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Let {0, aj , bj} = {0, 1, 2}(mod 3) be a sequence of digit sets in Z, and let {Nj = 3rj}
be a sequence of integers bigger than 1. We call {fj,d(x) = N−1

j (x + d) : d ∈
{0, aj , bj}}∞j=0 a Moran iterated function system, which is a generalization of an 
IFS. We prove that the associated Moran measure is spectral.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We say that a compactly supported probability measure μ is a spectral measure if there exists a set of com-
plex exponentials E(Λ) := {e2πi〈λ,x〉}λ∈Λ such that it is an orthonormal basis of L2(μ). If such Λ exists, it is 
called a spectrum of μ. We also say a set Ω is a spectral set if χΩdx is a spectral measure. The study of spectral 
sets was first initiated from B. Fuglede in 1974 [10]. He proposed a reasonable conjecture on spectral sets:

Fuglede’s Conjecture. Ω ⊂ Rs is a spectral set if and only if Ω is a translational tile.

The problem of spectral measures is exciting when we consider fractal measures. Jorgensen and Pedersen 
[13] showed that the standard Cantor measure is a spectral measure if the contraction is 1

2n , while there are 
at most two orthogonal exponentials when the contraction is 1

2n+1 . Following this discovery, more spectral 
fractal measures were found [1–6,8,7,9,11,12,14–16]. In particular, An and He [1] constructed a class of 
Moran spectral measures. Motivated by their ideas, we will focus on certain Moran measures.

Two finite sets A = {aj} and S = {sj} of cardinality q in R form a compatible pair, following the 
terminology of [16], if the matrix M = [ 1√

q e(ajsk)] is a unitary matrix. In other words (δA, S) is a spectral 
pair, where
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δA :=
∑
a∈A

1
q
δa.

A compatible tower is a sequence (finite or infinite) of compatible pairs

{B0, L0}, {B1, L1}, {B2, L2}, · · ·

with Bj ⊂ M−1
j Zn and Lj ⊂ Zn, and matrices Rj ∈ GL(n, Mj−1Zn) for j ≥ 1.

Let {Nj}∞j=0 be a sequence of integers with all Nj ≥ 2 and let {Dj}∞j=0 be a sequence of digit sets with 
0 ∈ Dj ⊂ N for each j ≥ 0. We say {fj,d(x) = N−1

j (x +d) : d ∈ Dj}∞j=0 is a Moran iterated function system, 
which is a generalization of an IFS. If sup{d : d ∈ Dj , j ≥ 0} < ∞, Strichartz [17] proved that there exists 
a compact set T and a Borel probability measure μT supported on T . Moreover,

T =
∞∑
j=0

(N0N1 · · ·Nj)−1Dj =

⎧⎨⎩
∞∑
j=0

(N0N1 · · ·Nj)−1dj : dj ∈ Dj , j ≥ 0

⎫⎬⎭
and

μT = δN−1
0 D0

∗ δ(N0N1)−1D1 ∗ · · · ∗ δ(N0N1···Nj)−1Dj
∗ · · · ,

where ∗ is the convolution sign.
Let N = {Nj : Nj = 3rj , rj ∈ Z+, j = 0, 1, 2, · · · } and D = {Dj : Dj = {0, aj , bj} ⊂ N} where 

sup{d : d ∈ Dj , j ≥ 0} < ∞ and aj ∈ 3Z + 1, bj ∈ 3Z + 2, j = 0, 1, 2, · · · . We use μN ,D to denote the 
corresponding Moran measure.

Theorem 1.1. μN ,D is a spectral measure with a spectrum

Λ = r0L + r0N1L + · · · + r0N1 · · ·NkL + · · ·

where L = {−1, 0, 1} and each element of Λ is a finite sum.

Remark 1.2.

(1) Theorem 2.8 in [16] indicates that, to obtain uniform control in the use of Dominated Convergence 
Theorem, expanding matrices {Rj} must be chosen from a finite set of expanding matrices. However, 
{Nj} in Theorem 1.1 can be chosen from an infinite set of integers.

(2) If Nj = 3, Dj = {0, 1, 2} for all j ∈ N, then μN ,D = χ[0,1]dx. In this case, Λ = Z is a spectrum for 
χ[0,1]dx. In addition, given a N , we see that, for any D, the corresponding Moran measure has the same 
spectrum.

2. Proof of Theorem

The mask function of a finite set D in R is defined by

mD(ξ) = 1
#D

∑
d∈D

e−2πidξ.

As usual, the Fourier transform of a probability measure μ in R is defined by
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μ̂(ξ) =
∫

e−2πiξxdμ(x).

