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ORDERED PROBABILITY SPACES

JIMMIE LAWSON

Abstract. Let C be an open cone in a Banach space equipped with the Thompson

metric with closure a normal cone. The main result gives sufficient conditions for

Borel probability measures μ, ν on C with finite first moment for which μ ≤ ν in

the stochastic order induced by the cone to be order approximated by sequences

{μn}, {νn} of uniform finitely supported measures in the sense that μn ≤ νn for each

n and μn → μ, νn → ν in the Wasserstein metric. This result is the crucial tool

in developing a pathway for extending various inequalities on operator and matrix

means, which include the harmonic, geometric, and arithmetic operator means on

the cone of positive elements of a C∗-algebra, to the space P1(C) of Borel measures

of finite first moment on C. As an illustrative and important particular application,

we obtain the monotonicity of the Karcher geometric mean on P1(A+) for the

positive cone A+ of a C∗-algebra A.

1. Introduction

The set P1(M) of Borel probability measures with finite first moment on a metric

space M admits a standard metric called the Wasserstein metric. In [13] K.-T. Sturm

considered contractive barycentric maps β : P1(M) → M , maps that were metrically

contractive and carried a point measure to the corresponding point. If M is complete,

then a contractive barycentric map on the set P0(M) of uniform, finitely supported

probability measures extends uniquely to a barycentric map on P1(M), since P0(M)

is dense in P1(M) in the topology of the Wasserstein metric. In [8] Y. Lim and the

author have modified this result by giving appropriate conditions for uniformity of

an indexed family of symmetric means {Gn}n≥1 to induce to a unique contractive

barycentric map on P1(M).

Key words and phrases. Borel probability measure, metric space, Wasserstein metric, barycentric

map, partially ordered space.
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2 JIMMIE LAWSON

In this paper we revisit these results in the setting of metric spaces equipped with

a closed partial order. The partial order induces in a natural way a partial order on

P1(M), the stochastic order. In our main result we give sufficient conditions to show

if μ ≤ ν in P1(M), then there exist sequences {μn}, {νn} ⊆ P0(M) such that μn → μ,

νn → ν, and μn ≤ μn for each n. (This result may be viewed as strengthening the

result that P0(M) is dense in P1(M).)

Our main motivation for deriving these results is the setting of the open cone of

positive matrices with the Loewner order, or more generally the cone of positive

elements in a C∗-algebra. We show in this case that the Thompson metric satisfies

the hypotheses of our main theorem. This allows us to conclude that if a contractive

barycentric map β : P1(M) → M is order preserving when restricted to P0(M),

then is order preserving on P1(M). It is frequently the case that order preservation

is considerably easier to derive for P0(M), so the paper provides an important and

helpful pathway for showing order preservation of barycentric maps.

In related work S. Kim and H. Lee [5] extended via the Bochner integral the theory

of the widely studied least squares aka Cartan aka Karcher mean on the open cone Pn

of positive definite n× n-matrices to a barycentric map on the compactly supported

Borel measures, with an extension to the square-integrable functions. Using this

approach they were able to extend basic properties of the Karcher mean to this more

general setting. A more ambitious program was undertaken by M. Pálfia [12], who

generalized the techniques of [7] to define and approximate a barycentric map given by

the solution of an integral generalized Karcher equation for a given Borel probability

measure with bounded support on the cone P of positive operators on a Hilbert space.

2. Preliminaries

For a metric space X, let B(X) be the algebra of Borel sets, the smallest σ-algebra

containing the open sets. A Borel measure μ is a countably additive (positive) measure

defined on B(X). The support of μ consists of all points x for which μ(U) > 0 for each

open set U containing x. The support of μ is always a closed set. The finitely supported

measures are those of the form
∑n

i=1 riδxi
, where for each i, ri ≥ 0,

∑n
I=1 ri = 1, and

δxi
is the point measure of mass 1 at the point xi. As far as the author has determined,

the earliest reference for the following result is [9].
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Lemma 2.1. Let X be a metric space and μ a finite Borel measure, i.e., one for

which μ(X) < ∞. Then supp(μ), the support of μ, is separable.

Proof. The case that supp(μ) has cardinality less than two is trivial, so we assume

there exist a, b ∈ supp(μ) such that a �= b. Let d(a, b) ≥ 1/N , N a positive integer.

Let us call a nonempty subset A of X ε−scattered if d(x, y) ≥ ε whenever x, y ∈ A

and x �= y. For m ≥ N , let Am = {A ⊆ supp(μ) : A is (1/m) − scattered}. Note

that {a, b} is 1/m-scattered and the union of any collection of members of Am totally

ordered by inclusion is again a member of Am. Hence by Zorn’s Lemma, there exists

a maximal member Am of Am. By the maximality of Am, if x ∈ supp(μ), then

d(x, a) < 1/m for some a ∈ Am (otherwise we can make Am larger by adding x).

We claim that Am is countable. First note that since Am is 1/m-scattered, the

collection {B1/2m(a) : a ∈ Am} of open balls of radius 1/2m is pairwise disjoint. For

each k ∈ N, define Am,k = {a ∈ Am : μ(B1/2m(a)) ≥ 1/k}. Note that for nmembers of

Am,k, the union
⋃n

i=1 B1/2m(ai) has measure at least n/k ≤ μ(X). Thus n is bounded

above by kμ(X), from which it follows that Am,k is finite. Note for every a ∈ Am,

μ(B1/2m(a)) > 0 since a ∈ supp(μ). It follows that Am =
⋃

k Am,k, a countable union

of finite sets, and hence Am is countable. Thus D =
⋃

m Am is a countable union

of countable sets, hence countable. The fact that for any x ∈ supp(μ) and any m,

d(x,Am) < 1/m implies that D is dense. �

Remark 2.2. Let μ be a finite Borel measure on X, a metric space.

