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Abstract

This paper concerns the study of the asymptotic behavior of solutions to reaction-

diffusion systems modeling multi-components reversible chemistry with spatial

diffusion. By solution, we understand any limit of adequate approximate solu-

tions. It is proved in any space dimension that, as time tends to infinity, the

solution converges exponentially to the unique homogeneous stationary solu-

tion. We adapt and extend to any number of components, the entropy decay

estimates which have been exploited for some particular 3×3 and 4×4 systems.
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1. Introduction

The purpose of the present paper is to describe the asymptotic behavior as

time tends to infinity of the solutions to reaction-diffusion systems arising in the

modelization of reversible chemical reaction with multi-components {Ai}1≤i≤N

α1A1 + · · ·+ αmAm � αm+1Am+1 + · · ·+ αNAN (1)

where m,N,αk, k = 1, ..., N are positive integers with 1 ≤ m < N .

Let uk = uk(x, t) be the concentration of Ak at position x ∈ Ω ⊂ R
n

and time t ∈ [0, T ), T > 0 (Ω will be assumed to be open, bounded and with

a regular boundary throughout the paper). According to the mass action law

(with reaction rates c1 from left to right and c2 from right to left) and according

to Fick’s law for the diffusion, the evolution of u = (u1, ..., uN ) is described by

the reaction-diffusion system⎧⎨
⎩

∂uk

∂t − dkΔuk = χkf(u) in QT = Ω× (0, T ),

∂uk

∂ν

∣∣
∂Ω

= 0, uk|t=0 = uk0(x) ≥ 0, 1 ≤ k ≤ N,
(2)

where dk > 0, 1 ≤ k ≤ N , ν is the outer unit normal vector and

f(u) = c1

m∏
j=1

u
αj

j − c2

N∏
j=m+1

u
αj

j , χk =

⎧⎨
⎩ −αk, 1 ≤ k ≤ m

αk, m+ 1 ≤ k ≤ N.
(3)

We prove in this paper that ”global solutions” on [0,∞) of (2) converge ex-

ponentially in L1(Ω) as t → +∞ to a well-defined (and unique) homogeneous

stationary solution of System (2) (see Theorem 3 for a precise statement). As5

explained below, this extends to the general situation (2) similar results ob-

tained in case of 3× 3 or 4× 4 systems [8, 9, 10, 12].

In order to state precisely our asymptotic result (see Theorem 3), let us first

recall what is known about the rather difficult question of global existence in time10

of solutions to (2). Note for instance, that it is not yet understood in dimension

n ≥ 3 and for general diffusion coefficients dk ∈ (0,∞), whether global classical

solutions exist for the model quadratic case m = 2, N = 4, αk = 1, that is

f(u) = c1u1u2 − c2u3u4 !
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Global classical solutions do exist for this f in space dimension n = 1, 2 (see15

e.g. [16, 23, 4]). More generally, global existence is also proved for (2) when the

space-dimension n is small enough with respect to the degree of the polynomial

f or when the diffusion coefficients dk are close enough to each other (see the

discussion in [21]).

But let us recall what the situation is for a general space-dimension n and20

general positive dk ∈ (0,∞) (we assume c1 = c2 = 1 for simplicity).

1. If m = 1, N = 2 (that is f(u) = uα1
1 − uα2

1 ), then global existence of

uniformly bounded (and therefore classical) solutions easily follows from

the invariance of the rectangles

{(u1, u2); 0 ≤ u1 ≤ M1, 0 ≤ u2 ≤ M2} where Mα1
1 = Mα2

2 .

2. If N = m + 1, αN = 1 (i.e. f(u) =
∏m

k=1 u
αk

k − uN ), then global clas-

sical solutions do also exist (see [2]). The same symmetrically holds if

m = 1, α1 = 1 (f(u) = u1 −
∏N

k=2 u
αk

k ).

25

3. If m = 2, N = 3 and α3 > α1 + α2 (i.e. f(u) = uα1
1 uα2

2 − uα3
3 ), then again

global existence of classical solutions is proved in [18]. But the same result

is not known if α3 ≤ α1 + α3.

4. For sub-quadratic reaction-diffusion systems, global smooth solutions are

proved to exist (see [3]) while for super-quadratic systems, the existence30

of global classical solutions are verified if extra conditions are satisfied

combining the di, the growth of f and the dimension (see [14]).

Global classical solutions are not known to exist for any space dimension

and any dk ∈ (0,∞). Weaker notions of solution need to be considered.

Let us describe known results in this direction.35

5. If again m = 2, N = 4, (f(u) = u1u2 − u3u2), then global so-called weak

solutions are proved to exist (see [20, 11]). Weak solution means that

f(u) ∈ L1 ([0, T ]× Ω)) for all T > 0 and equations (2) are satisfied in the

sense of distributions or in the sense of semigroups (see [20, 11, 21] for

precise definitions).40
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6. More generally, if for some reason, the nonlinearity f(u) is a priori bounded

in L1 ((0, T )× Ω) for all T > 0, then global weak solutions do exist (see

[20, 21]). Thanks to quadratic a priori estimates valid for these systems,

this is for instance the case if

N = m+ 1, f(u) =
∏m

k=1 u
αk

k − u2
N ;

N = m+ 2, f(u) =
∏m

k=1 u
αk

k − um+1um+2.

