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A SUPPORT THEOREM FOR GENERALIZED CONVEXITY AND ITS
APPLICATIONS.

ANDRZEJ OLBRYŚ

Abstract. In the present paper we introduce a notion of (ω, t)-convexity as a natural generalization
of the notion of usual t-convexity, t-strongly convexity, approximate t-convexity, delta t-convexity and
many other. The main result of this paper establishes the necessary and sufficient conditions under
which an (ω, t)- convex map can be supported at a given point by an (ω, t)-affine support function.
Several applications of this support theorem are presented. For instance, new characterizations of inner
product spaces among normed spaces involving the notion of (ω, t)-convexity are given.

1. Introduction and terminology

Let t ∈ (0, 1) be a fixed number and let Q(t) be the smallest field containing the singleton {t}.
Throughout the whole paper (unless explicitly stated otherwise) X denotes a linear space over the field
K, where Q(t) ⊆ K ⊆ R and D stands for a non-empty t-convex set i.e.

tD + (1− t)D ⊆ D.

Now, for a given function ω : D×D× [0, 1] → R we introduce a notion of (ω, t)-convexity. A function
f : D → R is said to be:
(ω, t)-convex, if

f(tx+ (1− t)z) ≤ tf(x) + (1− t)f(z) + ω(x, z, t), x, z ∈ D,

(ω, t)-concave, if

tf(x) + (1− t)f(z) + ω(x, z, t) ≤ f(tx+ (1− t)z), x, z ∈ D.

If f is at the same time (ω, t)-convex and (ω, t)-concave then we say that it is an (ω, t)-affine. In this
case f satisfies the following functional equation

tf(x) + (1− t)f(z) + ω(x, z, t) = f(tx+ (1− t)z), x, z ∈ D.

If t = 1
2 then f is said to be ω-midpoint convex (ω-midpoint concave, ω-midpoint affine). If the above

inequalities are satisfied for all numbers t ∈ [0, 1] (where D stands for a convex set) then we say that f
is ω-convex (ω-concave, ω-affine, respectively).

The notion of ω-convexity is a common generalization of the notion of usual convexity, strong- con-
vexity, approximate-convexity, delta-convexity and many other. The term on the left-hand side of the
inequality is the same in all definitions while the right-hand side of all inequalities has different form.

Let (X, ‖ · ‖) be a real normed space, D be a convex subset of X and let c > 0. A function f : D → R

is called strongly t-convex (t ∈ (0, 1)) with modulus c > 0 if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)‖x− y‖2,
for all x, y ∈ D. If the above inequality is satisfied with t = 1

2 then f is said to be strongly midpoint
convex function. If f is t-strongly convex function for all t ∈ [0, 1] then we say that it is strongly convex.
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Strongly convex functions were introduced by Polyak in [20] and they play an important role in
optimization theory and mathematical economics. Many properties and applications of them can be
found in the literature (see, for instance [3], [5], [16], [19], [20], [27] and the references therein). It turns
out, that if f : I → R is strongly convex (where I stands for a real interval), then it is bounded from
below, its level sets {x ∈ I : f(x) ≤ λ} are bounded for each λ and f has a unique minimum on every
closed subinterval of I. The usual notions of t-convexity, midpoint-convexity, convexity correspond to
the case c = 0. The t-strongly convex functions are (ω, t)-convex with

ω(x, y, t) := −ct(1− t)‖x− y‖2, x, y ∈ D.

The notion of approximate convexity was introduced by D. H. Hyers and S. M. Ulam [9]. A function
f : D → R defined on a convex subset D of a real normed vector space is called ε-convex (where ε > 0)
if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε, x, y ∈ D, t ∈ [0, 1].

Another type of approximate convexity was introduced by S. Rolewicz [24]. A function f : D → R is
said to be γ-paraconvex if for certain ε > 0

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε‖x− y‖γ , x, y ∈ D, t ∈ [0, 1].