(i) For X separable, the complement of the support is a countable union of open sets

of measure 0, hence has measure 0, and thus μ(suppμ) = 1.

(ii) Similarly for τ -additive measures one may realize the complement of the support

as a directed union of open sets of measure 0 hence the complement has measure

0, and the support has measure 1. (Recall that a Borel measure μ is τ -additive if

μ(
⋃

α Uα) = supα μ(Uα) for all directed families {Uα : α ∈ D} of open sets.)

In what follows we wish to avoid dealing with the problematic and pathological

case of probability measures that are not support-concentrated in the sense that the

measure of their support is less than one. We can give a convenient characterization

of the measures we will consider. First we recall the Prohorov metric π(μ, ν) defined

for two Borel probability measures μ, ν on X as the infimum of all ε > 0 such that
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for all closed sets A,

μ(A) ≤ ν(Aε) + ε, ν(A) ≤ μ(Aε) + ε,

where Aε = {x ∈ X : d(x, y) < ε for some y ∈ A}.

Proposition 2.3. For μ a Borel probability on a metric space (X, d), the following

are equivalent.

(1) There exists a sequence {μn} of finitely supported probability measures (with ra-

tional coefficients) that converges to μ with respect to the Prohorov metric.

(2) The support of μ has measure 1.

(3) The measure μ is τ -additive.

Proof. (1 ⇒ 2) By (iii) of the section on the Prohorov metric of [2], {μn} converges

weakly to μ. Let A be the closure of
⋃∞

n=1 supp, μn. Then A is a separable subspace

of X. We note that μn(A) = 1 for each n. Then μ(A) = 1 by the Portmanteau

Theorem [2, Theorem 2.1(iii)]. It follows that the complement of A has μ-measure 0

(hence misses the support) and that the restriction of μ to A is a Borel probability

measure on the separable space A. Hence by Remark 2.2(i) the support of μ, which

will be the same for μ and μ restricted to A, has measure 1.

(2 ⇒ 1) The measure μ restricted to A =supp(μ) is a Borel probability measure

on A, which is separable by Lemma 2.1. It is standard fact that the space of Borel

probabilty measures on a separable metric space endowed with the Prohorov metric is

again separable, and the proof of this fact typically involves constructing a sequence

of finitely supported measures {μn} with rational coefficients that are dense (see item

(vi) leading up to Theorem 6.8 of [2]). Applying this fact to A yields the desired

sequence.

(3 ⇔ 2) One direction follows from Remark 2.2. Assume (2) and note for any Borel

set B,

μ(B) = μ(B ∩ supp(μ)) + μ(B \ supp(μ)) = μ(B ∩ supp(μ)) + 0 = μ(B ∩ supp(μ)).

Let {Uα : α ∈ D} be a directed family of open sets with union W . Then in the

subspace supp(μ), {U ∩ supp(μ) : U ∈ D} is a directed family of open sets with union

W ∩ U . It is standard that every Borel probability measure in a separable metric
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space is τ -additive (one can pick a countable subset of D with the same union), so

μ(W ) = μ(W ∩ supp(μ)) = sup{μ(U ∩ supp(μ) : U ∈ D} = sup{μ(U) : U ∈ D}.

�

Let P(X) be the set of all support-concentrated Borel probability measures on

(X,B(X)) (in the sense that μ(supp(μ))=1) and P0(X) the set of all μ ∈ P(X) of

the form μ = 1
n

∑n
j=1 δxj

with n ∈ N, where δx is the point measure of mass 1 at x.

Members of P0(X) are also referred to as uniform probability measures with finite

support. For p ∈ [1,∞) let Pp(X) ⊆ P(X) be the set of probability measures with

finite p-moment : for some (and hence all) y ∈ X,∫
X

dp(x, y)dμ(x) < ∞.

For p = ∞, P∞(X) denotes the set of probability measures with bounded support.

We sometimes refer to members of P1(X) as integrable probability measures.

For metric spaces X and Y , a map f : X → Y is measurable if f−1(A) ∈ B(X)

whenever A ∈ B(Y ). For f to be measurable, it suffices that f−1(U) ∈ B(X) for

each open subset U of Y , and hence continuous functions are measurable. A mea-

surable map f : X → Y induces a push-forward map f∗ : P(X) → P(Y ) defined

by f∗(μ)(B) = μ(f−1(B)) for μ ∈ P(X) and B ∈ B(Y ). Note that supp(f∗(μ)) =

f(supp(μ))−, the closure of the image of the support of μ.

We say that ω ∈ P(X×X) is a coupling for μ, ν ∈ P(X) and that μ, ν aremarginals

for ω if for all B ∈ B(X)

ω(B ×X) = μ(B) and ω(X × B) = ν(B).

Equivalently μ and ν are the push-forwards of ω under the projection maps π1 and

π2 resp. We note that one such coupling is the product measure μ× ν, and that for

any coupling ω it must be the case that supp(ω) ⊆ supp(μ) × supp(ν). We denote

the set of all couplings for μ, ν ∈ P(X) by Π(μ, ν).