7. In the general situation of System (2), existence of global weak solutions

in the above sense seems to be an open problem. No counterexample is

known either. On the other hand, global existence of still weaker solutions

is proved in [15]. They are called renormalized solutions and defined in

the spirit of the famous renormalized solutions by Di Perna-Lions for the45

Boltzmann equation. A definition of such a solution for systems like (2)

is introduced in [15] and global such solutions are also proved to exist in

this same paper [15].

We will not need the definition of such renormalized solutions here. We

will only use the fact that they are obtained as limit of solutions of a50

standard approximate ”regularized” system. And we will directly prove

that any such limits are actually exponentially asymptotically stable. It is

actually interesting to describe precisely the asymptotic behavior of these

solutions without knowing much about them.

Let us consider the approximate solution uε = (uε
k(x, t)) to55 ⎧⎨

⎩
τk

∂uε
k

∂t − dkΔuε
k = χkfε(u

ε) in QT = Ω× (0, T )

∂uε
k

∂ν

∣∣∣
∂Ω

= 0, uε
k|t=0 = uε

k0(x) ≥ 0, 1 ≤ k ≤ N
(4)

where τk ∈ (0,∞), 1 ≤ k ≤ N and

fε(u) =
f(u)

1 + ε|f(u)| , uε
k0 = inf{uk0, ε

−1}, uk0 ≥ 0, 1 ≤ k ≤ N. (5)

The introduction of the τk �= 1 is for later purposes (see Section 2.3). Note that

|fε(u)| ≤ 1/ε. Thus, given (uk0) ∈ L1(Ω)N , there exists a unique classical solu-

tion to (4)-(5) globally in time. Thanks to the quasipositivity of the nonlinearity,
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that is

χkfε(u) ≥ 0, for all u ∈ [0,∞)N with uk = 0, 1 ≤ k ≤ N,

this solution uε is nonnegative. Then, the following convergence result holds.

Proposition 1. [15] Assume uk0 log uk0 ∈ L1(Ω) for 1 ≤ k ≤ N . Then each

{uε�} with ε� ↓ 0 admits a subsequence converging in L1
loc([0,∞);L1(Ω)N ) and

a.e. to some u ∈ L∞([0,∞);L1(Ω))N such that

uk log uk ∈ L∞
loc([0,∞);L1(Ω)) for all 1 ≤ k ≤ N.

Remark 2. This proposition is essentially proved in [15]. We will give the

needed extra details at the beginning of next section. When τk = 1 for all k,

the limit u is a weak solution of System (2), in the sense defined in the point

5 above, as soon as f(u) ∈ L1
loc([0,∞);L1(Ω)) (see [15] again). It is only a60

renormalized solution in the sense of [15] in general.

The conservation properties (where −
∫
Ω
denotes the average |Ω|−1

∫
Ω
)

−
∫
Ω

τiu
ε
i(t) + τju

ε
j(t) = −

∫
Ω

τiu
ε
i0 + τju

ε
j0 for all 1 ≤ i ≤ m < j ≤ N, (6)

hold, thanks to the homogeneous Neumann boundary conditions and they are

preserved at the limit for u, at least a.e. t ∈ [0,∞). For w : Ω → R, we will

throughout denote

w := −
∫
Ω

w.

Now the main result of this paper is the following theorem.

Theorem 3. Let u be as in Proposition 1. Assume moreover that

ui0 + uj0 > 0 for all 1 ≤ i ≤ m < j ≤ N. (7)

Then, there exists C, a > 0 depending only on ‖u0‖L1(Ω)N and the data such

that

‖u(·, t)− z‖L1(Ω)N ≤ Ce−a t, ∀t ≥ 0 (8)

where z = (zj)1≤j≤N ∈ (0,∞)N is the unique nonnegative solution of

f(z) = 0, τizi + τjzj = τiui0 + τjuj0 for all 1 ≤ i ≤ m < j ≤ N. (9)
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The same conclusion would actually hold for any limit u of adequate ap-

proximate solutions of System (2), and not only for the solutions of the specific

system (4), (5): this is discussed later in Remark 9.65

The positivity condition (7) is not restrictive as explained in Section 5.

The asymptotic result of Theorem 3 has already been proved in the two

particular situations of the points 3 et 4 above for 3×3 or 4×4 specific systems

(see [8, 9, 10, 12]). As in these papers, the proof is based here on the use of the

entropy functional defined as follows. Let

E(w | v) = −
∫
Ω

v Φ
(w
v

)
dx, Φ(s) = s(log s− 1) + 1 ≥ 0, ∀ s > 0, (10)

where w, v are measurable nonnegative functions (with v(x)2 + w2(x) > 0

a.e. x ∈ Ω). This entropy is extended to the vector valued functions u =

(uk)1≤k≤N , z = (zk)1≤N as

E(u | z) =
N∑

k=1

τkE(uk | zk). (11)

We will more simply write

E(w | 1) = E(w), E(u) =
N∑

k=1

τkE(uk), E(z) =

N∑
k=1

τkE(zk). (12)

The main point is to prove that

Proposition 4. With the notation and assumptions of Theorem 3

d

dt
E(u(t) | z) ≤ −2aE(u(t) | z), (13)

in the sense of distributions in (0,∞).