Then mD(ξ) = δ̂D(ξ). Let Z(μ̂) := {ξ : μ̂(ξ) = 0} denote the zero set of μ̂. A set of complex exponentials 
{eλ = e2πiλx : λ ∈ Λ} is said to be orthogonal if μ̂(λi − λj) = 0 for any λi, λj ∈ Λ. We say that Λ is a 
bi-zero set of μ̂ if (Λ −Λ)\{0} ⊂ Z(μ̂) and 0 ∈ Λ, and call it a maximal bi-zero set if it is maximal in Z(μ̂)
to have the set difference property. Clearly Λ is a bi-zero set if and only if {eλ : λ ∈ Λ} is an orthogonal 
subset with respect to μ.

We first give the following lemma, which plays an important role in observing the zero set of μ̂N ,D.

Lemma 2.1. Let a, b be two integers and gcd(a, b) = 1. Then 1 + za + zb has zero point on the unit circle if 
and only if {a, b} = {1, 2}(mod 3). In particular, when {a, b} = {1, 2}(mod 3), 1 + za + zb and 1 + z + z2

have the same zero set on the unit circle.

Proof. The sufficiency is obvious. As for necessity, let z = e2πiξ be a zero point of 1 + za + zb. We have{
2πaξ = 2k1π + 2π

3
2πbξ = 2k2π + 4π

3
or

{
2πaξ = 2k3π + 4π

3
2πbξ = 2k4π + 2π

3

where k1, k2, k3, k4 are integers. Thus 3ak2 + 2a = 3bk1 + b or 3ak4 + a = 3bk3 + 2b. Since gcd(a, b) = 1, we 
get {a, b} = {1, 2}(mod 3).

The set of zero points on the unit circle of 1 + z + z2 is {ω, ω2} where ω = e
2πi
3 . Evidently, when 

{a, b} = {1, 2}(mod 3), ω and ω2 are also zero points of 1 + za + zb. Conversely, if z is a zero point of 
1 + za + zb, we have {

za = ω

zb = ω2 or
{

za = ω2

zb = ω.

Since gcd(a, b) = 1, there exist two integers p, q such that pa + qb = 1. Therefore,

z = zpa+qb = ωp+2q or z = zpa+qb = ω2p+q.

Obviously, z �= 1, so z = ω or z = ω2. We complete the proof. �
By sup{d : d ∈ Dj , j ≥ 0} < ∞, we can take two integers a, b such that |a| ≥ sup{|aj |}, |b| ≥ sup{|bj |}, 

|a − b| ≥ sup{|aj − bj |} and gcd(a, b) = 1.

Lemma 2.2. There exists a positive constant δ such that

|mDj
(ξ)| ≥ |mD(ξ)|,∀ξ ∈ (0, δ),∀j ∈ N,

where D = {0, a, b}. In particular, |mD(ξ)| is decreasing on (0, δ).

Proof. It is easy to calculate that

9|mD(ξ)|2 = 3 + 2cos2πaξ + 2cos2πbξ + 2cos(a− b)ξ.

For δ > 0 small enough, the results hold. �
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Given any n ∈ N, we can expand it into the unique finite triadic expansion,

n =
k∑

j=1
σj3j−1, σj ∈ {0, 1, 2}, σk �= 0.

In this way n is uniquely corresponding to one word σ = σ1 · · ·σk which is called the triadic expansion of n. 
Define a mapping τ from {0, 1, 2} to {−1, 0, 1} as τ(0) = 0, τ(1) = 1 and τ(2) = −1. It is easy to check 
that Λ = {r0λn}∞n=0 holds, where

λn = τ(σ1) +
∞∑
k=2

τ(σk)

⎛⎝k−1∏
j=1

Nj

⎞⎠ .

We have the following lemma.

Lemma 2.3. Let {Nnj
} be a subsequence of {Nj} with Nnj

→ ∞ as j → ∞, and let 0 ≤ k ≤ 3nj+1−1 for all 
j ∈ Z. For an arbitrary but fixed ξ ∈ R, we have

νj :=
∞∏
l=0

∣∣∣∣∣mDnj+1+l

(
ξ + r0λk∏nj+1+l
i=0 Ni

)∣∣∣∣∣ → 1

as j → ∞.

Proof. It is easy to check that there exists a positive constant c such that

∣∣∣∣∣ ξ + r0λk∏nj+1−1
i=0 Ni

∣∣∣∣∣ ≤ c.

Since nj → ∞ as j → ∞, for all j large enough, we have

∣∣∣∣∣ ξ + r0λk∏nj+1+l
i=0 Ni

∣∣∣∣∣ ≤ δ, ∀l ≥ 0.

