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In this paper, we study entire functions of order zero with positive Taylor coefficients 
and investigate sufficient or necessary conditions for such functions to have only real 
zeros. We answer the following question: for which values of a > 1 and m ≥ 1 an 
entire function ϕa,m(z) =

∑∞
k=0

zk

ak2 (k!)m and its Taylor sections belong to the 
Laguerre–Pólya class?
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1. Introduction

There are many interesting papers concerning the zero distribution of entire functions, its sections and 
tails, see, for example, the remarkable survey of the topic in [13]. In this paper, we consider entire functions 
with positive Taylor coefficients and investigate the question whether or not they (and their Taylor sections) 
belong to the famous Laguerre–Pólya class.

Definition 1. A real entire function f is said to be in the Laguerre–Pólya class, written f ∈ L −P, if it can 
be expressed in the form

f(x) = cxne−αx2+βx
∞∏
k=1

(
1 − x

xk

)
e

x
xk , (1)

where c, β, xk ∈ R, xk �= 0, α ≥ 0, n is a non-negative integer and 
∑∞

k=1
1
x2
k
< ∞. As usual the product on 

the right-hand side can be finite or empty (in the latter case the product equals 1).
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This class is essential in the theory of entire functions due to the fact that these and only these functions 
are the uniform limits, on compact subsets of C, of polynomials with only real zeros. The following prominent 
theorem states even stronger fact.

Theorem A (E. Laguerre and G. Pólya). (See, for example, [4, pp. 42–46].)

(i) Let (Pn)∞n=1 be a sequence of complex polynomials having only real zeros which converges uniformly in 
the circle |z| ≤ A, A > 0. Then this sequence converges uniformly on compact sets in C to an entire 
function f , and f is from L − P class.

(ii) And conversely, for any f ∈ L −P there is a sequence of complex polynomials with only real zeros which 
converges uniformly on compact sets of C to f .

Note that although every entire function from the Laguerre–Pólya class is the uniform limit of the 
polynomials with only real zeros, Taylor sections of this function may have non-real zeros. For example, 
f(z) = ez ∈ L − P and the sequence of polynomials Pn(z) =

(
1 + z

n

)n having only real zeros converges 
uniformly, on compact subsets of C, to f(z). But for every n ∈ N the n-th Taylor section of f has not more 
than one real zero counting multiplicity (see, for example, [18, Chapter 5, Problem 74]).

For various properties and characterizations of the Laguerre–Pólya class see [16, p. 100], [17] or [12, 
Kapitel II].

Let f(z) =
∑∞

j=0 ajz
j be an entire function with positive coefficients. We use two notations:

pn = pn(f) := an−1

an
, n ≥ 1; qn = qn(f) := pn

pn−1
=

a2
n−1

an−2an
, n ≥ 2. (2)

Note that

an = a0

p1p2 . . . pn
, n ≥ 1; an = a1

qn−1
2 qn−2

3 . . . q2
n−1qn

(
a1

a0

)n−1

, n ≥ 2. (3)

In this paper, we study entire functions with positive Taylor coefficients such that qn(f) are increasing in 
n and q2(f) > 1. By (3) every entire function having these properties is of order zero. Let f(z) =

∑∞
j=0 ajz

j

be an entire function with positive coefficients and order less than 2. It is well known and often used that 
such function has only real zeros if and only if the sequence (k!ak)∞k=0 is the multiplier sequence.

Definition 2. A sequence (γk)∞k=0 of real numbers is called a multiplier sequence if, whenever the real 
polynomial P (x) =

∑n
k=0 akz

k has only real zeros, the polynomial 
∑n

k=0 γkakz
k has only real zeros. The 

class of multiplier sequences is denoted MS.

The following famous theorem by G. Pólya and I. Schur provided both algebraic and transcendental 
characterizations of multiplier sequences.

Theorem B. (See [17,16] or [11, Chapter VIII, Sec. 3].) Let (γk)∞k=0 be a given real sequence. The following 
three statements are equivalent.

1. (γk)∞k=0 is a multiplier sequence.
2. For every n ∈ N the polynomial Pn(z) =

∑n
k=0

(
n
k

)
γkz

k has only real zeros of the same sign.
3. The power series Φ(z) :=

∑∞
k=0

γk

k! z
k converges absolutely in the whole complex plane and the entire 

function Φ(z) or the entire function Φ(−z) admits the representation
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Ceσzzm
∞∏
k=1

(1 + z

xk
), (4)

where C ∈ R, σ ≥ 0, m ∈ N ∪ {0}, 0 < xk ≤ ∞, 
∑∞

k=1
1
xk

< ∞.

The simple consequence of Theorem B is the fact that the sequence (γ0, γ1, . . . , γl, 0, 0, . . .) is a multiplier 
sequence if and only if the polynomial P (z) =

∑l
k=0

γk

k! z
k has only real zeros of the same sign.

We need also the notion of a complex zero decreasing sequence. For a real polynomial P we will denote 
by Zc(P ) the number of non-real zeros of P counting multiplicities.

Definition 3. A sequence (γk)∞k=0 of real numbers is said to be a complex zero decreasing sequence if

Zc(
n∑

k=0

γkakz
k) ≤ Zc(

n∑
k=0

akz
k), (5)

for any real polynomial 
∑n

k=0 akz
k. The class of complex zero decreasing sequences we will denote by CZDS.