For 1 ≤ p < ∞, the p-Wasserstein distance dWp (alternatively Kantorovich-Rubinstein

distance) on Pp(X) is defined by

dWp (μ1, μ2) :=

(
inf

π∈Π(μ1,μ2)

∫
X×X

dp(x, y)dπ(x, y)

)1/p

.
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It is known that dWp is a complete metric on Pp(X) whenever X is a complete metric

space and P0(X) is dWp -dense in Pp(X) [3, 13]. Furthermore, it follows from the Hölder

inequality that dWp ≤ dWp′ whenever p ≤ p′. We will be working almost exclusively

with dW1 , which we henceforth write more simply as dW .

The space P(X) is convex in the sense that (1 − t)μ + tν ∈ P(X) whenever

μ, ν ∈ P(X). It is easy to see that P1(X) is a convex subset of P(X).

Lemma 2.4. For μ1, μ2, ν ∈ P1(X), dW ((1 − t)μ1 + tμ2, ν) ≤ (1 − t)dW (μ1, ν) +

tdW (μ2, ν).

Proof. If ω1 ∈ Π(μ1, ν) and ω2 ∈ Π(μ2, ν), then it is straightforward to see that

(1− t)ω1 + tω2 ∈ Π((1− t)μ1 + tμ2, ν). Thus

dW ((1− t)μ1 + tμ2, ν) ≤
∫
X×X

d(x, y) d((1− t)ω1 + tω2)

= (1− t)

∫
X×X

d(x, y)dω1 + t

∫
X×X

d(x, y)dω2.

Taking infs over ω1 ∈ Π(μ1, ν) and ω2 ∈ Π(μ2, ν) yields the desired inequality. �

3. Approximating Probability Measures with Bounded Ones

In this section we present for an integrable probability measure μ in a metric

space M a scheme for approximating μ arbitrarily close in the Wasserstein metric by

probability measures with bounded support.

Lemma 3.1. Let M be a metric space and let f : M → M be a Borel measurable map.

If q ∈ P1(M) and
∫
M
d(x, f(x))dq < ∞, then f∗(q) ∈ P1(M) and dW (q, f∗(q)) ≤∫

M
d(x, f(x))dq.

Proof. We first note by the change of variables formula that∫
M

d(x, z)df∗(q)(x) =
∫
M

d(f(x), z)dq(x) ≤
∫
M

(d(x, f(x)) + d(x, z)) dq(x) < ∞,

so f∗(q) ∈ P1(M).

Next consider the measurable map F : M → M ×M defined by F (x) = (x, f(x)),

and let μ = F∗(q) ∈ P(M × M). For π1 : M × M → M , projection into the first
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coordinate, (π1)∗(μ) = (π1F )∗(q) = (1M)∗(q) = q. For the second projection π2,

(π2)∗(μ) = (π2F )∗(q) = f∗(q). So μ has marginals q and f∗(q). By definition

dW (q, f∗(q)) ≤
∫
M×M

d(x, y)dμ =

∫
M×M

d(x, y)d(F∗(q)) =
∫
M

d(x, f(x))dq,

where the last equality is just the change of variables formula. �

Lemma 3.2. Let M be a metric space, a ∈ M , and let q ∈ P1(M). Let An be

an increasing sequence of Borel sets such that M =
⋃

n An. Define fn : M → M

by fn(x) = x if x ∈ An and fn(x) = a otherwise. Then limn(fn)∗(q) = q in the

Wasserstein metric.

Proof. Let ε > 0. Since q ∈ P1(M),
∫
M
d(x, a) dq(x) < ∞. Let χn be the character-

istic function for An. By Lebesgue’s Dominated Convergence Theorem

lim
n

∫
An

d(x, a) dq(x) = lim
n

∫
M

χn(x)d(x, a) dq(x) =

∫
M

d(x, a) dq(x) < ∞, so

lim
n

∫
M\An

d(x, a) dq(x) = lim
n

(∫
M

d(x, a) dq(x)−
∫
An

d(x, a) dq(x)

)
= 0.

Thus
∫
M\An

d(x, a) dq(x) < ε for all n large enough. Then

∫
M

d(x, fn(x))dq =

∫
An

d(x, x) dq +

∫
M\An

d(x, a) dq(x) < 0 + ε = ε

for large n. Then (fn)∗(q) ∈ P1(M) and limn(fn)∗(q) = q now follow from Lemma

3.1. �

We need to have the freedom to send the complement of An into a varying point,

but this requires an extra hypothesis.

Lemma 3.3. Let M be a metric space, a ∈ M , and let q ∈ P1(M). Let An be an

increasing sequence of Borel sets such that M =
⋃

n An and let {an} be a sequence

in M . Define fn, gn : M → M by fn(x) = x = gn(x) if x ∈ An and fn(x) = a,

gn(x) = an otherwise. If there exists K > 0 such that for each n, there exists an open

ball Brn(a) ⊆ An such that Krn ≥ d(a, an), then limn(gn)∗(q) = q in the Wasserstein

metric and limn d
W ((gn)∗(q), (fn)∗(q)) = 0.
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Proof. By Lemma 3.2 (fn)∗(q) ∈ P1(M). Note that by hypothesis M \ An ⊆ M \
Brn(a), so

∫
M\An

d(x, a)dq(x) ≥ ∫
M\An

rn dq = rnq(M \ An). Since q ∈ P1(M), we

may choose An large enough so that
∫
M\An

d(x, a)dq(x) < ε/K (see the proof of the

previous lemma). We conclude that q(M \An) < ε/Krn, so that d(an, a)q(M \An) <

Krn(ε/Krn) = ε. We thus have∫
M

d(x, gn(x))dq ≤
∫
An

d(x, x)dq +

∫
M\An

d(x, an)dq(x)

≤ 0 +

∫
M\An

d(x, a)dq(x) +

∫
M\An

d(a, an)dq

≤
∫
M\An

d(x, a)dq(x) + d(a, an)q(M \ An).