By Proposition 1, E(u(t) | z) is bounded for t near 0 (say by C0). Therefore

(13) implies

E(u(t) | z) ≤ C0 e
−2a t, ∀ t ≥ 0. (14)

We then apply a Cziszár-Kullback type inequality, namely (see Lemma 10)

‖u(t)− z‖L1(Ω)N ≤ C E(u(t) | z),
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which implies our main result (8).

70

Let us now recall the strategy to prove the main inequality (13). Assume

for simplicity that, in the definition (3) of f and χk, we have

c1 = c2 = 1 = αk, ∀ 1 ≤ k ≤ N. (15)

Actually, we will see later that there is no loss of generality when considering

this specific case (see Section 2.3). Then, if u is a solution of (2), we have, at

least formally

d

dt
E(uk(t)) = −

∫
Ω

log uk∂tuk = −
∫
Ω

−dk
|∇uk|2
uk

+ χk log ukf(u).

This implies that for E(u) =
∑N

k=1 E(uk) (since here τk = 1 for all k)

d

dt
E(u(t)) = −D(u(t)), (16)

where

D(u) = 4
N∑

k=1

dk−
∫
Ω

|∇√
uk|2

+−
∫
Ω

(
log

m∏
k=1

uk − log
N∏

k=m+1

uk

)(
m∏

k=1

uk −
N∏

k=m+1

uk

)
. (17)

Thanks to the definition of z, as proved in Lemma 7,

E(u(t) | z) = E(u(t))−E(z) so that
d

dt
E(u(t) | z) = d

dt
E(u(t)). (18)

Now, Proposition 4 will be a consequence of the following lemma.

Lemma 5. Assume (15). With the notation and assumptions of Theorem 3,

the following holds

D(u(t)) ≥ 2aE(u(t)|z), (19)

in the sense of distribution on (0,∞).

It is now clear that combining (16), (18) and (19) yields Proposition 4, at least

under Assumption (15) (and this will be general).75

7



We prove in Section 2.3 why working with the particular case (15) is suffi-

cient. The derivation in (16) is indeed very formal since here u is only obtained

as the limit of regular solutions but may not be regular itself. In fact, we will

only prove the inequality d
dtE(u(t)) ≤ −D(u(t)) which, obviously, is sufficient80

to deduce inequality (13) in Proposition 4. This will be done in Section 3 where

a complete proof of Proposition 4 (and therefore of our main result of Theorem

3) will be given, assuming Lemma 5.

The proof of Lemma 5 is completely algebraic. It only uses from the solution

u(t) that is satisfies the conservation properties

ui(t) + uj(t) = ui0 + uj0 =: Uij , ∀ 1 ≤ i ≤ m < j ≤ N. (20)

In the particular cases already known (namely in the points 3 and 4 above [8, 9,

10, 12]), this part of the proof is rather involved and requires much technicality.85

A main contribution here is to simplify rather significantly this part of the

proof and consequently to be able to reach the general case (2). For instance,

we compare the variation of
√
u with the square root

√
u of its average rather

than with the average of the square root. The corresponding computation turns

out to be quite simpler and sufficient for the expected estimate of Lemma 13.90

We also simplify the proof of the estimate from below of f(
√
u) (see Lemma

12)).

2. Some preliminaries

Let us first give the necessary extra details for the proof of Proposition 1.

2.1. Proof of Proposition 1.95

Let us check that the results of [15] do apply here. Let us denote U ε
k := τku

ε
k.

Then System (4) may be rewritten⎧⎨
⎩

∂Uε
k

∂t − dk

τk
ΔUε

k = χk
F (Uε)

1+ε|F (Uε)| in QT = Ω× (0, T )

∂Uε
k

∂ν

∣∣∣
∂Ω

= 0, Uε
k |t=0 = τku

ε
k0(x) ≥ 0, 1 ≤ k ≤ N,

(21)
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where, for all U ∈ [0,∞)N

F (U) = C1

m∏
i=1

Uαi
i − C2

N∏
j=m+1

U
αj

j ,

C1 = c1

m∏
i=1

(τi)
−αi , C2 = c2

N∏
j=m+1

(τj)
−αj .

For this new system, the entropy structure required on the nonlinearity F in

[15] holds, namely: for all U ∈ [0,∞)N

N∑
k=1

χkF (U)[μk + logUk] = −F (U)

[
log

(
C1

m∏
i=1

(Ui)
αi

)
− log

(
C2

N∏
j=m+1

(Uj)
αj

)]
≤ 0,

with μk = log(C2/C1)/(Nχk), 1 ≤ k ≤ N . The a.e. convergence of U ε (up

to a subsequence) is stated in Lemma 7 of [15], whence the a.e. convergence

of uε. Together with the estimate of U ε
k logU

ε
k in L∞

loc([0,∞);L1(Ω)) proved in

Lemma 6 of [15], it also implies the convergence of U ε
k and therefore of uε

k in

L1
loc([0,∞);L1(Ω)). Morever, by Fatou’s Lemma

u ∈ L∞([0,∞);L1(Ω)) and uk log uk ∈ L∞
loc([0,∞);L1(Ω)), ∀ k.