Rolewicz proved that if γ > 2 then every γ-paraconvex function is convex. This statement can be
understood as a superstability phenomenon-a respective perturbation of convexity still guarantees con-
vexity. The notion of approximate convexity has been recently successively generalized (see [8], [25]).
For c > 0, p > 0, t ∈ (0, 1) a real valued function f defined on convex subset D of a real normed space
is called (c, t, p)-convex if it satisfies

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ct(1− t)‖x− y‖p, x, y ∈ D.

The (c, t, p)-convex functions are (ω, t)-convex with

ω(x, y, t) := ct(1− t)‖x− y‖p, x, y ∈ D.

Now, recall that for given two real normed spaces X,Y , a number t ∈ (0, 1) and a nonempty open and
convex subset D ⊆ X a map F : D → Y is said to be delta-t-convex with a control function f : D → R

if
‖tF (x) + (1− t)F (y)− F (tx+ (1− t)y)‖ ≤ tf(x) + (1− t)f(y)− f(tx+ (1− t)y),

holds for all x, y ∈ D. The concept of delta t-convex maps generalized the concept of delta-convex maps
which was introduced and intensively investigated by L. Veselý and L. Zajic̆ek in [26]. Note that, the
notion of delta-convex mappings has nice properties and seems to be the most natural generalization of
functions which are representable as a difference of two convex functions. The delta t-convex functions
are (ω, t)-convex with

ω(x, y, t) := −‖tF (x) + (1− t)F (y)− F (tx+ (1− t)y)‖, x, y ∈ D.

The aim of the present note is to prove some version of a support theorem for above defined (ω, t)-
convex as well as for ω-convex maps and to give its several applications. Support type theorems play
a central role in the theory of convexity and have many applications. Several theorems of this type are
known in the literature (see for instance [1], [5], [11], [12], [13], [14], [15], [17], [18], [21], [22], [23] and
the references therein). The support theorem for t-convex functions was proved by Kuhn in [12] and it
is a direct consequence of an abstract version of Hahn-Banach theorem due to Rodé [21].

2. main result

We start our investigation with the following proposition.
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Proposition 1. Let D ⊆ X be a t-convex set, and let f : D → R be an (ω, t)-convex function where
ω : D ×D × [0, 1] → R. Then for an arbitrary n ∈ N the inequality

f(tnx+ (1− tn)y) ≤ tnf(x) + (1− tn)f(y) +
n−1∑
j=0

tjω(tn−1−jx+ (1− tn−1−j)y, y, t). (1)

holds.

Proof. For n = 1 the inequality (1) follows from the definition of (ω, t)-convexity. Assume that (1) is
valid for some n. Then using an (ω, t)-convexity of f and inductive assumption we obtain

f(tn+1x+ (1− tn+1)y) = f(t[tnx+ (1− tn)y] + (1− t)y)

≤ tf(tnx+ (1− tn)y) + (1− t)f(y) + ω(tnx+ (1− tn)y, y, t)

≤ t
[
tnf(x) + (1− tn)f(y) +

n−1∑
j=0

tjω(tn−1−jx+ (1− tn−1−j)y, y, t)
]

+ (1− t)f(y) + ω(tnx+ (1− tn)y, y, t) = tn+1f(x) + (1− tn+1)f(y)

+

n∑
j=0

tjω(tn−jx+ (1− tn−j)y, y, t).

�

Recall that a point x0 is said to be an algebraically internal (over the field K ⊆ R) for a set A ⊆ X
if for every x ∈ X there exists an εx > 0 such that

x0 + αx ∈ A, for all α ∈ (−εx, εx).

The set of all algebraically internal points of A (over K) will be denoted by algintK(A). A set A is
algebraically open (over K) if A = algintK(A). In the case when K = R we will use the standard symbol
algint(D) instead of algintR(D).

Following [1] where the definition of quadratic support function was given we introduce the following
definition:

Definition 2. A function ay : D → R is said to be an (ω, t)-affine support for a function f : D → R at
a point y ∈ D, if ay(y) = f(y), ay(x) ≤ f(x), x ∈ D, and

ω(x, z, t) = ay(tx+ (1− t)z)− tay(x)− (1− t)ay(z), x, z ∈ D.

