+6A1 A3 —152202 4 4 3
If W < 0 then a = ﬁ, Qo = 1 (23>\1_1>\22)2 1-2 7é O7 SO 18A1 - )\2 + 6)\1)\2 -

1503202 #£ 0.
Hence, we have

Ao # 3A1, A2 #3A2, W>o pL#0, pp=0, ag =0,

2 2
18)\4—6/\1)\3+24>\2/\2—36)\3)\2 1812034621 A3 1823, LS e S
= = — (BX1—23)
(BA1—12)2 Q2 (331—22)2 , ¢ =ceCu—xIn’, G

or

Ao 7 3A1, 18M — A 1 6 A3 — 15A2A2 £ 0, BN g ) g, =,

3 As
2
1824 —()’A1x°’+24,\2,\2—36)6‘,\2 I8 A4 46X A3 15222 RLSES RS i
— frng frng frng (BX1—2X2)
aq 07 « (BA1—X2)2 a2 (BA1—X2)2 ) ¢ el AP . [H]

In particular, when A\; = A\p < 0, we have p; # 0, po =0, a = a3 =0, ag = 20}, ¢ = c.

2
2. prag = 0. 1°. p; = 0. Then ¢ = 2py, n = 2p3, C% = 1. By equation (52), we get a = %ﬁ"\“\z On

Aot/ AE—2(a+3ri Aa—3A7
the other hand, a = 23 (a; 122-377) 55 we get

2 4 (6Mha — 222)ar 4+ 3M202 — 6X3 0, + 301 = 0. (53)

When A\; = \g, we get a? +4X2a = 0, then a = 0 or a = —4X\2. If a = 0, we have a = A\; = Ay > 0, by
equation (44c), we get ag = 0, ¢ = zb% = coe%t. If = —4)?, then A\; = Ay < 0, @ = —\1, and by equation
(44c¢), we get A\ = 0, which is a contradiction.

When A\ # Aa, A = 8A\3(3)\2 — \3),

if A2 > 3\?, we have no solution;

if A2 = 3)\?, we have

a=0, a1 =0ay=0, a=\5 -3\ )\, d=c; [I]
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if A3 < 3)\2, we have v = A3 =3\ A2+ /223 (302 — \2) or @ = A3 =3\ 1 A2 —1/2A2(3)\2 — \2). By equation
(44c), we have s = 0 and

—2a% + (3\1 + A2)a = a — A3 + 3\ o (54)

Then we have A\; = A > 0 or \; = Ay < 0, but when A} = Ay < 0, it is not satisfies equation (44c), so we
get

A
M=X>0,p =0 p2#0, a=a;=ay=0, ¢=cer". [J]

2°. ag = 0. The case p; = 0 we have already discussed, so we assume that p; # 0. By equation (52), we

have a = %j)‘mgg, ¢ = ce” 5 , then by equation (44b), we have a(a — A3 + 3\ \2) = 0. So when
Ao = 31, we have o = 0; when \y # 3)\1, we have o = 0 or & = A2 — 3\ Ay # 0.

When A\ = 3\1, @ =0, then a = 0, n = 0, which is a contradiction.

When Ay # 3A1, a = A2 — 3\ A\ # 0, then a = 0 and (\2 — 3)\2)n =

If A2 # 3\2, then 1 = 0, which is a contradiction;

If A2 = 3)\2, which satisfies Ay # 3)\1, then ¢¢ = ¢, which satisfies equations (44a)—(44c).

So we have

A3 =3A%, p1 #0, po# —1p1, a =73 =3\, a1 =2 =0, ¢ =c. [K]

When Ag # 3\1, a =0, thena = (3)\1—)\2)<2 , by equation (44a), we get C% = (33;‘17)\)2 > 0and A3 < 3\%,
2 2 2 2
then a = gil 22 Since a > 22, we get % > 0. Considering that % = ’7 %, we

have (3\} — 3/\1/\2 + \2)p? — (6/\% —2X\3)p1p2 = (3AF — 61 X2 + 3A3)p3, no matter \; = /\2 or A\ # X\, we
can get ps # 0.
So we get

2,2
AT A5 C E2SE T

2 2 6AZ—3\1\2—A2 n _ 3\2-A2 _ o Tuoae —
)\2#3)\1, )\2<3)\1 W>O —27m,a70¢1—a270 ¢ ce T 2"7 = ce

L]

3) C1 7&0,02750,1)#0.