�

2.2. Uniqueness of z.

We now state the uniqueness of z as defined in Theorem 3 and as also stated100

in [17, 19, 13]. We also provide the proof for the sake of completeness.

Proposition 6. Under the assumptions of Theorem 3, there exists a unique

z = (zk) ∈ [0,∞)N such that

f(z) = 0, τizi + τjzj = τiui0 + τjuj0, 1 ≤ i ≤ m < j ≤ N. (22)

Moreover, zk > 0, ∀ 1 ≤ k ≤ N .

Proof. Let Uij := τiui0 + τjuj0. By (15), Uij > 0 for 1 ≤ i ≤ m < j ≤ N . The

relations (22) are equivalent to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zj = [U1j − τ1z1]/τj ≥ 0, ∀m+ 1 ≤ j ≤ N,

zi = [τ1z1 + UiN − U1N ]/τi ≥ 0, ∀ 2 ≤ i ≤ m,

g(z1) = 0,

(23)

9



where

g(z1) := c1z1

m∏
i=2

[τ1z1 + UiN − U1N ]αi

ταi
i

− c2

N∏
j=m+1

[U1j − τ1z1]
αj

τ
αj

j

.

Let us define

M0 := min
m+1≤j≤N

U1j/τ1, m0 := max
2≤i≤m

[U1N − UiN ]+/τ1.

Note that U1N − UiN = U1j − Uij = τ1u10 − τiui0 is independent of j = m +

1, ..., N. It follows that m0 < M0. The function g : [m0,M0] → R is continuous,

strictly increasing and satisfies g(m0) < 0, g(M0) > 0. Therefore there exists a105

unique z1 ∈ (m0,M0) such that g(z1) = 0. For this z1, the zi, zj defined by (23)

are nonnegative and do satisfy the expected relations (22). They are all stricly

positive: indeed, if one had zi = 0 for some 1 ≤ i ≤ m, then f(z) = 0 would

imply that zj = 0 also for some m + 1 ≤ j ≤ N which is a contradiction with

τizi + τjzj = Uij > 0. �110

2.3. Reduction of System (4) to the case c1 = c2 = 1, αk = 1, 1 ≤ k ≤ N .

Let us show that we may only consider these particular values without loss

of generality. Indeed, at least formally, System (2) is equivalent to a similar

system with the simpler form

τ l∂vl/∂t−DlΔvl = χlF (v), F (v) = Πl=m
l=1 vl −ΠlN

l=lm+1vl, |χl| = 1,

and whose solutions vl, 1 ≤ l ≤ lN are successively αk copies of the uk. We

describe this more precisely below. To do it rigorously in order to provide a

complete proof of Theorem 3, we need a uniqueness property of solutions for

the vl-system.. Therefore we do it on the corresponding ε-approximate system115

(24) below for which uniqueness holds.

Let us define

l0 = 0, lk =
k∑

j=1

αj , ∀ 1 ≤ k ≤ N ; λ−lm := c1, μ
lm−lN := c2,

Dl := λdk/αk, τ l := λτk/αk, ∀ lk−1 < l ≤ lk, ∀ 1 ≤ k ≤ m,

10



Dl := μdk/αk, τ l := μτk/αk, ∀ lk−1 < l ≤ lk, ∀m+ 1 ≤ k ≤ N.

We consider the extended system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ l
∂vε

l

∂t −DlΔvεl = χlg(v
ε)/[1 + ε |g(vε)|] in QT = Ω× (0, T ),

∂vε
l

∂ν

∣∣∣
∂Ω

= 0, g(vε) =
∏lm

l=1 v
ε
l −

∏lN
l=lm+1 v

ε
l , vε = (vεl )1≤l≤lN ,

χl = −1, ∀ 1 ≤ l ≤ lm; vεl |t=0
= uε

k0/λ, ∀ lk−1 < l ≤ lk, ∀ 1 ≤ k ≤ m,

χl = 1, ∀ lm < l ≤ lN ; vεl |t=0
= uk0/μ, ∀lk−1 < l ≤ lk, ∀m+ 1 ≤ k ≤ N.

(24)

Since v ∈ [0,∞)N → g(v)/[1 + ε|g(v)]] ∈ R is uniformly bounded by 1/ε, this

system has a unique classical global solution. By uniqueness, we also have

vεl = vεlk , ∀ lk−1 < l ≤ lk, 1 ≤ k ≤ N.

Let us set

uε
k := λvεlk , ∀1 ≤ k ≤ m, uε

k := μvεlk , ∀m+ 1 ≤ k ≤ N.

Then,

g(vε) = Πm
k=1

(
vεlk

)αk −ΠN
k=m+1

(
vεlk

)αk = λ−lmΠm
k=1 (u

ε
k)

αk −μlN−lmΠN
k=m+1 (u

ε
k)

αk ,

that is: g(vε) = f(uε).