If the above conditions are satisfied for all x, z ∈ D and all t ∈ [0, 1] (where D is a convex set) then f
is said to be an ω-affine support for f at a point y.

Now, we are able to proof our main result. The following theorem generalized the celebrated support
theorem for t-convex functions.

Theorem 3. Let D be a t-convex set and let y ∈ algintL(t)(D). Assume that f : D → R is an (ω, t)-
convex function where ω : D × D × [0, 1] → R. Then there exists an (ω, t)-affine support function
ay : D → R of f at y such that f − ay is t-convex if and only if for all u, v, x, z ∈ D, and s ∈ {t, 1− t}
the function ω satisfies the following three conditions:
(a) ω(y, y, t) = 0,
(b) ω(x, z, t) = ω(z, x, 1− t),
(c) sω(u, z, s)+ (1− s)ω(v, z, s)−ω(su+(1− s)v, z, s) ≤ sω(u, v, s)−ω(su+(1− s)z, sv+(1− s)z, s).

Proof. Suppose that f is an (ω, t)-convex function where ω satisfies the conditions (a)-(c). Let consider
the following family of functions

H := {h : D → R | h is an (ω, t)-convex, h ≤ f, h(y) = f(y)}.



4 ANDRZEJ OLBRYŚ

Clearly, H �= ∅ because f ∈ H. Observe that the family H can be partially ordered using the partial
order by letting

h1 	 h2 if and only if h1(x) ≤ h2(x), for all x ∈ D.

We shall show that any chain contained in H has a lower bound in H. To prove it, fix an arbitrary
chain L ⊆ H and define the function h0 : D → [−∞,∞) via the formula

h0(x) := inf{h(x) | h ∈ L}.
First, we show that h0 takes finite values. To see it, define the sequence of sets Dn by

Dn =
[y − (1− tn)D

tn

]
∩D, n ∈ N.

Observe, that h0 has a finite value at each point of Dn. Obviously, h(y) > −∞, for all h ∈ L. Fix an
arbitrary h ∈ L. For x ∈ Dn there exists an z ∈ D such that tnx + (1 − tn)z = y. Hence, in view of
Proposition 1 we get

h(x)≥ h(y)− (1− tn)h(z)−∑n−1
j=0 t

jω(tn−1−jx+ (1− tn−1−j)z, z, t)

tn

≥ f(y)− (1− tn)f(z)−∑n−1
j=0 t

jω(tn−1−jx+ (1− tn−1−j)z, z, t)

tn
> −∞,

and consequently h0(x) > −∞, x ∈ Dn.

On the other hand, we show that

D =

∞⋃
n=1

Dn.

For fixed x ∈ D, define the sequence {xn}n∈N by the formula

xn :=
y − tnx

1− tn
.

Since y ∈ algintL(t)(D) then there exists an n ∈ N such that

xn = y +
tn

1− tn
(y − x) ∈ D,

hence
x =

y − (1− tn)xn
tn

∈
[y − (1− tn)D

tn

]
∩D = Dn.

Obviously, h0(y) = f(y) and h0(x) ≤ f(x), x ∈ D. Note that h0 is (ω, t)-convex in D. To see it take
arbitrary x, z ∈ D and arbitrary c1, c2 ∈ R such that

h0(x) < c1, h0(z) < c2.

There exist h1, h2 ∈ L such that
h1(x) < c1, h2(z) < c2.

Hence putting h3 = min{h1, h2} we obtain

tc1 + (1− t)c2 > th1(x) + (1− t)h2(z) ≥ th3(x) + (1− t)h3(z)

≥ h3(tx+ (1− t)z)− ω(x, z, t)

≥ h0(tx+ (1− t)z)− ω(x, z, t).

