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1. Introduction

We say that a compactly supported probability measure p is a spectral measure if there exists a set of com-
plex exponentials F(A) := {e?™}#)}, o, such that it is an orthonormal basis of L?(y). If such A exists, it is
called a spectrum of . We also say a set {2 is a spectral set if yqdx is a spectral measure. The study of spectral
sets was first initiated from B. Fuglede in 1974 [10]. He proposed a reasonable conjecture on spectral sets:

Fuglede’s Conjecture. {2 C R?® is a spectral set if and only if  is a translational tile.

The problem of spectral measures is exciting when we consider fractal measures. Jorgensen and Pedersen
1
2n
at most two orthogonal exponentials when the contraction is ﬁ Following this discovery, more spectral

[13] showed that the standard Cantor measure is a spectral measure if the contraction is 5-, while there are

fractal measures were found [1-6,8,7,9,11,12,14-16]. In particular, An and He [1] constructed a class of
Moran spectral measures. Motivated by their ideas, we will focus on certain Moran measures.

Two finite sets A = {a;} and S = {s;} of cardinality ¢ in R form a compatible pair, following the
terminology of [16], if the matrix M = [%e(ajsk)] is a unitary matrix. In other words (d4,S) is a spectral

pair, where
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0= Z ééa.

acA

A compatible tower is a sequence (finite or infinite) of compatible pairs

{Bo, Lo},{B1,L1},{B2, La},- -

with B; C M; 'Z" and L; C Z", and matrices R; € GL(n, M; 1Z") for j > 1.

Let {N;}32, be a sequence of integers with all N; > 2 and let {D;}52, be a sequence of digit sets with
0 € Dj C Nfor each j > 0. We say {f;q(z) = le(x—i—d) :d € D;}%2, is a Moran iterated function system,
which is a generalization of an IFS. If sup{d : d € D;,j > 0} < oo, Strichartz [17] proved that there exists
a compact set 1" and a Borel probability measure pp supported on T'. Moreover,

(o) (o)
T=> (NoNi---N;)"'Dj =Y (NoNy---N;)"'d; :dj € Dj, j >0
=0 =0

and

pr = 6N<71Do ¥ O(NoN1) 1Dy ** % O(No Ny N;)~1D; ¥

where * is the convolution sign.

Let N = {N; : N; = 3rj,r; € Z*,j = 0,1,2,---} and D =
sup{d : d € Dj,j > 0} < oo and aj € 3Z + 1,b; € 3Z +2,j = 0,
corresponding Moran measure.

{D;j : D; = {0,a;,b;} C N} where
1,2,---. We use ppr,p to denote the

Theorem 1.1. un p s a spectral measure with a spectrum
A=roL+roNiL+---+roNy--- Ny L+ ---

where L = {—1,0,1} and each element of A is a finite sum.

Remark 1.2.

(1) Theorem 2.8 in [16] indicates that, to obtain uniform control in the use of Dominated Convergence
Theorem, expanding matrices {R;} must be chosen from a finite set of expanding matrices. However,
{N;} in Theorem 1.1 can be chosen from an infinite set of integers.

(2) If N; = 3, D; = {0,1,2} for all j € N, then ux p = x[o,1jdz. In this case, A = Z is a spectrum for
X[o,1jd2- In addition, given a N, we see that, for any D, the corresponding Moran measure has the same
spectrum.

2. Proof of Theorem

The mask function of a finite set D in R is defined by

mp(§) = #% > et

deD

As usual, the Fourier transform of a probability measure p in R is defined by
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A(E) = [ e du).

Then mp(§) = 55(5). Let Z(i) := {&: fi(§) = 0} denote the zero set of fi. A set of complex exponentials
{ex = e¥™A% : X\ € A} is said to be orthogonal if fi(A; — A;) = 0 for any A\;,A\; € A. We say that A is a
bi-zero set of fi if (A —A)\{0} C Z(ji) and 0 € A, and call it a maximal bi-zero set if it is maximal in Z(fi)
to have the set difference property. Clearly A is a bi-zero set if and only if {e) : A € A} is an orthogonal
subset with respect to u.

We first give the following lemma, which plays an important role in observing the zero set of m.

Lemma 2.1. Let a,b be two integers and ged(a,b) = 1. Then 1 + 2% + 2° has zero point on the unit circle if
and only if {a,b} = {1,2}(mod 3). In particular, when {a,b} = {1,2}(mod 3), 1 + 2% + 2 and 1 + z + 2*

have the same zero set on the unit circle.

Proof. The sufficiency is obvious. As for necessity, let z = e2™* be a zero point of 1 4+ 2 + 2. We have

27(@5 = 2kjlﬂ' —+ 2% 27TCL£ = 2]f37r + 4?71—
2b¢ = 2kom + 47 2mb¢ = 2kym + 2

where kq, ko, k3, k4 are integers. Thus 3aks + 2a = 3bk; + b or 3aks + a = 3bks + 2b. Since ged(a,b) = 1, we
get {a,b} = {1,2}(mod 3).
27

The set of zero points on the unit circle of 1 + z + 22 is {w,w?} where w = €5 . Evidently, when
{a,b} = {1,2}(mod 3), w and w? are also zero points of 1 + z% + 2°. Conversely, if z is a zero point of

1+ 2% + 2%, we have
2% =w 2% = w?
or
2% = w? 22 =w.