Obviously, CZDS ⊂ MS. The existence of nontrivial CZDS sequences is a consequence of the following 
remarkable theorem proved by Laguerre and extended by Pólya.

Theorem C. (See [15] or [16, pp. 314–321].) Suppose f is an entire function from the Laguerre–Pólya class 
having only negative zeros. Then the sequence (f(k))∞k=0 is a complex zero decreasing sequence.

As it follows from the above theorem,

(
a−k2

)∞

k=0
∈ CZDS, a ≥ 1,

(
1
k!

)∞

k=0
∈ CZDS. (6)

Note that the problem of finding whether or not a given polynomial has only real zeros is rather dif-
ficult and subtle. In 1926, Hutchinson [5, p. 327] extended the work of Petrovitch [14] and Hardy ([2] or 
[3, pp. 95–100]) and found the following sufficient condition for a polynomial (entire function) with positive 
coefficients to have only real zeros.

Theorem D. (See [5, p. 327].) Let f(z) =
∑∞

k=0 akz
k be an entire function with positive coefficients. In-

equalities qn(f) ≥ 4, ∀n ≥ 2, are valid if and only if the following two properties hold:

(i) The zeros of f are all real, simple and negative and
(ii) the zeros of any polynomial 

∑n
k=m akz

k, m < n, formed by taking any number of consecutive terms 
of f , are all real and non-positive.

For some extensions of Hutchinson’s results see, for example, [1, §4]. In Theorem 1.1(2) we will present 
a slight improvement of Hutchinson’s theorem.

In [6] the following entire function ga(z) =
∑∞

j=0
zj

aj2 , a > 1, so called “partial theta-function”, was 
investigated. This paper gives the exhaustive answer to the question: for which a > 1 the entire function ga
belongs to the Laguerre–Pólya class?

Theorem E. (See [6].) There exists a constant q∞ (q∞ ≈ 3.23363666) such that:

(1) S2k+1(z, ga) :=
∑2k+1 zj

j2 ∈ L − P for every k ∈ N ⇔ a2 ≥ q∞;
j=0 a
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(2) ∃N0 ∈ N ∀k ≥ N0 S2k(z, ga) :=
∑2k

j=0
zj

aj2 ∈ L − P ⇔ a2 > q∞;
(3) ga(z) ∈ L − P ⇔ a2 ≥ q∞.

A wonderful paper [10] among the other results explains the role which the constant q∞ plays in the 
study of the set of entire functions with positive coefficients having all Taylor sections with only real zeros. 
About interesting properties of zeros of the partial theta-function see [8] and [9].

Let f(z) =
∑∞

k=0 akz
k = 1 + z +

+∞∑
k=2

zk

qk−1
2 qk−2

3 ···q2
k−1qk

be a given entire function with positive Taylor 

coefficients and of order less than 1. We will denote by Sn(z) the n-th Taylor section of f : Sn(z) = 1 + z +
n∑

k=2

zk

qk−1
2 qk−2

3 ···q2
k−1qk

. We will investigate necessary or sufficient conditions for the function f to belong to 

the Laguerre–Pólya class.
We note a simple necessary condition. Let f(z) =

∑∞
k=0 akz

k ∈ L −P be a function of order less than 1, 
f(0) �= 0, and (xk)∞k=1 ⊂ R be a sequence of all its zeros. We have

∞∑
k=1

1
x2
k

= a2
1 − 2a0a2 > 0.

Thus for such functions

f ∈ L − P ⇒ q2(f) > 2. (7)

Our first result is the following theorem.

Theorem 1.1. Let f(z) =
∑∞

k=0 akz
k = 1 +z+

+∞∑
k=2

zk

qk−1
2 qk−2

3 ···q2
k−1qk

be an entire function with positive Taylor 

coefficients.

(1) If q2 ≥ 3, q3 >
q3
2

q2
2−1 and qj ≥ q2 for j ≥ 4, then the function f and its sections Sn for all n ≥ 2 have

exactly two roots in the disk {z : |z| ≤ q2}.
(2) If q2 > 1 and qj+1 ≥ 4 for all j = 2, 3, . . . , n − 1, then Sn has at least (n − 2) real roots on [q2; +∞). 

Furthermore, there exists a point y ∈ [q2; q3] such that Sn(−y) > 0.
(3) If f ∈ L − P, q2 ≥ 3, q3 >

q3
2

q2
2−1 and qj ≥ 4 for all j = 3, 4, . . . , then for every n ∈ N we have 

S2n+1 ∈ L − P.
(4) If 2 ≤ q2 < 3 and qk ≥ 4q2

3 for all k ≥ 3, then f /∈ L − P.

Later on, we will investigate a family of entire functions

f (m,a)(z) =
+∞∑
k=0

zk(k!)m

ak2 , a > 1, m ≥ 1,

and their Taylor sections

S(m,a)
n (z) =

n∑
k=0

zk(k!)m

ak2 .

By (6) we obtain 
(
a−k2

)∞

k=0
∈ CZDS ⊂ MS for every a ≥ 1. Thus we conclude that if for some a0 > 1

we have f (m,a0) ∈ L − P then for all a ≥ a0 we have f (m,a) ∈ L − P. Analogously if for some a0 > 1 we 
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have S(m,a0)
n ∈ L − P then for all a ≥ a0 we have S(m,a)

n ∈ L − P. Thus we obtain that for every n ∈ N, 
n ≥ 2, there exists a constant d(n,m) ≥ 1 such that

S(m,a)
n ∈ L − P ⇔ a2 ≥ d(n,m). (8)

Analogously we obtain that there exists a constant d(∞,m) > 1 such that

f (m,a) ∈ L − P ⇔ a2 ≥ d(∞,m). (9)

The main result of this paper is the following theorem.