Tending in the above inequalities with c1 → h0(x), c2 → h0(z) we get the (ω, t)-convexity of h0,
therefore h0 ∈ H. We have shown that any chain in H has a lower bound in H, so by the lemma of
Kuratowski and Zorn, there exists a minimal element g of H. We will show that g is an (ω, t)-affine
function. For z ∈ D we define the function gz : D → R by the formula

gz(x) :=
1

t
[g(tx+ (1− t)z)− (1− t)g(z)− ω(x, z, t)].
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We shall show that gz ∈ H. Clearly, by the (ω, t)-convexity of g the inequality

gz(x) ≤ g(x), x ∈ D,

holds. To see that gz is an (ω, t)-convex function fix u, v ∈ D arbitrarily. By (ω, t)-convexity of g and
the inequality (c) applying for s = t we obtain

gz(tu+ (1− t)v) =
1

t

[
g(t[tu+ (1− t)v] + (1− t)z)− (1− t)g(z)− ω(tu+ (1− t)v, z, t)

]

=
1

t

[
g(t[tu+ (1− t)z] + (1− t)[tv + (1− t)z])− (1− t)g(z)− ω(tu+ (1− t)v, z, t)

]

≤ 1

t

[
tg(tu+ (1− t)z) + (1− t)g(tv + (1− t)z) + ω(tu+ (1− t)z, tv + (1− t)z, t)

− (1− t)g(z)− ω(tu+ (1− t)v, z, t)
]

= t
[1
t

(
g(tu+ (1− t)z)− (1− t)g(z)− ω(u, z, t)

)]
+ ω(u, z, t)

+ (1− t)
[1
t

(
g(tv + (1− t)z)− (1− t)g(z)− ω(v, z, t)

)]
+

1− t

t
ω(v, z, t)

+
1

t
ω(tu+ (1− t)z, tv + (1− t)z, t)− 1

t
ω(tu+ (1− t)v, z, t)

≤ tgz(u) + (1− t)gz(v) + ω(u, v, t).

Since, in particular gy(y) = g(y) = f(y) then gy ∈ H and by the minimality of g we infer that

g(tx+ (1− t)y) = tg(x) + (1− t)g(y) + ω(x, y, t), x ∈ D.

Analogously, let define the function gy : D → R via the formula

gy(x) :=
1

1− t
[g((1− t)x+ ty)− tg(y)− ω(x, y, 1− t)].

Using similar argumentation as for function gy and applying the inequality (c) for s = 1 − t one can
verify that gy is an (ω, t)-convex function. Because gy(y) = f(y) then gy ∈ H and according once more
the minimality of g we get

ω(x, y, 1− t) = g((1− t)x+ ty)− tg(y)− (1− t)g(x), x ∈ D.

Using this, and condition (b) for any z ∈ D we have

gz(y) =
1

t
[g(ty + (1− t)z)− (1− t)g(z)− ω(y, z, t)]

=
1

t
[g((1− t)z + ty)− (1− t)g(z)− ω(z, y, 1− t)]

=
1

t
[g((1− t)z + ty)− (1− t)g(z)− g((1− t)z + ty)

+ tg(y) + (1− t)g(z)] =
1

t
tg(y) = g(y) = f(y),

therefore gz ∈ H and using again the minimality of g we conclude that

ω(x, z, t) = g(tx+ (1− t)z)− tg(x) + (1− t)g(z), x, z ∈ D.

Obviously, f − g is an (ω, t)-convex. To end the proof of necessity it is enough to put ay := g.

For the proof of sufficiency assume that there exists a function g : D → R such that

ω(x, z, t) = g(tx+ (1− t)z)− tg(x)− (1− t)g(z), x, z ∈ D.
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Clearly, ω(y, y, t) = 0, moreover, for all x, z ∈ D we have

ω(x, z, t) = g(tx+ (1− t)z)− tg(x)− (1− t)g(z)

= g((1− t)z + tx)− (1− t)g(z)− tg(x) = ω(z, x, 1− t).