Since ged(a, b) = 1, there exist two integers p, ¢ such that pa + gb = 1. Therefore,

7= Patab — (PF2 op 5 = ppatab — 2P Fa
Obviously, z # 1, s0 z = w or z = w?. We complete the proof. O

By sup{d:d € D;,j > 0} < oo, we can take two integers a,b such that |a| > sup{|a;|}, [b] > sup{|b;|},
|a — b] > sup{|a; — b;|} and ged(a,b) = 1.

Lemma 2.2. There exists a positive constant § such that
Imp, () = [mp(§)], V€ € (0,6),Vj €N,
where D = {0,a,b}. In particular, |mp(€§)| is decreasing on (0,9).
Proof. It is easy to calculate that
9mp(&)]> = 3 + 2cos2ma& + 2cos2mbE + 2cos(a — b)E.

For 6 > 0 small enough, the results hold. O
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Given any n € N, we can expand it into the unique finite triadic expansion,

k
n= Zajfijfl, o €{0,1,2}, o5 #0.

j=1

In this way n is uniquely corresponding to one word o = o7 - - - 03 which is called the triadic expansion of n.
Define a mapping 7 from {0,1,2} to {—1,0,1} as 7(0) = 0, 7(1) = 1 and 7(2) = —1. It is easy to check
that A = {roA,}32, holds, where

[es) k—1
An ZT(O'l)—l-ZT(Uk) HNj
k=2 j=1

We have the following lemma.

Lemma 2.3. Let {N,,} be a subsequence of {N;} with Ny, — 00 as j — 0o, and let 0 < k < 3"+1~1 for all
j € Z. For an arbitrary but fired € € R, we have

o0
§+ 1ok
v = H MDy, . 1+ <7Hnj+l+l N —1
=0 1=0 ?

as j — Q.

Proof. It is easy to check that there exists a positive constant ¢ such that

§+rodk
TR

Since n; — oo as j — oo, for all j large enough, we have

| E+rods | o5 s,

i1+l g7
[LZg Ni

Notice [mp(§)| = [mp(—¢)|. By Lemma 2.2 and N,,; — oo as j — oo, we have

m E+ oAk
D X
125 N

=0

a 1 1 E4+ 1o
> mp | 7 - o
3 T

— 1 E+ oAk
1N, D e —1
<Nnj+1 RS 1Ni>|

m 1 §+ oMk

D g :
Nojor TI5 ' N

as j — 0o, where N = min{N;}. O

We recall also the Jorgensen—Pedersen Lemma about checking when A is a spectrum for p.
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Lemma 2.4. [15] A is a spectrum for a probability measure u on R? if and only if

Q) =) A+ N> =1.

AEA

Moreover, if A is an orthogonal set, then Q is an entire function on C* with 0 < Q(z) < 1 for z € R%.
For any n € N, set
oy = 5N51D0 * O(NoN1)~1Dy % % O(NgNy-Nn_1)~1 D1 -
We have the following lemma.

Lemma 2.5.

3mi41 -1
> B E o)’ =1, VEER,
k=0
Proof. Tt is easy to check that {To)\k}i:jgl ~!is a bi-zero set of ju,,,,. Then E({To)\k}i:jgl ~1) is an orthogo-

nal subset with respect to fin, . The dimension of the space L?(fiy, ., ) is just 3"+, hence E({ro)\k}zzgl |

is an orthonormal basis of L?(fin, ,, ), that is, {To)\k}i:jgl ~!is a spectrum of i, ,,. According to Lemma 2.4,
we get the desired result. O

Proof of Theorem 1.1. Case I: When {N;} are chosen from a finite set of integers. Let B; = (N;)™'D;
and Lj = r;L for j > 0. Then {Bj;, L;} forms a compatible power with R; = N;_; for j > 1. We have by
Lemma 2.1 that the zero set of p,, is

Z(pn) ={£ €R: () =0} = U?:_olTorl ~ri{a:3ta,a €L},
and
To=(Ry)™ - (RY) " Lo+ (By) ™" (R3) 'Ly -+ (By) " Lo
= (Np—1)™ "+ (No) 'Lo+ (Np—1) ™ - (N1) 'Ly + -+ 4 (Np—1) "' L1

It is easy to calculate that T, C (—3, %

T, by %, uniformly in n. According to Theorem 2.8 in [16], we have that sx,p is a spectral measure with a

) for any n € N. Hence the zero set Z(1,,) is separated from the set

spectrum A.

Case II: When {N;} are chosen from an infinite set of integers, there exists a subsequence {N,,, } of {N;}
with N, — 00 as j — oo. We argue by contradiction. Notice that A = {roA, }72,. Suppose that {roA, o
is not a spectrum of pps p, then we can pick a § € R such that 0 < Q(&) < 1. By Lemma 2.3, for j large
enough, we have v;(&y) > % Therefore,

Q(&o) + 1'

|iin D (&0 + ToAk)| = [Fim, 1y (o + rode)| - v5(€0) > Him, 1, (S0 + Toe)] - 5

We then get from Lemma 2.5 that the following inequalities hold.

3"+l —1

1> Qn,, (&) = Qn,(S0) + Z |1 (&0 + ToAk)|?

k=3"i
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= Qn, (o) + 3 Ji_l i, 11 (S0 + moXe) [ - v (€0)
k=33
s Que+ (123 e o) - Q&)
k=02 3" —1
> Qn; (&) + | 1— 0 11 kz:; lin D (€0 + rodn)]?

> Q) + ),

Q&) +1
2

Tterating the above inequalities, we have 1 > co. This is impossible. Hence, {roA, }52, must be a spectrum
of pin,p.
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