Theorem 1.2. In the notations introduced above we have:

(1) For every fixed m ≥ 1 the function f (m,a) belongs to the class L − P if and only if there exists x0 =
x0(m) ∈ [−q2(f (m,a)); −1] such that f (m,a)(x0) ≤ 0. For every fixed m ≥ 1 and n ∈ N, n ≥ 2, the 
polynomial S(m,a)

n has only real zeros if and only if there exists x0 = x0(m, n) ∈ [−q2(f (m,a)); −1] such 
that S(m,a)

n (x0) ≤ 0.
(2) 3 · 2m < d(3,m) < d(5,m) < d(7,m) < . . . < d(∞,m).
(3) lim

n→∞
d(2n+1,m) = d(∞,m).

(4) 4 · 2m = d(2,m) > d(4,m) > d(6,m) > . . . > d(∞,m).
(5) lim

n→∞
d(2n,m) = d(∞,m).

(6) For every n ∈ N, n ≥ 2, the function d(n,m) is the continuous increasing function as a function of m. 
The function d(∞,m) is also the continuous increasing function of m.

2. Proof of Theorem 1.1

By a small abuse of notation we will investigate the following function f(z) =
∞∑
k=0

(−1)kakzk = 1 −

z +
+∞∑
k=2

(−1)k zk

qk−1
2 qk−2

3 ···q2
k−1qk

. The following lemma will provide some information about the behavior of 

minimal values of the second section of f .

Lemma 2.1. min
ϕ∈[0;2π]

|S2(q2eiϕ)| =

⎧⎨⎩1, if q2 ≥ 3,√
1 − (3−q2)2

4 q2, if 2 ≤ q2 ≤ 3.

Proof. For S2(z) = 1 − z + z2

q2
we get by direct calculation

|S2(q2eiϕ)|2 = 1 + 4q2
2 sin2 ϕ

2 − 4q2 sin ϕ

2 sin 3ϕ
2 . (10)

Substituting v = sin2 φ
2 ∈ [0; 1] we have sin φ

2 sin 3φ
2 = v(3 − 4v) and so we get

|S2(q2eiϕ)|2 = 16q2v2 + 4q2v(q2 − 3) + 1 =: h(v).

Note that h(v) represents a quadratic parabola opening upward with the vertex v0 = 3−q2
8 . If 2 ≤ q2 ≤ 3

then min
v∈[0;1]

h(v) = h(v0) = 1 − (3−q2)2q2
4 . If q2 > 3 then v0 < 0 and min

v∈[0;1]
h(v) = h(0) = 1. �

The next lemma gives the estimate of the 3-rd remainder of our series.
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Lemma 2.2. Let q2 > 1 and qj ≥ q2 for j ≥ 3. Then

|R3(q2eiϕ)| ≤ q3
2

q3(q2
2 − 1) .

Proof.

|R3(q2eiϕ)| ≤
+∞∑
k=3

qk2
qk−1
2 qk−2

3 · · · q2
k−1qk

= q2
q3

(
1 + 1

q3q4
+ 1

q2
3q

2
4q5

+ · · ·
)

≤ q2
q3

(
1 + 1

q2
2

+ 1
q5
2

+ 1
q9
2
· · ·

)
≤ q2

q3

(
1 + 1

q2
2

+ 1
q4
2

+ 1
q6
2
· · ·

)
= q3

2
q3(q2

2 − 1) . �
Now we will prove Theorem 1.1(1).

Lemma 2.3. If q2 ≥ 3, q3 >
q3
2

q2
2−1 and qj ≥ q2 for j ≥ 4, then the function f and its sections Sn for all n ≥ 2

have exactly two roots in the disk {z : |z| < q2}.

Proof. For q2 ≥ 3 using Lemma 2.1 we get min
ϕ∈[0;2π]

|S2(q2eiϕ)| = 1. Then from Lemma 2.2 we have 

|R3(q2eiφ)| ≤ q3
2

q3(q2
2−1) < 1. Next, consider the roots of S2(z) = 1 − z + z2

q2
. If D = 1 − 4

q2
≥ 0 ⇔ q2 ≥ 4, 

then both roots of S2 are real and positive, and for the biggest root we have 
q2

(
1+

√
1− 4

q2

)
2 < q2. If D < 0, 

then S2 has two non-real roots z0 and z̄0 such that z0z̄0 = q2. It means that |z0| =
√
q2 < q2 and S2(z) has 

two roots in |z| < q2. Now, applying Rouché’s theorem to S2(z) and R3(z) (or to S2(z) and Sn(z) − S2(z), 
where the same proof as in Lemma 2.2 shows that |Sn(z) − S2(z)| ≤ q3

2
q3(q2

2−1) ), we obtain the statement 
required. �

Now, we will describe the behavior of f(x), S2n+1(x) and S2n(x) on [0; q2].

Lemma 2.4. Suppose that qj > 1 for j ≥ 2.