Moreover, we easily check that uε is the solution of System (4). �

We will now always assume that

c1 = c2 = 1, αk = 1, ∀ 1 ≤ k ≤ N, (25)

3. Lemma 5 implies Theorem 3

Let us first recall the following well known identity and for convenience, we

also recall its proof.120

Lemma 7. Under the assumptions of Lemma 5

E(u(t)|z) = E(u(t))−E(z), ∀ t ≥ 0. (26)

11



Proof. The function E(· | ·),E(· | ·), E(·),E(·) are defined in (10), (11), (12).

The following property is valid for any w ∈ L1(Ω)+ and w∗ ∈ (0,∞):

E(w | w∗) = E(w)− E(w∗)− (w − w∗) logw∗. (27)

We apply this to w = uk(t), w∗ = zk for all 1 ≤ k ≤ N and we sum over k.

Then (26) is reduced to checking

N∑
k=1

τk(uk(t)− zk) log zk = 0. (28)

We have by (6) and for all ε > 0

τiu
ε
i(t) + τju

ε
j(t) = τiu

ε
i0 + τju

ε
j0, ∀1 ≤ i ≤ m < j ≤ N.

This is preserved at the limit and gives

τiui(t) + τjuj(t) = τiui0 + τjuj0, ∀1 ≤ i ≤ m < j ≤ N. (29)

Since τizi + τjzj = τiui0 + τjuj0, this may be rewritten as

τk(uk(t)− zk) =

⎧⎨
⎩ τ1(u1(t)− z1) for all 1 ≤ k ≤ m,

−τ1(u1(t)− z1) for all m+ 1 ≤ k ≤ N,
(30)

Then we write (28) as

N∑
k=1

τk(uk(t)− zk) log zk = τ1(u1(t)− z1)

{
m∑

k=1

log zk −
N∑

k=m+1

log zk

}
= 0,

using f(z) = 0 (recall that (25) holds so that f(z) =
∏m

i=1 zi −
∏N

j=m+1 zj). �

We now show the key lemma of this section.

Lemma 8. With the notation and assumptions of Theorem 3, together with

(25), we have
d

dt
E(u) ≤ −D(u) (31)

in the sense of distributions on (0,∞).

12



Proof. For the classical solution uε = (uε
k(·, t)) to approximate scheme (4)-(5),

it holds that
d

dt
E(uε) +Dε(u

ε) = 0, (32)

where (together with (25 ))

Dε(u) = 4
N∑

k=1

dk‖∇√
uk‖22 +−

∫
Ω

f(u)

1 + ε|f(u)| log
∏m

k=1 uk∏N
k=m+1 uk

≥ 0. (33)

Inequality (32) implies after integration in time

E(uε(·, t)) ≤ E(uε
0),

∫∫
QT

|∇√
uε
k|2 ≤ C, 1 ≤ k ≤ N. (34)

From the first inequality in (34), using Proposition 1 and Fatou’s lemma, we

deduce

E(u(·, t)) ≤ E(u0) a.e. t. (35)

Let us prove that, up to a subsequence,

lim
�→∞

E(uε�(·, t)) = E(u(·, t)) a.e. t ∈ (0,∞), (36)

We have

∂

∂t
(τiu

ε
i + τju

ε
j)−Δ(diu

ε
i + dju

ε
j) = 0 in QT

∂

∂ν
(diu

ε
i + dju

ε
j)

∣∣∣∣
∂Ω

= 0, uε
k|t=0 = uε

k0

for 1 ≤ i ≤ m < j ≤ N , and 1 ≤ k ≤ N . Then Lemma 4 of [22] implies

‖uε‖L2(Qτ,T ) ≤ Cτ,T (37)

for any τ ∈ (0, T ) with Cτ,T > 0 independent of ε, where Qτ,T = Ω × (τ, T ).

(See Proposition 6.1 of [21] when (uk0) ∈ L2(Ω)N in which case we may take

τ = 0). Since uεl tends to u a.e. (see Proposition 1), we classically deduce

(36) from Egorov’s theorem and the estimate (37). Indeed, given α > 0, there

exists a compact set Kα ⊂ Qτ,T such that uε� → u uniformly on Kα and

|Qτ,T \Kα| < α. With Φ(s) = s[log s − 1] + 1 as in (10), since for some

C0 ∈ (0,∞)

0 ≤ Φ(s)3/2 ≤ C0(s
2 + 1), s > 0,

13



it holds by (37) that125

∫∫
Qτ,T \Kα

|Φ(uε)− Φ(u)| ≤ |Qτ,T \Kα|1/3
(∫∫

Qτ,T \Kα
|Φ(uε)− Φ(u)|3/2

)2/3

≤ α1/3

{∫∫
Qτ,T

C0

[
((uε)2 + 1)2/3 + (u2 + 1)2/3

]3/2}2/3

≤ C α1/3.

Hence

lim sup
�→∞

∫∫
Qτ,T

|Φ(uε�)− Φ(u)| dxdt ≤ Cα1/3.