Notice |mD(ξ)| = |mD(−ξ)|. By Lemma 2.2 and Nnj
→ ∞ as j → ∞, we have

νj(ξ) ≥
∞∏
l=0

∣∣∣∣∣mD

(
ξ + r0λk∏nj+1+l
i=0 Ni

)∣∣∣∣∣
≥

∞∏
l=0

∣∣∣∣∣mD

(
1
N l

· 1
Nnj+1

· ξ + r0λk∏nj+1−1
i=0 Ni

)∣∣∣∣∣
=

∣∣∣∣∣mD

(
1

Nnj+1

· ξ + r0λk∏nj+1−1
i=0 Ni

)∣∣∣∣∣ ·
∣∣∣∣∣μ̂N,D

(
1

Nnj+1

· ξ + r0λk∏nj+1−1
i=0 Ni

)∣∣∣∣∣ → 1

as j → ∞, where N = min{Ni}. �
We recall also the Jorgensen–Pedersen Lemma about checking when Λ is a spectrum for μ.
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Lemma 2.4. [13] Λ is a spectrum for a probability measure μ on Rd if and only if

Q(ξ) :=
∑
λ∈Λ

|μ̂(ξ + λ)|2 ≡ 1.

Moreover, if Λ is an orthogonal set, then Q is an entire function on Cd with 0 ≤ Q(x) ≤ 1 for x ∈ Rd.

For any n ∈ N, set

μn = δN−1
0 D0

∗ δ(N0N1)−1D1 ∗ · · · ∗ δ(N0N1···Nn−1)−1Dn−1 .

We have the following lemma.

Lemma 2.5.

3nj+1−1∑
k=0

|μ̂nj+1(ξ + r0λk)|2 ≡ 1, ∀ξ ∈ R.

Proof. It is easy to check that {r0λk}3nj+1−1
k=0 is a bi-zero set of μnj+1 . Then E({r0λk}3nj+1−1

k=0 ) is an orthogo-
nal subset with respect to μnj+1 . The dimension of the space L2(μnj+1) is just 3nj+1 , hence E({r0λk}3nj+1−1

k=0 )
is an orthonormal basis of L2(μnj+1), that is, {r0λk}3nj+1−1

k=0 is a spectrum of μnj+1 . According to Lemma 2.4, 
we get the desired result. �
Proof of Theorem 1.1. Case I: When {Nj} are chosen from a finite set of integers. Let Bj = (Nj)−1Dj

and Lj = rjL for j ≥ 0. Then {Bj , Lj} forms a compatible power with Rj = Nj−1 for j ≥ 1. We have by 
Lemma 2.1 that the zero set of μn is

Z(μ̂n) = {ξ ∈ R : μ̂n(ξ) = 0} = ∪n−1
j=0 r0r1 · · · rj{a : 3 � a, a ∈ Z},

and

Tn = (R∗
n)−1 · · · (R∗

1)−1L0 + (R∗
n)−1 · · · (R∗

2)−1L1 + · · · + (R∗
n)−1Ln−1

= (Nn−1)−1 · · · (N0)−1L0 + (Nn−1)−1 · · · (N1)−1L1 + · · · + (Nn−1)−1Ln−1.

It is easy to calculate that Tn ⊂ (−1
2 , 

1
2 ) for any n ∈ N. Hence the zero set Z(μ̂n) is separated from the set 

Tn by 1
2 , uniformly in n. According to Theorem 2.8 in [16], we have that μN ,D is a spectral measure with a 

spectrum Λ.
Case II: When {Nj} are chosen from an infinite set of integers, there exists a subsequence {Nnj

} of {Nj}
with Nnj

→ ∞ as j → ∞. We argue by contradiction. Notice that Λ = {r0λn}∞n=0. Suppose that {r0λn}∞n=0
is not a spectrum of μN ,D, then we can pick a ξ0 ∈ R such that 0 ≤ Q(ξ0) < 1. By Lemma 2.3, for j large 
enough, we have νj(ξ0) ≥ Q(ξ0)+1

2 . Therefore,

|μ̂N ,D(ξ0 + r0λk)| = |μ̂nj+1(ξ0 + r0λk)| · νj(ξ0) ≥ |μ̂nj+1(ξ0 + r0λk)| ·
Q(ξ0) + 1

2 .

We then get from Lemma 2.5 that the following inequalities hold.

1 ≥ Qnj+1(ξ0) = Qnj
(ξ0) +

3nj+1−1∑
n

|μ̂N ,D(ξ0 + r0λk)|2

k=3 j
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= Qnj
(ξ0) +

3nj+1−1∑
k=3nj

|μ̂nj+1(ξ0 + r0λk)|2 · νj(ξ0)

≥ Qnj
(ξ0) +

(
1 −

3nj−1∑
k=0

|μ̂nj+1(ξ0 + r0λk)|2
)

· Q(ξ0) + 1
2

≥ Qnj
(ξ0) +

(
1 − 2

Q(ξ0) + 1

3nj−1∑
k=0

|μ̂N ,D(ξ0 + r0λk)|2
)

· Q(ξ0) + 1
2

≥ Qnj
(ξ0) + 1 −Q(ξ0)

2 .

Iterating the above inequalities, we have 1 ≥ ∞. This is impossible. Hence, {r0λn}∞n=0 must be a spectrum 
of μN ,D.
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