1) If x ∈ [0; q2] then S3(x) < S5(x) < . . . < f(x).
2) If x ∈ [0; 1] then 0 < S1(x) < S3(x) < S5(x) < . . . < f(x).
3) If x ∈ [0; q2] then S2(x) > S4(x) > . . . > f(x).

Proof. We rewrite S2n+1(x) = (1 −x) +(a2x
2−a3x

3) +(a4x
4−a5x

5) + . . .+(a2nx
2n−a2n+1x

2n+1). We have 

akx
k > ak+1x

k+1 ⇔ x < ak

ak+1
⇔ x < qk2 q

k−1
3 ...q2

kqk+1

qk−1
2 qk−2

3 ...q2
k−1qk

= q2q3 . . . qk+1, k = 2, 4, 6, . . . . The last inequality 

holds because x ≤ q2 and qj > 1. This means that S2n+1(x) > S2n−1(x). The same argument is applied to 
prove that f(x) > S2k+1(x). Moreover, if x ∈ [0; 1] then one may apply the same logic starting with S1(x)
(not S3(x)).

To prove 3), we rewrite S2n(x) as (1 −x +a2x
2) +(−a3x

3 +a4x
4) + . . .+(−a2n−1x

2n−1 +a2nx
2n). Thus, 

S2n < S2n−2k follows from x < q2q3 . . . q2n−2k. The last inequality holds because x ≤ q2 and qj > 1. The 
same argument is applied to prove that f(x) < S2k(x) for all k ∈ N. �

The following lemma gives the necessary and sufficient condition for S3 to have only real zeros.

Lemma 2.5. If f ∈ L −P, q2 ≥ 3, q3 >
q3
2

q2
2−1 , then S3 has only real zeros if and only if there exists x0 ∈ [1; q2]

such that S3(x0) < 0.
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Proof. Since q2 ≥ 3, q3 >
q3
2

q2
2−1 and f ∈ L − P, we derive that f(x) has two real roots on [0; q2] (by 

Lemma 2.3). Using statement 2) of Lemma 2.4 f(x) > 0 on [0; 1]. So f(x) has two real roots on [1; q2]. 
It means that there exists x0 ∈ [1; q2] such that f(x0) ≤ 0. Now, S3(x) < f(x) on [1; q2] implies that 
S3(x0) < 0. Therefore, as S3(0) > 0, S3(x0) < 0, under our assumptions S3(q2) > 0 and S3(+∞) = −∞ it 
follows that S3 has only real zeros. �
Remark 2.6. It is well-known that S3 has only real zeros if and only if its discriminant is non-negative. 
In our notations we can state that S3 has only real zeros if and only if δ(q2, q3) ≥ 0, where δ(u, v) =
−4uv2 + u2v2 − 4u2v + 18uv − 27.

Remark 2.7. δ(3, v) ≥ 0 ⇔ v = 3.

Proof. We observe that δ(3, v) = −3(v − 3)2 ≥ 0. This means that v = 3. �
The following lemma extends Hutchinson’s ideas about isolation of three consecutive terms of the series. 

So we will prove Theorem 1.1(2).

Lemma 2.8. If q2 > 1 and qj+1 ≥ 4 for all j = 2, 3, . . . , n − 1 then Sn(x) has at least (n − 2) real roots on 
[q2; +∞). Furthermore, there exists a point y ∈ [q2; q3] such that Sn(y) > 0.

Proof. Obviously there exists x > q2q3 . . . qn such that signSn(x) = (−1)n. For every j = 2, 3, . . . , n − 1 we 
consider x0(j) = q2q3 . . . qj

√
qj+1 = √

q2q3 . . . qj
√
q2q3 . . . qj+1. Clearly, x0(j) ∈ [q2q3 . . . qj ; q2q3 . . . qj+1].

Now we obtain

(−1)jSn(x0(j)) = (−1)j
(

1 − x0 + x2
0

q2
+ . . . + (−1)j−2xj−2

0

qj−3
2 qj−4

3 . . . qj−2

)

+
(

xj
0

qj−1
2 . . . qj

− xj−1
0

qj−2
2 . . . qj−1

− xj+1
0

qj2 . . . qj+1

)

+ (−1)j
(

(−1)j+2xj+2
0

qj+1
2 . . . qj+2

+ . . . + (−1)nxn
0

qn−1
2 . . . qn

)
=: A1 + A2 + A3.

Firstly, consider A3. Analogously to computations made in Lemma 2.4, akxk > ak+1x
k+1 ⇔ x <

q2q3 . . . qk+1, k ≥ j + 2. This is true because x0(j) ≤ q2q3 . . . qj+1. So, A3 > 0.
Similarly, akxk < ak+1x

k+1 ⇔ x > q2q3 . . . qk+1, k ≤ j − 3. This is true because x0(j) ≥ q2q3 . . . qj . So, 
A1 > 0.

At last, since qj+1 ≥ 4 we have A2 = xj−1
0

qj−2
2 ...qj−1

(
−1 + q2q3...qj

√
qj+1

q2q3...qj
− q2

2q
2
3 ...q

2
j qj+1

q2
2q

2
3 ...q

2
j qj+1

)
= xj−1

0
qj−2
2 ...qj−1

(√
qj+1−

2
)
≥ 0. Thus, we found n − 1 different points of sign changes for Sn(x). It means that we found n − 2 real 

roots of Sn(x). �
Remark 2.9. We obtain that if q2 > 1 and qj+1 ≥ 4 for all j = 2, 3, . . . , n − 1, then f has not more than 2 
non-real roots.