1. py # 0. Then e, e’ and (cie™ + coe?®)'™ 225 are linearly independent, by equation (46), we have

_ af)\gj\;S)\l)\g C%:ICI — O |:b _ a— )\2;:23)\1)\2 C772 cy = O
Considering that ¢; # 0, ¢c; # 0, we have a = b = %j/\lb%, which is a contradiction.
2'. po = 0. Then by equation (46), we have

a =\ +3MA 7 praz M a =N +3MA g praz 0

- 2 =0 b- 2 =0
A2 ¢ Aalpz —p1) ¢ A2 ¢ Aa(pz —p1) ¢
Then a = b, which is a contradiction.
4) ¢1 #0,¢0 #0,b=0. Then a = \y # 0 and
«a o ¢ — A3+ 3A)
acre® = 4>\ (p1 2 )g(cwat + 02)1 223, + —2)\2 122 %(016‘” + c2). (55)

1.1- 2p2% £ 0.

¢
If py # 0, then e and (i + ¢3)*?P27 are linearly independent, by equation (55), we have a = 0, this
is a contradiction to a = Ay # 0.
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If po = 0, using the same method we can get a = 0, this is a contradiction to a = Ay # 0.
21— 2 =
Then ps # 0, n = 2p2¢ and equation (55) becomes

A2 4300 — A2 430\
S RS LTS
A2 ¢ X2(p2 —p1) € A2 ¢
Then
— A2 43X\
Np = 2N TN T (57)

A2 <

Since b = 0 which means Ay = \/)\% —4(a+ 33X A — 3)\%)4%, we get a = 3)\% — 3A1 A2, then using equation

2 4)\2

AZ_x2 c1 . A2
3172(% and A2 # 3)\?, considering that n = 2p2(, we get p; = 61/\7%2])2.

(57), we have Ay = ==

If 302 = 2)2, then p; = 0, by 1 = 2po( we have py = 0, which is a contradiction.

If 3A2 # 2)\2, then p; # 0, and by n = 2pa¢ we have 18\ — 30A2)\3 + 11\ = 0, then \? = %)\g,
which satisfies A3 # 3A7 and 3\ # 2)3. Then ap = P22C=80da) ) (14 /B)py 20, ¢ = (3£ V3)pa,
n=(6+2V3)p2 ¢ = cemit,

So we get

)\% 5&:\/_)\27 pL = (1:|:\[)p2750 a—3)\1—3)\1)\2, a1 =0, as _M qf)zcez’%t' [M]

P1

4.8.8.2.2 a= %22 +3X2 =3\ A, ¥ = cre 4 cote 1. By equation (45), we have

/\2 )\2 ) Azt p1a2 n 1-92p, 8, 22431-9p, &
= — Loy — t} p) _se t P2 3 P25 58
[ 5 C1 +c2 —apc1 + ( 5 (2~ a0z Jt|e T Nl —p) 2 (c1+ cat) (e2) (58)

)\ 2 AZ
where ag = 3 43 32 2 C%

¢y
1) ¢a # 0. Then by equation (58), we have ps = 0, by equation (44c), we get 0‘2+/\2((§T) =a—A3+3\ )\,
a—A3+3X1Ap— a2y 2 a—A3 4321 20— o2y

f Azy ) T
then ¢¢ = cge X2 :on the other hand, ¢¢ =7 = (cle 2 'tcote? ) , then cge X2 =

42
Az, A\ T .
c1e2 '+ cote , this is a contradiction to cs # 0.

2) ¢g = 0. Then equation (58) becomes

Ao ) 2oy p1og N 1-2paf  day1 95,8
—c —apcp et = ———¢ 7(e2 27, 59
(Fre1 — aver v B G (59)