Letting α ↓ 0, we obtain (recall the definition of E in (11), 12 ))

lim
�→∞

∫ T

τ

|E(uεl(·, t))−E(u(·, t))| dt = 0,

and therefore (36), up to a subsequence.

Let φ ∈ C∞
0 [0, T )+. It holds that

φ(0)E(uε
0) +

∫ ∞

0

φ′(t)E(uε(·, t)) dt =
∫ ∞

0

φ(t)Dε(u
ε(·, t)) dt (38)

by (32). As ε = ε� ↓ 0, the left-hand side of (38) converges to

φ(0)E(u0) +

∫ ∞

0

φ′(t)E(u(·, t)) dt.

Here, we used the dominated convergence theorem, recalling (36) with (35) and

(uk0 log uk0) ∈ L1(Ω)N .

To treat the right-hand side of (38), we recall the expression of Dε(u
ε) in (33). For

its first term, we use (34) to deduce the weak convergence,

∇
√

u
ε�
k ⇀ ∇√

uk in L2(QT )
N for 1 ≤ k ≤ N,

passing to a subsequence. Fatou’s lemma is applicable to the second term and it

follows that

lim inf
�→∞

∫ ∞

0

φ(t)Dε�(u
ε�(·, t)) dt ≥

∫ ∞

0

φ(t)D(u(·, t)) dt.

We thus end up with

φ(0)E(u0) +

∫ ∞

0

φ′(t)E(u(·, t)) dt ≥
∫ ∞

0

φ(t)D(u(·, t)) dt

which means (31) on [0,∞) in the sense of distributions, because T > 0 and φ ∈
C∞

0 [0,∞)+ are arbitrary. �130
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Remark 9. Analyzing the above proof shows that the same result would hold for

quite more general approximations fε of f . For instance, we could choose

fε(s) = f(s)Gε(s), 0 ≤ Gε(s) ≤ M, |fε(s)| ≤ 1/ε, for all s ∈ [0,∞)N ,

with fε(s) → f(s) as ε → 0+. Then any pointwise limit of the corresponding ap-

proximate solution would satisfy the conclusion of Lemma 8 and of Theorem 3 as

well.

The following lemma is an adaptation of the classical Cziszár-Kullback inequality

to our situation in the spirit of [8, 9, 10, 12, 1].135

Lemma 10. With the notation and assumptions of Theorem 3,

‖u(t)− z‖L1(Ω)N ≤ C E(u(t) | z), ∀ t ≥ 0,

for some C > 0 depending on u0, z and the data.

Proof. For Φ(s) = s(log s− 1) + s as defined by (10), we have

∀ s ∈ [0,M ], |s− 1|2 ≤ C(M) Φ(s).

We deduce

|uk(t)− zk|2 = z2k

∣∣∣∣uk(t)

zk
− 1

∣∣∣∣
2

≤ C zkΦ

(
uk(t)

zk

)
, 1 ≤ k ≤ N,

where C depends only on ‖u0‖L1(Ω)N , ‖z‖. It follows that, for some C1 > 0

C1[‖u(t)− z‖L1(Ω)N ]2 ≤
N∑

k=1

τk|uk(t)− zk|2 ≤ C E(u(t) | z). (39)

Now the classical Cziszár-Kullback-Pinsker inequality says (see e.g. Theorem 31 in [5]

or also [6]) [
−
∫
Ω

|uk(t)− uk(t)|
]2

≤ 4uk(t)E(uk(t) | uk(t)).

This implies, for some other constant C

‖u(t)− u(t)‖2L1(Ω)N ≤ C E(u(t) | u(t)). (40)

Using the obvious relation E(u(t) | z) = E(u(t) | u(t))+E(u(t) | z) together with (39)

and (40), we obtain with another constant C

‖u(t)− z‖2L1(Ω)N ≤ C E(u(t) | z),

which is the estimate of Lemma 10. �
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Proof of Theorem 3. As proved in Section 2.3, we may assume (25). By Lemmas

8, 7 and 5, we obtain
d

dt
E(u | z) ≤ −2aE(u | z)

in the sense of distributions on (0,∞). This is the statement of Proposition 4 and it

implies

E(u(·, t) | z) ≤ Ce−2at, t ≥ 0. (41)

Together with Lemma 10, this implies Theorem 3. �

4. Proof of Lemma 5

This proof is inspired from those given in [8, 9, 10, 12] for the 4 × 4 systems,140

with some significant improvements and simplifying modifications as explained in the

introduction.

Here we denote by uk, u any of the functions uk(t), u(t) without indicating the t

dependence (which is actually not used in this section). Only the conservation laws

(see (29 ))

τiu
k
i + τju

k
j = Uij := τiui0 + τjuj0, ∀1 ≤ i ≤ m < j ≤ N,

will be used together with the simplified assumption (25) and mini,j Uij > 0. All

constants ′C′ below will depend only on:

min
i,j

Uij , uk0, τk, 1 ≤ k ≤ N. (42)

Lemma 11. It holds that

E(u | z) ≤ C

N∑
k=1

(√
uk −√

zk
)2

. (43)

Proof. It is easily seen that B(s) := Φ(s)/(
√
s − 1)2 is continuous on [0,∞). Thus

B(uk/zk) is bounded above by a constant depending on those in (42). And we have

E(u | z) =
N∑

k=1

τkzkΦ

(
uk

zk

)
=

N∑
k=1

τkzk

(√
uk√
zk

− 1

)2

B

(
uk

zk

)
.