The next lemma summarizes all the facts that were stated earlier and proves Theorem 1.1(3).

Lemma 2.10. If f ∈ L − P, q2 ≥ 3, q3 >
q3
2

q2
2−1 , qj ≥ 4 for j = 3, 4, . . . , then for every n ∈ N we get 

S2n+1(x) ∈ L − P.
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Proof. By Lemma 2.5 there exists x0 ∈ [1; q2] such that S3(x0) < 0, whence S3 has only real zeros. From 
Lemma 2.4 we get S2k+1(x0) < 0 for all k ∈ N. Since S2k+1(0) = 1, we obtain that ∃rk ∈ [1; q2) :
S2k+1(rk) = 0. From Lemma 2.8 we see that S2k+1(x) has 2k − 1 real roots on [q2; +∞). So, S2k+1(x) has 
2k real roots. The latter means that S2k+1 has only real zeros. �

The following lemma states that if coefficients q2 and q3 differ a lot, then the function f cannot belong 
to the Laguerre–Pólya class that proves Theorem 1.1(4).

Lemma 2.11. If 2 ≤ q2 < 3 and ∀k ≥ 3 qk ≥ 4, then f /∈ L − P.

Proof. Suppose that f ∈ L −P. Consider the following entire function: ga(x) =
∞∑
k=0

(−1)kakx
k

ak2 , where a > 1. 

Since 
(

1
ak2

)∞

k=0
∈ CZDS we have ga(x) ∈ L − P for all a > 1. It is easy to verify that qk(ga) = qk(f) · a2. 

So there exists a > 1 such that q2(ga) = 3. Obviously qk(ga) > 4 for all k > 2. Using Lemma 2.5, we 

get 
3∑

k=0

(−1)kakx
k

ak2 ∈ L − P (we can use this lemma because q2(ga) = 3, q3
2(ga)

q2
2(ga)−1 = 27

8 , q3(ga) > 27
8 ). By 

Remark 2.6 δ(q2(ga), q3(ga)) = δ(3, q3(ga)) ≥ 0. Then, by Remark 2.7 q3(ga) = 3, but q3(ga) > 4. We 
obtained a contradiction. �
Remark 2.12. As it is seen from the proof, theorem is correct in the following form: if 2 ≤ q2 < 3 and for 
all k ≥ 3 we have qk ≥ 4q2

3 , then f /∈ L − P.

We have proved Theorem 1.1(4), thus the proof of Theorem 1.1 is completed.

3. Proof of Theorem 1.2

As in the proof of Theorem 1.1 by a small abuse of notation we will investigate the function

f (m,a)(z) =
+∞∑
k=0

(−1)kzk(k!)m

ak2 , a > 1, m ≥ 1,

and its Taylor sections

S(m,a)
n (z) =

n∑
k=0

(−1)kzk(k!)m

ak2 .

The question we are interested in remains the same: which necessary and sufficient conditions are there 
for the function f (m,a) and its Taylor sections to belong to the Laguerre–Pólya class? We will use some 
reasonings close to those from [6] (see also [7]).

Let us investigate the behavior of d(∞,m) with different values of m.

Lemma 3.1. d(∞,m) ≥ 2m+1.

Proof. According to the G. Pólya and J. Schur Theorem B,

f (m,a) ∈ L − P ⇔ T (m,a)
n :=

n∑
k=0

(
n

k

)
(−1)kzk(k!)m

ak2 ∈ L − P

for all n ∈ N. Let us consider T (m,a)
2 (z) = 1 − 2 z

a + 2m+1 z2

a4 . We have T (m,a)
2 ∈ L − P if and only if 

a2 ≥ 2m+1. �
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We observe that qk(f (m,a)) =
(
1 − 1

k

)m
a2. Thus, qk(f (m,a)) ≤ qk+1(f (m,a)) for all k ≥ 2. It is important 

to note that q2(f (m,a)) = 1
2m a2, q3(f (m,a)) = 2m

3m a2.
From now on, we will use the results obtained earlier in this work. To do that, we should assume first 

that q2(f (m,a)) ≥ 3 and ascertain that qj(f (m,a)) ≥ 4 for all j ≥ 3.

Lemma 3.2. If q2(f (m,a)) ≥ 3, then qj(f (m,a)) ≥ 4 for all j ≥ 3.

Proof. Plainly, q2(f (m,a)) ≥ 3 ⇔ a2 ≥ 3 · 2m. The inequality we want to prove now turns into the next one: 
a2 ≥ 4 

(
1 − 1

j

)−m

. One may see that max
j≥3

4(
1− 1

j

)m = 4·3m

2m . Obviously, 3 · 2m ≥ 4 ·
( 3

2
)m ⇔

( 4
3
)m ≥ 4

3 . This 

is true for all m ∈ N. �
So, using Lemma 2.8, one may obtain the following statement.

Corollary 3.3. If a2 ≥ 3 · 2m then S(m,a)
n has at least n − 2 real roots on [ a

2

2m ; +∞) for all n > 2.