1. ao = )‘2 . By equation (59), we get pyas = 0. Considering that ag = )‘2 43 )\2 A CZ’ we have \3 # 3)\?
and 225 = 3)\2 — A3, then a = 6)\? — 3)\1)\2 - )\2

If p1 = 0, then { = 2py, n = 2p3, % By T n =3) — A2, we have A3 = 2)\? and o = 2)\3 — 3\ \a.
By equation (44b), we get ¢¢ = cope t hen by equation (44c), we get Ao = %)\1, this is a contradiction to
A3 =2)%.

Ao szqg)

If pp #0, as = 0, then ¢ = c1e= !, ¢¢ = cpe” 2 , then by equation (44Db), we have a = 6\ —
3A1A2 — A3 = 0, which satisfies equation (44c). ¢ = coe%%t

So we get

A2 ¢

p17é0, 0426)\2 3/\1/\2—/\2—0 041—042—0 d)—CoeTTit [N]
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2
2. ag # % By equation (59), we have ps = 0, then ¢ = py, n = p3, % =1,s0 a= % + 302 — 3\ ),
¢ = cre?t, By equation (44b), we have 6A7 — 3A\1 A2 — A3 = 0, by equation (44c), we have ap = 3A7 — 2A3.
So we get

6X2 = BMAs— A2 =0, p1 £0, pp =0, =22 4 3)2 — 3\ Ay, 0z = 3A2 — 2)2, 6 = ce3tl. [O]

\/4(a+3>\1>\2*3>\%) &)

4.8.8.2.8 a> %4—3)\%—3/\1/\2. Then ¢) = cie 5 cos(at‘)—H:ge%Q’5 sin(at) and a =

2
By equation (45), we have
A A
(7201 + GCQ) cos(at) + ( —acy + 72(:2) sin(at)
P10 n . 1-2p2 S o po St
= ——"———(cy cos(at) + cosin(at ne” 2Py
Az(l&*pl)@( 1cos(at) + cpsin(at))
— A2+ 300
+ az Ao (c1 cos(at) + g sin(at)). (60)
A2 ¢?
1) p2 # 0. Then by equation (60), we get pjas = 0 and
A — A2 4+ 30
?2(:1 +acy = G- AT 2)\2 L %61; (61a)
A2 a—A3+3\)\ 7
—acy + 5= )\—2?02. (61b)
By (61a) x ca — (61b) x ¢1, we get ¢ + ¢3 = 0, this is a contradiction.
2) p2 = 0. Then by equation (60), we have
2 prQg n a—2A2+ 3\ 7
—“ctan=—"""——¢+——— "¢y 62a
2! 27 Xalp—pr) 2 A2 ¢z (622)
Ao D102 Ul a—A3+3MA 7
—ac1+ =g =—"—"""———"Sco+ ——=— 0. 62b
TR T N ) (2 A2 ¢z (62b)

By (62a) x c3 — (62b) X ¢1, we get ¢ + c¢3 = 0, this is a contradiction.
2,2
So we have no solution in the case of a > % + 3/\% — 31 s
According to the above discussions, we get the following theorem:

Theorem 4.19. Let M = I Xgp1 Fy Xgvo Fo -+ Xgpm Fy, be a generalized Kasner space-time, dimFy = 1,
dimFy = 2 and P = %. Then (M, V) is Einstein with the Einstein constant o if and only if one of the
following conditions is satisfied:

(1) )\% = 3/\%, P1 =p2 = O, o = 3/\% — 3)\1)\2 = /\% - 3/\1/\2, ] = Qg = O,’
(2) /\313)\%,p%+p%7é0, 052:3)\%*32\1/\2:>\§*3>\1>\2, a; =ag =0, (,254: c, , L ,
(3) )\% 7é 3)‘%7 A2 7& 3)\17 deille s 7é 0, Y41 7& 0, p2 = 0, a = 183 02 o4 240, 7o 3021 ay =0,