≤ C
N∑

k=1

(
√
uk −√

zk)
2,

whence Lemma 11. �145
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Lemma 12. It holds that

N∑
k=1

(
√
uk −√

zk)
2 ≤ C

[
f(

√
u)

]2
,

√
u = (

√
uk )1≤k≤N . (44)

Proof. Recall that, under the assumption (25), f(u) =
∏m

i=1 ui − ∏N
j=m+1 uj . Ac-

cording to (30), we have⎧⎨
⎩ u− z = θe, θ = u1 − z1, e = (ek)1≤k≤N ,

ei = τ1/τi, ej = −τ1/τj , ∀ 1 ≤ i ≤ m < j ≤ N.
(45)

Therefore

f(u) = f(u)− f(z) =

[∫ 1

0

∇f((1− s)z + su) ds

]
· (u− z) = L(u)(u1 − z1), (46)

where

L(ζ) =

∫ 1

0

∇f((1− s)z + sζ) · e ds, 0 ≤ ζ ∈ R
N . (47)

We have u = z+ (u1 − z1) e where u1 ∈ I := [0,minm<j≤N U1j ]. But the mapping

σ ∈ I �→ L(z + (σ − z1) e) is continuous. It does not vanish: indeed, if one had

L(ζ) = 0 for some ζ = z + (σ − z1)e, σ ∈ I, then, by the same computation as in (46)

with u replaced by ζ, we would also have f(ζ) = 0. But the uniqueness property of

Proposition 6 would imply ζ = z. And this is impossible since then L(z) = 0 and by

(47),

L(z) = ∇f(z) · e = τ1

[
m∑
i=1

(τizi)
−1

m∏
k=1

zk +
N∑

j=m+1

(τjzj ]
−1

N∏
k=m+1

zk

]
,

whence a contradiction.

Thus, for

δ = min
σ∈I

L(z + (σ − z1)e) > 0,

it holds that L(u) ≥ δ, which implies by (46) and (45)

f(u)2 = (L(u))2(u1 − z1)
2 ≥ δ2‖u− z‖2/‖e‖2,

where ‖·‖ denotes here the euclidean norm in R
N . We combine this with the identities

(uk − zk)
2 = (

√
uk −√

zk)
2(
√
uk +

√
zk)

2

≥
(

min
1≤k≤N

zk

)
· (√uk −√

zk)
2, 1 ≤ k ≤ N

17



and with

f(u)2 =

(
m∏
i=1

ui −
N∏

j=m+1

uj

)2

= f(
√
u)2 ·

(
m∏
i=1

√
ui +

N∏
j=m+1

√
uj

)2

≤ Cf(
√
u )2

to deduce (44). �

Lemma 13. It holds that

[
f(

√
u)

]2
≤ C−

∫
Ω

f(
√
u)2 +

N∑
k=1

|∇√
uk|2 (48)

for
√
u = (

√
uk )1≤k≤N .150

Proof. All constant C in this proof may again differ from each other but will depend

only on the value in (??). Define σ = σ(x) ∈ R
N for x ∈ Ω by

√
u =

√
u + σ. First,

we have

f(
√
u)2 = f(

√
u+ σ)2 =

(
f(

√
u) +∇f(

√
u) · σ +M

)2

,

where M =
∫ 1

0
(1−s)D2f(

√
u+sσ)[σ, σ] ds. Using (∇f(

√
u) ·σ+M)2 ≥ 0, this implies

f(
√
u)2 ≥ f(

√
u)2 + 2f(

√
u)∇f(

√
u) · σ + 2f(

√
u)M.

By Young’s inequality and the estimate |∇f(
√
u ) · σ| ≤ C‖σ‖, we have

2f(
√
u)∇f(

√
u) · σ ≥ −1

2
f(

√
u)2 − 2(∇f(

√
u) · σ)2 ≥ −1

2
f(

√
u)2 − C‖σ‖2.

It follows from the two previous inequalities and |f(√u )| ≤ C that

f(
√
u)2 ≥ 1

2
f(

√
u)2 − C(‖σ‖2 + |M |). (49)

Next, since
√
u ≥ 0 implies σ ≥ −√

u in R
N , we have the partition Ω = Ω1∪Ω2 where

Ω1 = {x ∈ Ω | −√
uk ≤ σk(x) ≤ 1, ∀ 1 ≤ k ≤ N},

Ω2 = ∪1≤k≤N{x ∈ Ω | σk(x) > 1}.

For x ∈ Ω1, s ∈ [0, 1], one has: 0 ≤ √
uk + sσk ≤ 1 +

√
uk, so that

|M | ≤
∫ 1

0

(1− s)‖D2f(
√
u+ sσ)‖ ds · ‖σ‖2 ≤ C‖σ‖2, x ∈ Ω1.