Thus, the behavior of d(n,m) is determined by two roots of S(m,a)
n near the origin (namely, in the disk of 

radius a2

2m ).
Next, we will find out the connection between d(2n+1,m) for different values of n and d(∞,m). The following 

lemmas will assume that a2 ≥ 3 · 2m. Later we will show that this assertion is essential.
We will denote d̃(n,m) = max(d(n,m), 3 · 2m) and d̃(∞,m) = max(d(∞,m), 3 · 2m).
Now we will check that for a2 ≥ 3 · 2m the inequality q3(f (m,a)) > q3

2(f(m,a))
q2
2(f(m,a))−1 is valid. This inequality is 

equivalent to 
(2

3
)m

> a4

2ma4−23m , or after transformations a4 > 24m

4m−3m . Since a2 ≥ 3 · 2m it is sufficient to 

prove that 9 · 22m > 24m

4m−3m . Thus we get the inequality 
( 4

3
)m

> 9
8 which is true for all m ≥ 1.

Lemma 3.4. d̃(3,m) ≤ d̃(5,m) ≤ d̃(7,m) ≤ . . . ≤ d̃(∞,m).

Proof. Let us prove that d̃(2n−1,m) ≤ d̃(2n+1,m). If a2 ≥ d̃(2n+1,m), then S(m,a)
2n+1 ∈ L − P. Since as a2 ≥

3 · 2m we know that S(m,a)
2n−1 (x) has 2n − 3 real roots on [ a

2

2m ; +∞) (this follows from Corollary 3.3) and 

S
(m,a)
2n−1 (x) < S

(m,a)
2n+1 (x) on [1; a

2

2m ] (which follows from Lemma 2.4). So, S(m,a)
2n+1 has 2 roots in [1; a

2

2m ] (this 
follows from Lemma 2.3) and S(m,a)

2n+1 (0) > 0. So we derive that there exists x0 ∈ [1; a
2

2m ] : S(m,a)
2n+1 (x0) ≤ 0. 

Then S(m,a)
2n−1 (x0) < 0. Combined with S(m,a)

2n−1 (0) > 0 one obtains that S(m,a)
2n−1 (x) has at least 1 real root on 

[q; a
2

2m ]. Thus S(m,a)
2n−1 has 2 roots in [1; a

2

2m ], these roots are real and so S(m,a)
2n−1 ∈ L − P.

Proof of the statement concerning d̃(∞,m) is exactly the same (up to changing S(m,a)
2n+1 by f (m,a)). �

Next lemma will provide an information concerning d(3,m).

Lemma 3.5. d(3,m) > 3 · 2m.

Proof. S
(m,a)
3 (x) = 1 −x + 1

q2
x2 − 1

q2
2q3

x3. If S(m,a)
3 (x) ∈ L −P, then P (x) = x3S

(m,a)
3 ( 1

x ) = x3 −x2 + 1
q2
x −

1
q2
2q3

∈ L −P. Then d
dxP (x) = 3x2 − 2x + 1

q2
∈ L −P. The latter is equivalent to D = 4 − 4 3

q2
≥ 0 ⇔ q2 ≥ 3. 

Thus, d(3,m) ≥ 3 · 2m.
Let us assume that a2 = d(3,m) = 3 ·2m ⇔ q2(S(m,a)

3 ) = 3. Then we have that S(m,a)
3 (x) ∈ L −P. But from 

the Remark 2.6 and Remark 2.7 one obtains that q3(S(m,a)
3 ) = 3, whilst from Lemma 3.2 q3(S(m,a)

3 ) ≥ 4. 
The contradiction we have obtained proves this lemma. �

Thus we obtained that d̃(2k+1,m) = d(2k+1,m), k ∈ N, and d̃(∞,m) = d(∞,m).
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Our next step is to prove that (d(2n+1,m))∞n=1 is a strictly monotonously increasing sequence.

Lemma 3.6. d(2n−1,m) �= d(2n+1,m).

Proof. Let a2 = d(2n+1,m). Then S(m,a)
2n+1 has exactly one double root on [1; a

2

2m ]. If d(2n+1,m) = d(2n−1,m), 
then S(m,a)

2n−1 also has exactly one double root. But S(m,a)
2n−1 (0) > 0, and so S(m,a)

2n−1 (x) ≥ 0 on [1; a
2

2m ]. From 

Lemma 2.4 we get that 0 ≤ S
(m,a)
2n−1 (x) < S

(m,a)
2n+1 (x), so S(m,a)

2n+1 (x) > 0 for every x ∈ [1; a
2

2m ]. But it contradicts 
to the statement that S(m,a)

2n+1 ∈ L − P. �
Remark 3.7. If a2 = d(n,m), then S(m,a)

n has exactly one double root and no other roots on [1; a
2

2m ]. If 
a2 = d(∞,m), then f (m,a) has exactly one double root and no other roots on [1; a

2

2m ].

Our next goal is to find out what is the limit of d(2n+1,m) as n → ∞.

Lemma 3.8. lim
n→∞

d(2n+1,m) = d(∞,m).

Proof. Lemma 3.6 implies that the sequence 
(
d(2n+1,m)

)∞
n=1 is monotonous and this sequence is bounded 

from above with the upper bound d(∞,m). So we obtain that there exists the limit lim
n→∞

d(2n+1,m) which we 

denote by L0. Let us prove that L0 = d(∞,m). Obviously, L0 ≤ d(∞,m). Let us assume that L0 < d(∞,m). 
Let us choose a0 such that a2

0 ∈ (L0; d(∞,m)). Since a2
0 > L0 = supn∈N d(2n+1,m) we get S(m,a0)

2n+1 ∈ L − P
for all n ∈ N. But f (m,a0)(z) = lim

n→∞
S

(m,a0)
2n+1 (z), and this limit is uniform on compact subsets of C, so from 

the Hurwitz’s theorem f (m,a0) ∈ L − P. But a2
0 < d(∞,m) implies that f (m,a0) /∈ L − P. This contradiction 

proves the required statement. �
Now we will investigate the behavior of d(2n,m). Obviously d(2,m) = 4 · 2m.
The next statement provides us with a lower bound on d(2n,m).