As n → ∞, the first term goes to 0 by the proof of the preceding lemma and the

second term goes to 0 by the earlier part of this proof. That limn(gn)∗(q) = q, i.e.,

limn d
W (q, (gn)∗(q)) = 0, now follows from Lemma 3.1. Since also limn(fn)∗(q) = q

by the preceding lemma, we conclude limn d
W ((gn)∗(q), (fn)∗(q)) = 0. �

4. Approximation in Ordered Spaces

Definition 4.1. An ordered metric space is a metric space M = (M, d,≤) equipped

with a partial order that is closed in the sense that {(x, y) : x ≤ y} is a closed subset

of M ×M .

Throughout this section M = (M, d,≤) will denote an ordered metric space. For

A ⊆ M , we define ↑A = {y ∈ M : x ≤ y for some x ∈ A}. A set A is an upper

set if ↑A = A. Lower sets and ↓A are defined in a dual fashion (with respect to the

order). We write ↑x resp. ↓x for ↑{x} resp. ↓{x}. An order interval is a set of the

form [x, y] := {w ∈ M : x ≤ w ≤ y} = ↑x ∩ ↓y. Having a closed partial order implies

↑x, ↓x, and [x, y] are all closed sets.

Definition 4.2. For p, q ∈ P(M), we define p ≤ q if p(U) ≤ q(U) for all open upper

sets U .

This order is sometimes referred to as the stochastic order. The stochastic order

simplifies for finitely supported measures.
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Lemma 4.3. Suppose that X is a partially ordered topological space for which ↓x is

closed for each x ∈ X. For finitely supported measures μ, ν, we have μ ≤ ν if and

only if μ(A) ≤ ν(↑A) for each A ⊆ supp(μ).

Proof. Suppose μ ≤ ν and let A ⊆ supp(μ). Let U be the complement of
⋃{↓x : x ∈

supp(ν) \ ↑A}. By hypothesis the finite union is closed and hence U is open. It is

the complement of a lower set, hence an upper set. Since ↓x ∩ A = ∅ for x /∈ ↑A, we
conclude U contains A. Hence

μ(A) ≤ μ(U) ≤ ν(U) = ν(U ∩ supp(ν)) = ν(↑A ∩ supp(ν)) = ν(↑A).

Conversely suppose μ(A) ≤ ν(↑A) for each A ⊆ supp(μ). Let U = ↑U be an open

upper set. Set A = U ∩ supp(μ). Then μ(U) = μ(A) ≤ ν(↑A) ≤ ν(U). �

Proposition 4.4. Let p, q ∈ P1(M) such that q ≤ p, where M is an ordered metric

space. Let An = [zn, wn] be an increasing sequence of order intervals such that M =⋃
n An. Suppose for some a ∈ M there exists K > 0 and a sequence {rn} of positive

numbers such that Brn(a) ⊆ An and d(a, zn), d(a, wn) ≤ Krn for each n. Define fn

and gn by fn(x) = x = gn(x) for x ∈ An and fn(x) = zn, gn(x) = wn otherwise. Then

(fn)∗(q) ≤ (gn)∗(p) for each n and limn(fn)∗(q) = q and limn(gn)∗(p) = p.

Proof. Define Fn : M → M by Fn(x) = x for x ∈ An and Fn(x) = a otherwise.

By Lemma 3.3 limn d
W ((gn)∗(p), (Fn)∗(p)) = 0 and by Lemma 3.2 limn(Fn)∗(p) = p.

From these two assertions we conclude that limn(gn)∗(p) = p. Similarly limn(Fn)∗(q) =

q and hence limn(fn)∗(q) = q.

Let U be an open upper set. By hypothesis q(U) ≤ p(U). For fixed n, if U contains

zn, then (fn)∗(q)(U) = 1 = (gn)∗(p)(U) and if U misses [zn, wn] then (fn)∗(q)(U) =

0 = (gn)∗(p)(U). Assume U hits [zn, wn], but zn /∈ U . Since all the q-mass outside

[zn, wn] is stored at zn by (fn)∗(q), we conclude (fn)∗(q)(U) = q(U ∩ [zn, wn]) ≤ q(U).

Since all the p-mass outside [zn, wn] is stored at wn and wn ∈ U , we conclude that

(gn)∗(p)(U) = p(U ∩ [zn, wn]) + p(M \ [zn, wn])

≥ p(U ∩ [zn, wn]) + p(U ∩ (M \ [zn, wn])) = p(U).

We conclude (fn)∗(q) ≤ (gn)∗(p). �
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Lemma 4.5. Let M be an ordered metric space and let q =
∑n

i=1 wiδxi
be a finitely

supported measure. If ε > 0 and z ≤ xi for 1 ≤ i ≤ n, then there exists p =

(1/N)
∑N

i=1 δyi such that dW (q, p) < ε and p ≤ q. Furthermore, yi ∈ {z, x1, . . . , xn}
for 1 ≤ i ≤ N .