On the other hand, for arbitrary u, v, z ∈ D and s ∈ {t, 1− t} we get

sω(u, z, s) + (1− s)ω(v, z, s)− ω(su+ (1− s)v, z, s)

= s
[
g(su+ (1− s)z)− sg(u)− (1− s)g(z)

]

+ (1− s)
[
g(sv + (1− s)z)− sg(v)− (1− s)g(z)

]

− g(s[su+ (1− s)v] + (1− s)z) + sg(su+ (1− s)v) + (1− s)g(z)

= s
[
g(su+ (1− s)v)− sg(u)− (1− s)g(v)

]

−
[
g(s[su+ (1− s)z] + (1− s)[sv + (1− s)z])

− sg(su+ (1− s)z)− (1− s)g(sv + (1− s)z)
]

= sω(u, v, s)− ω(su+ (1− s)z, sv + (1− s)z, s).

�
It is well-known that convex functions are characterized by having affine support at every point of

their domains. An analogous result for t-convex functions is due to Kuhn [12]. The following theorem
below states that the existence of a support mapping at an arbitrary point in fact also characterizes an
(ω, t)-convexity. (A similar result for ω-convex maps also is true. The details are omitted.)

Theorem 4. Assume that D is a t-convex set, and let f : D → R. If for every y ∈ D there exists an
(ω, t)-affine function ay : D → R such that ay(y) = f(y) and

ay(x) ≤ f(x), x ∈ D.

then f is an (ω, t)-convex.

Proof. Fix x, z ∈ D arbitrarily, and put y := tx+ (1− t)z. By our assumptions we get

f(tx+ (1− t)z) = f (y) = ay(y) = ay(tx+ (1− t)z)

= tay(x) + (1− t)ay(z) + ω(x, z, t)

≤ tf(x) + (1− t)f(z) + ω(x, z, t).

It completes the proof. �
It follows from the proof of Theorem 3 that for ω-convex functions the following theorem holds true

Theorem 5. Assume that D is a convex subset of a real linear space and y ∈ algint(D). Let f : D → R

be an ω-convex function where ω : D × D × [0, 1] → R is a given map. Then there exists an ω-affine
support function ay : D → R such that f−ay is convex if and only if for all u, v, z ∈ D and all s, t ∈ [0, 1]
the map ω satisfies the following conditions:
(i) ω(y, y, t) = 0,
(ii) ω(x, z, t) = ω(z, x, 1− t),
(iii) sω(u, z, t) + (1− s)ω(v, z, t)−ω(su+ (1− s)v, z, t) ≤ tω(u, v, s)−ω(tu+ (1− t)z, tv+ (1− t)z, s).

Observation 6. Since the function ω ≡ 0 satisfies the conditions (a)-(c) and (i)-(iii) then the well-
known classical support theorem for t-convex functions as well as for convex functions are a consequence
of our main result.

From Theorem 3 (Theorem 5) immediately we obtain the following characterization of (ω, t)-convex
(ω-convex) maps:
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Theorem 7. Let D be a t-convex (convex) set and let algintQ(t)(D) �= ∅ (algint(D) �= ∅). Assume that
f : D → R is an (ω, t)-convex (ω-convex) function where ω : D × D × [0, 1] → R. Then there exist a
t-convex (convex) function h : D → R and an (ω, t)-affine (ω-affine) function a : D → R such that

f(x) = a(x) + h(x) x ∈ D,

if and only if for some point y ∈ algintQ(t)(D) (y ∈ algint(D)) ω satisfies the conditions (a)-(c) ((i)-
(iii)).

As an immediate consequence of Theorem 7 we obtain the following

Theorem 8. Let D be a t-convex (convex) set, and let f : D → R be an (ω, t)-convex (ω-convex)
function, where ω : D × D × [0, 1] → R satisfies the conditions (a)-(c) ((i)-(iii)) for some point y ∈
algintQ(t)(D) (y ∈ algint(D)). If, moreover,

ω(x, z, t) ≥ 0, x, z ∈ D, (ω(x, z, t) ≥ 0, x, z ∈ D, t ∈ [0, 1])

then there exist a t-convex (convex) functions g, h : D → R such that

f(x) = g(x)− h(x), x ∈ D.