312 (BA1—X2)2 ’
2 2
18A 222462, A3 —18A3), B S
0z = IAEEIRR, § = e
2 2 622 —3A1 Aa—A2 1 n _ 3\1-)2 N N N
(4) )‘2 < 3/\17 )‘2 7& 3)\1> 13/\1,/\2 2 7é 07 b1 # 07 b2 7é _5271; ¢z (3)\11,)\22)27 a = qp = g = 07
BA1 g,
¢ =ce ;
6A2—3A1 A0 —A2 4 4 3 242
(5) )\2 75 3)\1, W < O7 18)\1 - )\2 —|—6)\1)\2 - 15>\1>\2 7& O, P1 7& O7 P2 = 0, a1 = 0, o =
E P . _ 2
1822621 A3 4124022236732, I O Y Ea ISP i LYY PV I e
(3>\1—>\2)2 , Qg = (3)\1_)\2)2 5 d) = Cce 1 2)P1 )
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(6) )\1_)\2,191—0 p2#0, a=a; =ay =0, ¢—00€"2 ; .
(7) A —‘r’i\f/\2 =(1+V3)ps #0, a =3\ =3\ Ay, a1 =0, ap = —(pz_pl)(;_?’)‘l)‘z), ¢ =cemil;
(8) 6)\173>\1>\27>\2_0 PL#0, a=6)2 —3\A— A2 =0, a1 =as =0, p=cetit;

2
(9) 63 = BN Aa— A3 =0, p1 £0,p2 =0, & =1, 0 = 2 + 30 B\ Ag, a2 = 302 — A3, 6 = ce ¥ 51,

Remark 13. By [A] we get Theorem 4.19(1), by [B], [F|, [I], [K] we get Theorem 4.19(2), by [C], [G]
we get Theorem 4.19(3), by [E], [L] we get Theorem 4.19(4), by [H] we get Theorem 4.19(5), by [D], [J]
we get Theorem 4.19(6), by [M] we get Theorem 4.19(7), by [N] we get Theorem 4.19(8), by [0] we get
Theorem 4.19(9).

4.3.4. Type (II) generalized Kasner space—times with a quarter-symmetric connection with constant scalar
curvature
By Proposition 4.17, then (Fy, V?) has constant scalar curvature S*2 and

SF2 d)//

X~ = 20)
(@) ¢=0.(1)n=0. Then p; = pp =0 and S = S + 3(A\? + A3 — 4\ o).
(2) n#0. Then S = S i 77((3)2) +3(A2 + A3 — 41 \2), which means

(¢')?
¢?

¢

/
S = p +3A\2 A2 — 4 )). (63)

+3(A1 + A2)(—

N2 SF2
”(iz) o —[S =3\ + A3 —4) )] (64)
(b) ¢ # 0. Putting ¢ = 1/1%, we get
2 2 4po
777%5@‘2 W'+ 60717 I 2§)C W 4 (BX2 4 3X2 — 120 hg — )b + Szl uiEE — 0, (65)

4.8.5. Classification of Einstein type (III) generalized Kasner space—times with a quarter-symmetric
connection
Considering dimF; = dimFy = dimF3 = 1, by Remark 4, we get «; = 0 and by Proposition 4.16, we

have
(el =LY - -0 308 - = (66a)

- [%’ 1) (¢;'2)2 O 3@%] + M% — = A+ 30N (66b)

o [%’ (¢ )(‘gz) + (o — 3A1)%] + AQC% =0 — A2+ 30 M (66¢)

. {%’ - )(‘Z) + (- 3A1)%} n Azg% —a— A2+ 3\ . (66d)

(a) ¢ = n = 0. By equation (66a), we have o = 3)\} — 3\1 )2, and by equation (66b), we have o =
A3 — 3A1 A2, then we get A3 = 3\3.
So we obtain

A3 =3X\, a=3)\ -3\ A=A -3\ ), ; =0, (=n=0.
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() ¢ = 0, n # 0. By (66b) + (66c) + (66d), we get o = A3 — 3\1Ag; by equation (66a), we have
(¢)° _ 3AI-A3
¢ o
1) 3)\% — A2 < 0, we have no solution.