Proof. Pick B > 0 such that d(xi, z) ≤ B for 1 ≤ i ≤ n. For each i, 1 ≤ i ≤ n, choose

a dyadic rational ri = mi/2
ni ∈ Q such that 0 ≤ wi− ri < ε/nB. Define ω on M ×M

by ω({(xi, xi)}) = ri and ω({(xi, z)}) = wi − ri for 1 ≤ i ≤ n and ω({(x, y)}) = 0

otherwise. Then for 1 ≤ i ≤ n, wi = ω({xi} ×M) and 0 = ω({z} ×M), so the first

marginal of ω is q. Further ri = ω(M × {xi}) and 1 −∑n
i=1 ri = ω(M × {z}). This

gives the marginal p, where p({xi}) = ri and p({z}) = 1 −∑n
i=1 ri, and p({x}) = 0

for x ∈ M \ {z, x1, . . . , xn}. We have

dW (q, p) ≤
∫
M×M

d(x, y)dω =
n∑

i=1

d(xi, xi)ri + d(xi, z)(wi − ri) < 0 +Bn
ε

nB
= ε.

Since in passing from q to p we have lowered the weight at each xi and placed the

extra weight at the bottom point z, it follows easily that p(U) ≤ q(U) for any open

upper set, and hence p ≤ q.

Let N = max{2ni : i = 1, . . . , n}. Then each ri = mi/2
ni = ki/N for some

0 ≤ ki ≤ N . We obtain p = (1/N)
∑N

k=1 δyk where yk = xi appears ki times for each

i and z appears N −∑n
i=1 ki times. �

Definition 4.6. A partial ordered space M is said to have a basis of neighborhoods

consisting of order intervals if given any open set U and x ∈ U , there exist an open

set V and an order interval [z, w] such that x ∈ V ⊆ [z, w] ⊆ U .

Theorem 4.7. Let M be a metric space equipped with a closed order and having

a basis of neighborhoods consisting of order intervals. Let q ∈ P1(M) with support

supp(q) metrically bounded and contained in the interior of [z, w], an order interval.

Then there exists a sequence {qn} ⊆ P0(M) of finitely supported uniform measures

with support contained in [z, w] such that in the Wasserstein space P1(M), limn qn = q

and for each n, qn ≤ q (alternatively qn ≥ q).

Proof. The case q is a point mass is trivial (let qn = q), so we assume that is not the

case. Let (z, w) denote the interior of [z, w], the largest open set contained in [z, w].
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We construct the desired sequence in two steps.

Step 1. Let ε > 0. For each x ∈ supp(q), pick an order interval [zx, wx] and an open

set Vx such that x ∈ Vx ⊆ [zx, wx] ⊆ Br(x) ∩ (z, w), where r = ε/4. Since supp(q) is

separable by Lemma 2.1, hence second countable, countably many of the {Vx}, say
{Vi}i∈N, cover supp(q). Let [zi, wi] denote the corresponding order interval containing

Vi.

Define a sequence of sets Ai inductively by A1 = V1, Ak+1 = Vk+1 \
⋃k

i=1 Vi. We

delete those Ak that are empty, and renumber accordingly. The collection {Ak} forms

a partition of
⋃

i Vi. In particular,
⋃

k Ak contains supp(q), and hence has measure 1

(by our definition of P(M)). Since the collection {Ak} is a partition, it follows that

1 = q(
⋃

k Ak) =
∑∞

k=1 q(Ak). Since the diameter of supp(q) is assumed finite, we can

pick b > ε that is greater than the diameter of {z}∪supp(q). We can also pick m large

enough so that
∑m

k=1 q(Ak) > 1 − ε/2b, which means q(supp(q) \ ⋃m
k=1 Ak) < ε/2b.

Denote supp(q) \⋃m
k=1 Ak by D.

We define f : M → M by f(x) = zi if x ∈ Ai for 1 ≤ i ≤ m and f(x) = z

otherwise. Then f(x) ≤ x for each x ∈ [z, w] and f is Borel measurable since f(M)

is finite and the inverse image of each point is a Borel set. We note also for x in Ak

for 1 ≤ k ≤ m that d(x, f(x)) = d(x, zk) < ε/2 since each [zk, wk] is contained in an

open ball of radius ε/4. We compute

∫
M

d(x, f(x))dq =
m∑
k=1

∫
Ak

d(x, f(x))dq +

∫
D

d(x, f(x))dq

≤
m∑
k=1

ε

2
q(Ak) + bq(D)

≤ ε

2
+ b

ε

2b
= ε.

We conclude from Lemma 3.1 that dW (q, f∗(q)) < ε.

For each U = ↑U open in M , f−1(U) ∩ [z, w] ⊆ U since f(x) ≤ x for x ∈ [z, w].

We thus have

f∗(q)(U) = q[f−1(U)] = q(f−1(U) ∩ [z, w]) ≤ q(U),

where the second equality holds since supp(q) ⊆ [z, w]. Thus f∗(q) ≤ q.
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Step 2. We construct as in step 1 for n ∈ N and ε = 1/n a function fn : M → M

with finite image contained in [z, w] such that dW (q, (fn)∗q) < 1/n, (fn)∗(q) ≤ q. Thus

the sequence (fn)∗(q) converges to q in P1(M) equipped with the Wasserstein metric.

Since (fn)∗(q) is finitely supported measure, by Lemma 4.5 we may pick qn ∈ P0(M)

such that qn ≤ (fn)∗(q) and dW (qn, (fn)∗(q)) < 1/n. Then it must be the case that

limn qn = q since limn(fn)∗(q) = q. We have further for each n that qn ≤ (fn)∗(q) ≤ q.

Lemma 4.5 allows us to assume that supp(qn) ⊂ supp(fn)∗(q) ⊆ [z, w].

�

We come now to our main approximation theorem for ordered spaces.