The next consequence of our main results reads as follows

Theorem 9. Let D be a t-convex (convex) set, and let ω : D×D× [0, 1] → [0,∞). If y ∈ algintQ(t)(D)
(y ∈ algint(D)) and ω satisfies the conditions (a)-(c) ((i)-(iii)) then for arbitrary c ∈ R there exists a
t-concave (concave) function gy : D → R such that gy(y) = c, gy(x) ≤ c, x ∈ D, and

ω(x, z, t) = gy(tx+ (1− t)z)− tgy(x)− (1− t)gy(z), x, z ∈ D (x, z ∈ D, t ∈ [0, 1]).

Proof. It is enough to apply the Theorem 3 (Theorem 5) for the function f(x) := c, x ∈ D. �

3. Applications

In this section we are going to give some applications of our main results. As we have already seen
in section 1 the most frequently form of the function ω appearing in the literature is the following:

ω(x, y, t) = h(t)g(x− y),

for some functions h : [0, 1] → R and g : D� → R, where D� = D − D. In this case the conditions
(a)-(c) have the form:
(a’) h(t)g(0) = 0,
(b’) h(t)g(x− y) = h(1− t)g(y − x), x, y ∈ D,
(c’) h(s)[sg(u− z) + (1− s)g(v − z)− g(s(u− z) + (1− s)(v − z))] ≤ h(s)[sg(u− v)− g(s(u− v))],

u, v, z ∈ D, s ∈ {t, 1− t}.
Now, we solve the system of the above conditions in the case when t = 1

2 . If ω is not identically equal
to 0, then we can rewrite these conditions in the form:
(1) g(0) = 0,
(2) g(−x) = g(x), x ∈ D�,
(3) g(u− z) + g(v − z)− 2g(u+v

2 − z) ≤ g(u− v)− 2g(u−v
2 ), u, v, z ∈ D.

Let us recall in this place that the abelian group (X,+) is uniquely 2-divisible, if the mapping
u : X → X, u(x) = 2x is bijective. Then both u and u−1 are automorphisms of (X,+), and we write x

2

for u−1(x). The following theorem gives a characterization of maps which satisfy the conditions (1)-(3).

Theorem 10. Let (X,+) be a 2-divisible abelian group. If g : X → R satisfies the conditions (1)-(3)
then it is a superquadratic function i.e.

2g(u) + 2g(v) ≤ g(u+ v) + g(u− v), u, v ∈ X.

If, moreover, g(2x) ≤ 4g(x), x ∈ X, then g is a quadratic function i.e.

g(x) = A(x, x), x ∈ X,
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where A : X ×X → R is a biadditive and symmetric map.

Proof. Putting z = 0 in (3) we obtain

g(u) + g(v)− 2g
(u+ v

2

)
≤ g(u− v)− 2g

(u− v

2

)
, u, v ∈ X.

Applying the above inequality with u := x− y and v := x+ y we infer that

g(x− y) + g(x+ y)− 2g(y) ≤ g(2x)− 2g(x), x, y ∈ X.

Interchanging the roles of x and y and using the evenness of g leads to

g(x− y) + g(x+ y)− 2g(x) ≤ g(2y)− 2g(y), x, y ∈ X.

Now, summing up these last two inequalities we get the inequality

2g(x+ y) + 2g(x− y) ≤ g(2y) + g(2x), x, y ∈ X,

which is equivalent to the following one

2g
(x+ y

2

)
+ 2g

(x− y

2

)
≤ g(x) + g(y), x, y ∈ X.

Setting x := u+ v and y := u− v we obtain that

2g(u) + 2g(v) ≤ g(u+ v) + g(u− v), u, v ∈ X.

In particular, 4g(x) ≤ g(2x), x ∈ X. We have shown that

2g
(u− v

2

)
+ 2g

(u+ v

2

)
≤ g(u) + g(v) ≤ g(u− v) + g(u+ v)

2
, u, v ∈ X,

which together with condition g(2x) ≤ 4g(x), x ∈ X implies that g is a quadratic function, i.e.

g(u+ v) + g(u− v) = 2g(u) + 2g(v), u, v ∈ X.