2) 3A2 — A3 =0, then ¢ = ¢, which satisfies equation (66a).

322-23

3) 3A2 — A2 > 0, then ¢ = cpe ", since n # 0, so at least one p; # 0, we assume p; # 0, by
equation (66b), we get Ao = 3\1, but by 302 — A3 > 0, we get \? < 0, which is a contradiction.

So we have

A =3X\, a=3\ -3\ =72 —3\ ), ;=0,(=0,n#0, p=c

in case (b).
(¢) ¢ #0, then n # 0. If131 = p2 = ps, we get type (I), if p1 = pa or ps = p3 or p1 = ps3, we get type (II),
S0 p1 # P2 # p3. Let ¢ = 7, then equations (66a)—(66d) become

%W =a+ 3\ —3)\3 (67a)
% _ (f;)" 4+ (3M\1 — A2) (‘s;)/' + Ao ((‘;i)/ =a— M43\ (67b)
% - (Zi)” 3 A2)<ii)/ W (i?' —a— A +3MA (67c)
z% ~ (cf:;)” A=) (‘Z’?/: o (q;?' = a— A+ 3\ (67d)

By (67b) x pa — (67¢) X p; and considering that p; # pa2, we get

Ao (Q;?/ =a— A+ 3\ )\ (68a)
((Z?/ - )% — X+ 3N (68b)

By equations (67b) and (68a), we get 7((1:;2” + (8A1 — A2) ((Z:i)/ = 0, then by equation (68b), we have
(i;)” = (SA_); —Da+ 9\ — 6\ )\ + )3 (69)

On the other hand, using equation (68b), we get
¢< _ COG(%—A2+3>\1)t (70)

By equations (69) and (70), we obtain a2 + (3A1 A2 — A3)a = 0, so when Ay = 3\, we have o = 0; when
A2 # 3A1, we have a = 0 or & = A3 — 3\ \p # 0.

1) A2 = 3\;. Then a = 0, by equation (70), we get that ¢¢ is a constant, then 1 is a constant, so by
equation (67a), we have A\? = 0, which is a contradiction to A; # 0.

2) Ay # 31 1. o = A3 — 3\ )2 # 0. By equation (70), we get that ¢¢ is a constant, then 1 is a constant,
and ¢ = c is a constant. By equation (67a), we have o = 3A? — 3\ Ay and A3 = 3)\2.

So we get

A3 =3X\, a=3)\ -3\ =)A3 -3\, a; =0, C#0, n#£0, ¢ =c.
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2'. a = 0. By equation (67a), we have

Ui
P — Xotp’ + (BA1 A2 — 3A§)?¢ =0. (71)
By equation (70), we get ¢¢ = cpe(3*1722)t then ¢ = c.eMlcith7 P = cle(g‘)‘l*)‘”?Z‘t7 by equation (71), we
n _ B3M-A3
8 = B
So we have

3M\=Az,

3T -)3 L2 Bt 2
Ao #3M, a=0, o; =0, %:m, p=ce <

According to the above discussions, we get the following theorem:

Theorem 4.20. Let M = I X gr1 F1 Xgp2 Fo -+ Xgom Fp, be a generalized Kasner space-time for p; # p; for
i,j € {1,2,3} and dimF; = dimF, = dimF3 = 1, and P = %. Then (M,V) is Einstein with the Einstein
constant a if and only if one of the following conditions is satisfied:

(1) )\% = 3/\%, o = 3/\% - 3)\1)\2 = )\% — 3/\1/\2, a; = 0, C =n= O,‘
(2) )\% = 3/\%, o = 3/\% — 3)\1)\2 = )\% — 3/\1/\2, a; = 0, n 7é O, (b = Cy