Theorem 4.8. Let M be a metric space equipped with a closed order and having a

basis of neighborhoods consisting of order intervals. Let An = [zn, wn] be an increasing

sequence of metrically bounded order intervals such that An is contained in the interior

of An+1 for each n and such that M =
⋃

n An. Suppose for some a ∈ M there

exists K > 0 and a sequence {rn} of positive numbers such that Brn(a) ⊆ An and

d(a, zn), d(a, wn) ≤ Krn for each n. Then for p, q ∈ P1(M) with q ≤ p, there exist

sequences {qn}, {pn} ⊆ P0(M) such that qn → q and pn → p in the Wasserstein

distance and qn ≤ pn for each n.

Proof. By Proposition 4.4 there exists sequences (fn)∗(q) → q and (gn)∗(p) → p in

the Wasserstein space P1(M) such that (fn)∗(q) ≤ (gn)∗(p) for each n. By definition

(fn)∗(q) and (gn)∗(p) have support contained in the order interval [zn, wn] and hence

the support is metrically bounded and contained in the interior of [zn+1, wn+1]. By

Theorem 4.7 and its order dual we may for each n pick qn, pn ∈ P0(M) with support

contained in [zn+1, wn+1] so that

dW (qn, (fn)∗(q)) < dW ((fn)∗(q), q) + 1/n, dW (pn, (gn)∗(p)) < dW ((gn)∗(p), p) + 1/n

and qn ≤ (fn)∗(q) ≤ (gn)∗(p) ≤ pn for each n. Since (fn)∗(q) → q and (gn)∗(p) → p,

it follows that pn → p and qn → q, yielding the desired sequences. �

5. The Thompson Metric

In this section we consider an important metric setting where the conditions of

Theorem 4.8 are satisfied, an example that served as an important motivation for the
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previous work. Let V be a real Banach space and let Ω denote a non-empty open

convex cone of V : tΩ ⊂ Ω for all t > 0, Ω + Ω ⊂ Ω, and Ω ∩ −Ω = {0}, where Ω

denotes the closure of Ω. We consider the partial order on V defined by

x ≤ y if and only if y − x ∈ Ω.

We write x < y if y−x ∈ Ω. We further assume that Ω is a normal cone: there exists

a constant K with ||x|| ≤ K||y|| for all x, y ∈ Ω with x ≤ y. For x ≤ y, we denote by

[x, y] the closed order interval

[x, y] := {z ∈ V : x ≤ z ≤ y}

and the open order interval by (x, y) = {z ∈ V : x < z < y} whenever x < y.

Any member a of Ω is an order unit for the ordered space (V,≤), and hence

|x|a := inf{λ > 0 : −λa ≤ x ≤ λa} defines a norm. By Proposition 1.1 in [11],

for a normal cone Ω, the order unit norm | · |a is equivalent to || · ||.
A. C. Thompson [14] (cf. [10], [11]) has proved that Ω is a complete metric space

with respect to the Thompson part metric defined by

d(x, y) = max{logM(x/y), logM(y/x)}

where M(x/y) := inf{λ > 0 : x ≤ λy} = |x|y. (Note that x ≤ M(x/y)y by the

closedness of the relation ≤.) Furthermore, the topology induced by the Thompson

metric agrees with the relative Banach space topology.

Remark 5.1. First we note for a ∈ Ω and r > 0 that

d(a, x) ≤ r ⇔ a ≤ erx, x ≤ era ⇔ e−ra ≤ x ≤ era,

so the closed ball around a of radius r (in the Thompson metric) is the closed order

interval [e−ra, era]. Since the open ball Br(a) around a of radius r is is the union of

all closed balls of strictly smaller radii, we have Br(a) =
⋃

0<t<r[e
−ta, eta].

Proposition 5.2. Let V be a real Banach space and let Ω be a non-empty open

normal cone equipped with the Thompson metric. For p, q ∈ P1(Ω) with q ≤ p, there

exist sequences {qn}, {pn} ⊆ P0(Ω) such that qn → q and pn → p in the Wasserstein

distance and qn ≤ pn for each n.
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Proof. Let a ∈ Ω. We verify the hypotheses of Theorem 4.8 are met. We let An =

[e−na, ena], the closed ball of radius n around a. By the preceding remark An ⊆
Bn+1(a) ⊆ An+1. Since a is an order unit for Ω, Ω =

⋃
n An. Choosing rn = n

and K = 1, we see by the preceding remark that the conditions of Theorem 4.8 are

satisfied, and hence the proposition follows. �

Example 5.3. Let A be a unital C∗-algebra with identity e, and let A+ be the set of

positive invertible elements of A. It is standard that A+ is a normal open cone of the

Banach subspace H(A) of self-adjoint elements. Thus the conclusion of Proposition

5.2 applies. In particular the conclusion holds for the open cone Pn of positive definite

n× n-matrices equipped with the Thompson metric.

6. Means and Barycenters

We begin this section by recalling several needed notions and results from Section

3 of [8].

Definition 6.1. (1) An n-mean Gn on a set X for n ≥ 1 is a function Gn : Xn → X

that is idempotent in the sense that Gn(x, . . . , x) = x for all x ∈ X.

(2) An n-mean Gn is symmetric or permutation invariant if for each permuation σ of

{1, . . . , n}, Gn(xσ) = Gn(x), where x = (x1, . . . , xn) and xσ = (xσ(1), . . . , xσ(n)) . A

(symmetric) mean G on X is a sequence of means {Gn}, one (symmetric) mean for

each n ≥ 1.

(3) A barycentric map or barycenter on the finitely supported uniform measures P0(X)

is a map β : P0(X) → X satisfying β(δx) = x for each x ∈ X.