Lemma 3.9. d(∞,m) < d(2n,m) for all n ∈ N.

Proof. We have proved that d(∞,m) > 3 ·2m. Then by Remark 3.7 f (m,a) has exactly one double root and no 

other roots on [1; a
2

2m ]. From f (m,a)(0) > 0 we obtain f (m,a)(x) ≥ 0 for all x ∈ [0; a
2

2m ]. So, from paragraph 3) 
of Lemma 2.4 S

(m,a)
2n (x) > f (m,a)(x) ≥ 0 ⇒ S

(m,a)
2n (x) > 0 for all x ∈ [0; a

2

2m ]. The latter implies that S(m,a)
2n

has no real roots on that interval. But Lemma 2.3 grants that S(m,a)
2n has exactly two roots in the disk 

|z| ≤ a2

2m . So, these are non-real roots and S(m,a)
2n /∈ L − P. Thus d(2n,m) > d(∞,m). �

Corollary 3.10. d(2n,m) > 3 · 2m for all n ∈ N.

The next statement describes the monotonicity of the sequence 
(
d(2,m)

)∞
n=1.

Lemma 3.11. d(2,m) > d(4,m) > d(6,m) > · · · .

Proof. Let a2 = d(2n,m). Then S(m,a)
2n ∈ L −P. From Corollary 3.10 we obtain that a2 > 3 ·2m. It means that 

S
(m,a)
2n+2 has at least 2n real roots on ( a2

2m ; ∞) (Corollary 3.3). Now, there exists x0 ∈ [0; a
2

2m ] : S(m,a)
2n (x0) =

0 and x0 is the unique double root on that interval (Remark 3.7). Now, S(m,a)
2n+2 (x0) < S

(m,a)
2n (x0) = 0

(Lemma 2.4). So, because S(m,a)
2n+2 (0) > 0 and S(m,a)

2n+2 (x0) < 0, we get that S(m,a)
2n+2 (x0) has at least one root 

on [0; a
2

2m ]. Then S(m,a)
2n+2 has at least 2n + 1 roots overall and thus S(m,a)

2n+2 ∈ L − P.
Moreover, it is easy to see that S(m,a)

2n+2 has two distinct roots on [0; a
2
m ] and thus a2 �= d(2n+2,m). �
2
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In the following lemma we prove that a double root of f (m,a) cannot ‘slide’ along the axis.

Lemma 3.12. Suppose that 3 · 2m ≤ a2
1 ≤ a2

2. Then for all m ≥ 1 and n ≥ 2 it follows that: 1) if 
S

(m,a1)
n (x1) ≤ 0 for some x1 ∈ (0; a

2
1

2m ), then S(m,a2)
n (x2) < 0, where x2 = x1a2

a1
∈ (0; a

2
2

2m ), and 2) if 
f (m,a1)(x1) ≤ 0 for some x1 ∈ (0; a

2
1

2m ), then f (m,a2)(x2) < 0, where x2 = x1a2
a1

∈ (0; a
2
2

2m ).

Proof. Let us consider y1 = x1
a1

, C(m,a)
n (y) = S

(m,a)
n (ay) and g(m,a)(y) = f (m,a)(ay).

Since x1 ∈
(
0; a2

1
2m

)
, we have y1 ∈

(
0; a1

2m

)
. We obtain for a ∈ (a1; a2) that

∂

∂a
C(m,a)

n (y1) = −y1

a3

(
2 · 2m − 6y1 · 6m

a4 +
n−2∑
p=2

(−1)pyp1(p + 2)(p + 1)((p + 1)!)m

ap2+3p

)
and

∂

∂a
g(m,a)(y1) = −y1

a3

(
2 · 2m − 6y1 · 6m

a4 +
∞∑
p=2

(−1)pyp1(p + 2)(p + 1)((p + 1)!)m

ap2+3p

)
.

For a2 ≥ a2
1 ≥ 3 · 2m and y1 ∈ (0; a1

2m ) we have 2 · 2m ≥ 6y1·6m

a4 ≥ yp
1 (p+2)(p+1)((p+1)!)m

ap2+3p ≥
yp+1
1 (p+3)(p+2)((p+2)!)m

a(p+1)2+3(p+1) .
It means that ∂

∂aC
(m,a)
n (y1) < 0 and ∂

∂ag
(m,a)(y1) < 0 for a ∈ (a1; a2) and thus C(m,a1)

n (y1) > C
(m,a2)
n (y1)

and g(m,a1)(y1) > g(m,a2)(y1). �
Corollary 3.13.

a) If a2 = d(n,m) then S(m,a)
n has one double root on [0; a

2

2m ],
b) if a2 > d(n,m) then S(m,a)

n has two distinct roots on [0; a
2

2m ],
c) if a2 = d(∞,m) then f (m,a) has one double root on [0; a

2

2m ],
d) if a2 > d(∞,m) then f (m,a) has two distinct roots on [0; a

2

2m ].