A2_22 321 —Ao
(3) /\27&3>‘1705:07ai:054l2:(§)’)\11T;)27¢:06 t'

4.3.6. Type (III) generalized Kasner space—times with a quarter-symmetric connection with constant scalar
curvature
By Proposition 4.17, we get

(¢)?
¢2
(@) ¢ =n=0.Then p; = ps = p3 =0, and S = 3(A\? + A3 — 4\ o).

b) ( =0, n #0. Then [(In¢)']? = 3(’\%’\274’\1)‘2)7? so we have:
( z

+3(\ +A2)c% +3(A\F 4+ A2 — 4\ ). (72)

S=-2——-(n+¢-2)

1) S > 3(\2 + A2 — 4\ )\2), we have no solution.
2) S =3\ + )2 —4)\)\y), then ¢ = c.
3) S<

) - B 1 /3(A%+A§—n4>\1>\2)—§t
) 3(AT + A5 — 4X1\y), then ¢ = cpe .
(¢) ¢ #0, then 7 # 0. Putting ¢ = wﬁf, we have

S
n+ ¢?

6()\1 + )\2>C2
n+ ¢

W+ W+ (3AF 4303 — 12002 — S)¢p = 0. (73)
So we get

1) § < 25002 4302 4 303 — 1201,

2 (8—3AZ-3AZ241271 2 +¢2
%O\1+>\2)+\/9(>\lz>\2) - S mI G2 ) (G )t
P =ce 2
2 (§—3A2-3AZ2412X1 2 +c¢2
%<*1+*2>*¢m1?2) ( foigl 122)(n+¢2)

+ coe 2

t.
I
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2) § =2 £ 302 430 — 120 = cae” T gte” T
3) §> 2tk 1302 4 303 — 1200,

\/(5‘73>\%73)\§+12)\1)\2)(n+(2)  9(AitA2)?
¢ 4

P = cpeiPatra)t o 5 t

\/(5—3A%—3A%+12A1A2)<n+<2> ~9(A+)p)2
& 1

S(A1+Ae)t

+ coe sin 5 t

According to the above discussions, we get the following theorem:

Theorem 4.21. Let M = I Xgr1 F1 Xgr2 Fo -+ Xgom Fy, be a generalized Kasner space-time and dimF; =
dimFy = dimF5 =1, and P = %. Then (M, V) has constant scalar curvature S if and only if one of the
following conditions is satisfied:

(1) ¢=n=0,5=3A 4] -4\ \2).
(2) ¢=0,n#0, when S > 3(A\2 + A2 — 4\ )\2), we have no solution; when S = 3(A? + A3 — 4\ o), then

3(A3+23-4212p)-5

+

¢ = c; when S < 3(A\} + A3 — 4\ )\2), then ¢ = coe g g
(3) ¢(#0
5 9¢% (A1+A2)? 2 2
(a) S < W + 3)\1 + 3)\2 — 12/\1/\2,
%(A1+%2)+\/9()‘1:A2)Q 7 (§—3/\%—3>\%42122/\1)\2)(T,+<2)
¢ = [cle 2 t
%(MMQ)_\/g(hyz)z _<5—3A%—axgt§wn2><n+c2> t nii
+ coe 3 :| 2 :
. _2¢
(b) 5 =203l 1302 4 303 — 12010, 6 = [cle““;“z“ czteis“i“”f] e
j— 2 2
(0) §> % Putiell £ 302 4303 — 1201 ),
\/(5—3)&—3)\%—&-;2/\1/\2)(71—&-(2)  9(A1tA2)?
3
o= [C1ez(>‘1+’\2)tcos < 2 ! t
\/(5*73,\%3,\3“2,\1,\2)(n+c2) 9(A1t+A9)? _ac_
+ cged MrtA2)t giy ¢ g
2

Remark 14. When A\ = Ay = 1, we get Propositions 32, 33 and Theorems 35, 37, 36 in [14] by Proposi-
tions 4.16, 4.17 and Theorems 4.19-4.21, respectively.
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