For x = (x1, . . . , xn) ∈ Xn, we let

(6.1) xk = (x1, . . . , xn, x1, . . . , xn, . . . , x1, . . . , xn) ∈ Xnk,

where the number of blocks is k. We define the carrier S(x) of x to be the set of

entries in x, i.e., the smallest finite subset F such that x ∈ F n. We set [x] equal

to the equivalence class of all n-tuples obtained by permuting the coordinates of

x = (x1, . . . , xn). Note that the operation [x]k = [xk] is well-defined and that all

members of [x] all have the same carrier set S(x).
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A tuple x = (x1, . . . , xn) ∈ Xn induces a finitely supported probability measure

μ on S(x) by μ =
∑n

i=1(1/n)δxi
, where δxi

is the point measure of mass 1 at xi.

Since the tuple may contain repetitions of some of its entries, each singleton set {x}
for x ∈ {x1, . . . , xn} will have measure k/n, where k is the number of times that it

appears in the listing x1, . . . , xn. Note that every member of [x] induces the same

finitely supported probability measure.

Lemma 6.2. For each probability measure μ on X with finite support F for which

μ(x)(= μ({x})) is rational for each x ∈ F , there exists a unique [x] inducing μ such

that any [y] inducing μ is equal to [x]k for some k ≥ 1.

Definition 6.3. A mean G = {Gn} on X is said to be multiplicative if for all n, k ≥ 2

and all x = (x1, . . . , xn) ∈ Xn,

Gn(x) = Gnk(x
k).

If G is also symmetric, then G is called intrinsic.

We have the following corollary to Lemma 6.2.

Corollary 6.4. Let G be an intrinsic mean. Then for any finitely supported probabil-

ity measure μ with support F and taking on rational values, we may define βG(μ) =

Gn(x), for any x ∈ F n that induces μ.

Corollary 6.4 provides the basis for the following equivalence.

Proposition 6.5. There is a one-to-one correspondence between the intrinsic means

and the barycentric maps on X given in one direction by assigning to an intrinsic

mean G the barycentric map βG and in the reverse direction assigning to a barycentric

map β the mean Gn(x1, . . . , xn) = β((1/n)
∑n

i=1 δxi
).

We specialize to means and barycenters in metric spaces. The following notion of

what we call a contractive mean has appeared in other work; see e.g. [6].

Definition 6.6. An n-mean Gn : Xn → X is said to be contractive if for all x =

(x1, . . . , xn),y = (y1, . . . , yn) ∈ Xn

d(Gn(x), Gn(y)) ≤ 1

n

n∑
j=1

d(xj, yj).
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A mean G = {Gn} is contractive if each Gn is contractive.

We recall the notion of Sturm [13] of a contractive barycentric map on the set of

probability measures of finite first moment on a complete metric space.

Definition 6.7. A barycentric map β : P1(X) → X is said to be contractive if

d(β(μ1), β(μ2)) ≤ dW (μ1, μ2) for all μ1, μ2 ∈ P∗(X).

A fundamental relationship between contractive intrinsic means and barycentric

maps is the following (see [8, Proposition 4.7]).

Proposition 6.8. In a metric space (X, d) the bijective correspondence of Proposi-

tion 6.5 restricts to a bijective correspondence between the set of contractive intrinsic

means G on X and the set of contractive barycentric maps β on P0(X). If X is

a complete metric space, then the contractive barycentric maps on P0(X) uniquely

extend to contractive barycentric maps on P1(X), thus yielding a bijection between

the set of contractive intrinsic means G on X and the set of contractive barycentric

maps β on P1(X).

We turn now to connecting these results to our previous results concerning measures

on ordered spaces.

Definition 6.9. An n-mean Gn : Sn → X on a partially ordered set X is said to

be monotonic if G(x1, . . . , xn) ≤ Gn(y1, . . . , yn) whenever xi ≤ yi for i = 1. . . . , n. A

barycentric map β defined on P0(X) or on P1(X) for the case X is a metric space is

monotonic is μ ≤ ν implies β(μ) ≤ β(ν).

The following lemmas are crucial for connecting the monotonicity of barycentric

maps with the monotonicity of their corresponding means.

Recall that a bipartite graph is one in which the set of vertices V is the disjoint

union of two sets A and B and each edge connects some member of A with some

member of B. We recall the following special case of the well-known Hall’s Marriage

Theorem [4] from graph theory.

Lemma 6.10. Let V = A∪B be the vertices of a bipartite for which A = {a1, . . . , an}
and B = {b1, . . . bn} have the same cardinality. Suppose for each C ⊆ A, we have
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|C| ≤ |N(C)|, where N(C) = {b ∈ B : ab is an edge for some a ∈ C}. Then there

exists a permutation σ of {1, . . . , n} such that aibσ(i) is an edge for all i = 1, . . . , n.

Lemma 6.11. Let X be a partially ordered, let μ and ν be uniform probabilities,

each with support of cardinality n. If μ ≤ ν in the sense that μ(A) ≤ ν(↑A) for each

A ⊆ supp(μ), then there exists a permutation σ of {1, . . . , n} such that xk ≤ yσ(k) for

1 ≤ k ≤ n, where {x1, . . . , xn} and {y1, . . . , yn} are the supports of μ and ν resp.