Proof. Statements a) and c) are true due to Remark 3.7.
To prove b), let us consider a1 = d(n,m) and a2 : a2

2 > d(n,m). Plainly, there exists a unique double root 
x1 of S(m,a1)

n . Now from Lemma 3.12 it follows that there exists x2 ∈ (0; a
2
2

2m ) such that S(m,a2)
n (x2) < 0. 

Plainly, S(m,a2)
n cannot have a double root on (0; a

2
2

2m ), thus S(m,a2)
n has two distinct roots on (0; a

2
2

2m ). The 
same logic is used to prove d). �

Now we describe the limit of the sequence 
(
d(2,m)

)∞
n=1.

Lemma 3.14. lim
n→∞

d(2n,m) = d(∞,m).

Proof. It follows from Lemma 3.11 that the sequence 
(
d(2n,m)

)∞
n=1 is monotonous and from Lemma 3.9 that 

this sequence is bounded from below with the lower bound d(∞,m). Then we get that this sequence has the 
limit and we will denote by L1 := lim

n→∞
d(2n,m). Let us prove that L1 = d(∞,m). Plainly, L1 ≥ d(∞,m). Let 

us assume that L1 > d(∞,m). We will then choose a0 such that a2
0 ∈ (d(∞,m); L1). Since a2

0 > d(∞,m) we 

have f (m,a0) has two distinct roots on [1; a
2
0

2m ). Thus there exists x0 ∈ [1; a
2
0

2m ) such that f (m,a0)(x0) < 0. 
But S(m,a0)

2n (x0) −−−−→
n→∞

f (m,a0)(x0). Thus, there exists N0 ∈ N such that for every n > N0 we have 

S
(m,a0)
2n (x0) < 0. It means that S(m,a0)

2n has at least one root on [1; a
2
0
m ). Using Corollary 3.3, we obtain that 
2
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Fig. 1. Behavior of d(3,m) (on y-axis with a logarithmic scale) with different values of m (on x-axis, m ranges from 0 to 5.6) shown 
as a thick line. Dashed ones are the bounds given by theoretical estimates.

S
(m,a0)
2n has at least 2n −2 roots on [ a

2
0

2m ; ∞). So, S(m,a0)
2n has at least 2n −1 real roots and thus S(m,a0)

2n ∈ L −P
for all n > N0. It means that d(2n,m) ≤ a2

0 for every n > N0. Then lim
n→∞

d(2n,m) ≤ a2
0. But then a2

0 ≥ L1, 
whilst we picked a2

0 ∈ (d(∞,m); L1). This contradiction proves the required statement. �
Our final step is to prove that functions d(n,m) and d(∞,m) are continuous and monotonous functions 

of m.

Lemma 3.15. d(n,m) ∈ C([1; +∞)) and d(∞,m) ∈ C([1; +∞)).

Proof. 1) If a2 = d(n,m)+δ, δ > 0, then S(m,a)
n has n real distinct roots (Corollary 3.13). Now from Hurwitz’s 

theorem there exists ε(δ)
0 such that S(m+ε,a)

n ∈ HP for all |ε| < ε
(δ)
0 . Thus, d(n,m+ε) ≤ a2 = d(n,m) + δ.

2) If a2 = d(n,m) − δ, δ > 0, then S(m,a)
n has at least two non-real roots. Now from Hurwitz’s theorem 

there exists ε(δ)
0 such that S(m+ε,a)

n also has at least two non-real roots for all |ε| < ε
(δ)
0 . Thus, d(n,m+ε) ≥

a2 = d(n,m) − δ.
Combining 1) and 2) brings us to the required conclusion. This proof remains valid for d(∞,m). �

Lemma 3.16. d(n,m1) ≤ d(n,m2) for all m1 < m2.

Proof. Let us consider ∂
∂mf (m,a)(x) =

∞∑
k=2

(−1)k(k!)m log (k!)xk

ak2 . It is easy to verify that for all a2 ≥ 3 · 2m and 

x ∈ (0; a
2

2m ) it follows that (k!)m log (k!)xk

ak2 > ((k+1)!)m log ((k+1)!)xk+1

a(k+1)2 , k = 2, 3, . . . .
Thus, ∂

∂mf (m,a)(x) > 0.
Now, let us pick m2 and a2 = d(n,m2). From Corollary 3.13 we get that S(m2,a)

n has one double root on 

(0; a2

2m2 ), namely x0. For ∂
∂mS

(m2,a)
n (x) > 0 ∀x ∈ (0; x0) and S(m2,a)

n (x0) = 0, then S(m1,a)
n (x0) < 0 for all 

m1 < m2 (x0 ∈ (0; a2

2m2 ) ⊂ (0; a2

2m1 )), which means that S(m1,a)
n ∈ L − P for all m1 < m2 (by Corollary 3.3

it has n − 2 real roots on [ a2

2m1 ; +∞), and using that S(m1,a)
n (0) = 1 > 0 and S(m1,a)

n (x0) < 0, we get the 
required statement). �

To illustrate the statements given above, we present a few graphics (see Figs. 1 and 2) concerning the 
values of d(n,m).

Theorem 1.2 is proved.
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Fig. 2. Behavior of d(3,m) (the lower regular line) and d(4,m) (the upper one) with different values of m. Dashed lines are the bounds 
given by theoretical estimates.
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