Together with (49), we deduce∫
Ω1

f(
√
u)2 dx ≥

∫
Ω1

[
1

2
f(

√
u)2 − C‖σ‖2

]
dx. (50)
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We also have ∫
Ω2

f(
√
u)2 dx = |Ω2|f(

√
u)2 ≤ f(

√
u)2

N∑
k=1

∣∣{σ2
k > 1}∣∣

with ∣∣{σ2
k > 1}∣∣ = ∫

{σ2
k
>1}

dx ≤
∫
{σ2

k
>1}

σ2
k dx ≤

∫
Ω

σ2
k dx,

which implies ∫
Ω2

f(
√
u)2 dx ≤ f(

√
u)2

∫
Ω

‖σ‖2 dx ≤ C

∫
Ω

‖σ‖2 dx. (51)

By (50)-(51), we obtain

f(
√
u)2 = −

∫
Ω

f(
√
u)2 dx ≤ C−

∫
Ω

[f(
√
u)2 + ‖σ‖2] dx. (52)

Then, using in particular Schwarz inequality :
√
uk ≥ −

∫
Ω

√
uk, we have

−
∫
Ω

σ2
k = −

∫
Ω

uk − 2
√
uk

√
uk + uk ≤ 2

{
−
∫

uk −
(
−
∫
Ω

√
uk

)2
}

= 2−
∫
Ω

(√
uk −−

∫
Ω

√
uk

)2

.

Using now Poincaré-Wirtinger’s inequality implies that

−
∫
Ω

σ2
k = 2−

∫
Ω

(√
uk −−

∫
Ω

√
uk

)2

≤ C−
∫
Ω

|∇√
uk|2.

Whence (48) by plugging this inequality for all k = 1, ..., N into (52). �

Proof of Lemma 5. Combining Lemmas 11, 12, and 13, we obtain

E(u | z) ≤ C−
∫
Ω

f(
√
u)2 +

N∑
k=1

|∇√
uk|2. (53)

Here, the elementary inequality

(√
Y −

√
X

)2

≤ (Y −X) log
Y

X
, X, Y ≥ 0,

applied to Y =
∏m

i=1 ui, X =
∏N

j=m+1 uj , implies that

f(
√
u)2 ≤ f(u)

(
log

m∏
i=1

ui − log
N∏

j=m+1

uj

)

and hence

−
∫
Ω

f(
√
u)2 ≤ −

∫
Ω

(
log

m∏
i=1

ui − log

N∏
j=m+1

uj

)(
m∏
i=1

ui −
N∏

j=m+1

uj

)
.

From this inequality and (53), we obtain

E(u | z) ≤ CD(u). (54)
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Finally, we use the additivity property E(u | z) = E(u | u) + E(u | z) and the

logarithmic Sobolev inequality (see e.g. Theorem 17 in [5])

E(uk | uk) ≤ C−
∫
Ω

|∇√
uk|2, 1 ≤ k ≤ N,

to deduce the statement of Lemma 5. �

5. Concluding remarks

The main result of Theorem 3 is proved under the positivity assumption (7). This is

actually not a restriction. Indeed, if one has −
∫
Ω
ui0+uj0 = 0 for some 1 ≤ i ≤ m < j ≤155

N , in other words if ui0 ≡ 0 ≡ uj0, then by uniqueness, uε
i(t) ≡ 0 ≡ uε

j(t), f(u
ε) ≡ 0

and System (2) is reduced to the heat equation for each uk. It is well known in this

case that uk(t) converges exponentially as t → ∞ to the average −
∫
Ω
uk0.

On the other hand, Theorem 3 does not handle the interesting case when the

chemical species are not separated, contrary to the reversible reaction (1). Then, the

system has boundary equilibria and it is known that the standard entropy method

does not work (see for instance [13], [7] and their references). This is the case for

instance with the typical following reaction

A1 + 2A2 � 2A1 +A2.

The corresponding system writes⎧⎨
⎩

∂u1
∂t

− d1Δu1 = u1u
2
2 − u2

1u2 = − [
∂u2
∂t

− d2Δu2

]
,

∂u1
∂ν

= 0 = ∂u2
∂ν

, (u, v)|t=0 = (u0(x), v0(x)) ≥ 0.
(55)

Here, the only positive solution of System (22), namely of

z1z
2
2 = z21z2, z1 + z2 = u10 + u20 := U12,

is given by z = (U12/2, U12/2). But the situation is quite different from Theorem 3.

Indeed if U12 > 0, the solution does not always converge to this z. If we chose for

instance, u10 ≡ 0, u20 ≡ a > 0, then, by uniqueness, the solution is independent of the

space variable x and is given by (u1(t), u2(t)) = (0, a). Actually, the solution of the

spatially homogeneous part of this system is given by (u1(t), u2(t)) = (v(t), a − v(t))

where v is solution of

v′ = v(a− v)(a− 2v).
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And this equation has three stationary states, 0, a/2, a. The second one is stable,

while the first and the third ones are unstable. Such a behavior probably holds for160

System (55) and more generally, for systems corresponding to general reversible chem-

ical reactions with all A1, ..., AN appearing on both sides so that boundary equilibria

appear. We refer to [7] for an extension of the entropy method applied to a specific

situation with such boundary equilibria.
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