Proof. We define a bipartite graph G with vertices A ∪ B, where A = {x1, . . . , xn}
and B = {y1, . . . , yn}, except that we make all the vertices distinct if necessary. We

define xiyj to be an edge of the graph if xi ≤ yj in X. Let C be a subset of A of

cardinality k. Then μ(C) = k/n, so by hypothesis ν(↑C ∩ supp(ν)) ≥ k/n, which

implies | ↑C ∩ supp(ν)| ≥ k. Thus the graph G satisfies the hypotheses of Lemma

6.10, and the lemma follows from that result and the construction of G.

�

The next result connects monotonicity for means and barycentric maps.

Proposition 6.12. Let (M, d,≤) be a metric space equipped with a closed partial

order. Let G be an intrinsic mean on M and let βG be the corresponding barycentric

map on P0(M). Then G is monotonic if and only if βG is.

Proof. Suppose first that βG is monotonic. Suppose that xi ≤ yi for 1 ≤ i ≤ n. It

follows easily that (1/n)
∑n

i=1 δxi
≤ (1/n)

∑n
i=1 δyi , so

Gn(x1, . . . , xn) = βG

(
1

n

n∑
i=1

δxi

)
≤ βG

(
1

n

n∑
i=1

δyi

)
= Gn(y1, . . . , yn).

Hence G is monotonic.

Conversely suppose that G is monotonic and suppose that μ = (1/k)
∑k

i=1 δxi
,

ν = (1/m)
∑m

i=1 δyi , and μ ≤ ν. We set x = (x1, . . . , xk) and y = (y1, . . . , ym).

Using the notation of equation (6.1), we have xm,yk ∈ Mn for n = km. We can

now rewrite μ = (1/n)
∑n

i=1 δxi
where the xi range through the entries of xm. and

similarly we rewrite ν = (1/n)
∑n

i=1 δyi . We apply Lemmas 4.3 and 6.11 to these

alternative representations of μ and ν to conclude that there exists a permutation σ

of {1, . . . , n} such that xi ≤ yσ(i) for 1 ≤ i ≤ n. Since Gn is monotone and symmetric

βG(μ) = Gn(x1, . . . , xn) ≤ Gn(yσ(1), . . . , yσ(n)) = Gn(y1, . . . , yn) = βG(ν).
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�

Definition 6.13. Let M be a metric space M equipped with a closed partial order.

A pair (μ, ν) ∈ P1(M)×P1(M) is called order approximable if μ ≤ ν and there exist

sequences {μn}, {νn} ⊆ P0(M) such that for each n, μn ≤ νn and with respect to the

Wasserstein metric μn → μ and νn → ν.

Theorem 4.8 gives important sufficient conditions for each pair μ ≤ ν in P1(M) to

be approximable.

Theorem 6.14. Let M be an ordered and complete metric space in which each pair

μ ≤ ν in P1(M) is approximable. If G is a monotonic contractive intrinsic mean,

then the corresponding barycentric map βG : P1(M) → M is monotonic.

Proof. The existence of the contractive barycentric map βG : P1(M) → M follows

from Proposition 6.8. That βG is monotonic on P0(M) follows from Proposition 6.12.

For μ ≤ ν in P1(M), by hypothesis there exist sequences {μn}, {νn} ⊆ P0(M) such

that for each n, μn ≤ νn and μn → μ and νn → ν. By continuity of βG and the

closedness of the partial order, it follows that βG(μ) ≤ βG(ν).

�

For the remainder of the section we work in the following setting. Let A be a unital

C∗-algebra with identity e. Let A+ be the set of positive invertible elements of A, a

normal open cone of the Banach subspace H(A) of self-adjoint elements. We suppose

further that H(A) is conditionally directed complete, i.e., that down-directed subsets

of H(A) that are bounded below have an infimum. The Karcher mean Λ = {Λn} on

A+ is defined as the unique solution in A+ of the Karcher equation

X = Λn(A1, . . . An) ⇔
n∑

i=1

log(X−1/2AiX
−1/2) = 0.

It has been shown in [7] that this equation does indeed have a unique solution in A+

and in [7, 8] that the resulting mean Λn has the following properties:

(i) Λn is idempotent and intrinsic, in particular, symmetric:

(ii) (Monotonicity)Bi ≤ Ai for all 1 ≤ i ≤ n ⇒ Λn(B1, . . . , Bn) ≤ Λn(A1, . . . , An);

(iii) (Contractivity) d(Λn(A1, . . . , An),Λn(B1, . . . , Bn)) ≤ (1/n)
∑n

i=1 d(Ai, Bi),

where d is the Thompson metric.
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The correspondence of Proposition 6.8 yields a uniquely determined contractive

barycentric map βΛ : P1(P) → P satisfying βΛ((1/n)
∑n

i=1 δAi
) = Λn(A1, . . . , An).

Furthermore, in light of the remarks in Example 5.3 and Theorem 6.14, βΛ : P1(A+) →
A+ is monotonic. We summarize:

Theorem 6.15. Let A be a C∗-algebra with identity for which the Banach space H(A)

is conditionally directed complete. Then the Karcher mean on A+ extends uniquely

to a monotonic contractive barycentric map βΛ : P1(A+) → A+.

7. Future Work

Many questions and conjectures remain open. One would like to show that in

the context of this paper integrable measures on P satisfy an appropriate Karcher

equation and that the solution is unique. The Karcher mean has been shown to

satisfy a number of inequalities (e.g., concavity, Ando-Hiai inequality, etc.) and it

is of interest to extend, where possible, these results to the case of Borel probability

measures and the Karcher barycentric map. Indeed the approach and techniques of

this paper should make possible the extension of quite a number of results involving

inequalities of matrix and operator means to inequalities of integrable measures.
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