So, there exists a biadditive and symmetric functional A : X×X → R such that f(x) = A(x, x), x ∈ X.
(see [2], Proposition 1, p. 166). This completes the proof. �

In the sequel we will use the following counterpart of the previous result.

Proposition 11. Let X be a linear space over the field K. If g : X → R and h : [0, 1] → R, satisfy the
conditions (b’) and (c’) then

[h(t) + h(1− t)]
[
g(x) + g(y)− 2g

(x+ y

2

)]
≤ 2[h(t) + h(1− t)]

t(1− t)

[
tg
(y − x

2

)
− g

(
t
y − x

2

)]

for all x, y ∈ X. If, moreover, h(t) + h(1− t) > 0, then

g(x) + g(y)− 2g
(x+ y

2

)
≤ 2

t(1− t)

[
tg
(y − x

2

)
− g

(
t
y − x

2

)]
, x, y ∈ X.

Proof. Using the well-known Daroczy and Páles identity of the mean x+y
2 (see [6])

x+ y

2
= t

[
t
x+ y

2
+ (1− t)y

]
+ (1− t)

[
tx+ (1− t)

x+ y

2

]
,

we get

h(t)
[
tg
(
t
x+ y

2
+ (1− t)y

)
+ (1− t)g

(
tx+ (1− t)

x+ y

2

)
− g

(x+ y

2

)]

≤ h(t)
[
tg
(y − x

2

)
− g

(
t
y − x

2

)]
,

for all x, y ∈ X. On the other hand, using the condition (b’) we infer that

h(t)
[
tg
(x+ y

2

)
+ (1− t)g(y)− g

(
t
x+ y

2
+ (1− t)y

)]
≤ h(1− t)

[
tg
(y − x

2

)
− g

(
t
y − x

2

)]
,
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for all x, y ∈ X. Analogously,

h(t)
[
tg(x) + (1− t)g

(x+ y

2

)
− g

(
tx+ (1− t)

x+ y

2

)]
≤ h(1− t)

[
tg
(y − x

2

)
− g

(
t
y − x

2

)]
.

Multiplying the second inequality by t and the third by 1− t and summing up these three inequalities,
after simplification, we obtain

h(t)t(1− t)
[
g(x) + g(y)− 2g

(x+ y

2

)]
≤ [h(t) + h(1− t)]

[
tg
(y − x

2

)
− g

(
t
y − x

2

)]
.

Replacing t by 1− t in the above inequality leads to

[h(t) + h(1− t)]
[
g(x) + g(y)− 2g

(x+ y

2

)]
≤ 2[h(t) + h(1− t)]

t(1− t)

[
tg
(y − x

2

)
− g

(
t
y − x

2

)]
,

for all x, y ∈ X.

If additionally, h(t) + h(1− t) > 0, then

g(x) + g(y)− 2g
(x+ y

2

)
≤ 2

t(1− t)

[
tg
(y − x

2

)
− g

(
t
y − x

2

)]
, x, y ∈ X,

which ends the proof. �
Now, we apply our main result to the proof of a support theorem for strongly t-convex as well as for

(c, t, 2)-approximately convex functions. The following theorem for t = 1
2 and c > 0 has been proved in

[5].

Theorem 12. Let (X, (·|·)) be a real inner product space, let D ⊆ X be a t-convex set such that
algintQ(t)(D) = D and let c ∈ R. Then a function f : D → R satisfies the inequality

f(tx+ (1− t)z) ≤ tf(x) + (1− t)f(z) + ct(1− t)‖x− z‖2, (2)

for all x, z ∈ D if and only if at every point y ∈ D, f has a support hy : D → R of the form

hy(x) = a(x− y) + f(y)− c‖x− y‖2, x ∈ D,

where a : X → R is an additive function (depending on y) and t-homogeneous i.e. a(tx) = ta(x), x ∈ X.

Proof. Suppose that f satisfies the inequality (2) and take an arbitrary point y ∈ D. Define the map
ω : D ×D × [0, 1] → R by formula

ω(x, z, t) := −ct(1− t)‖x− z‖2, x, z ∈ D.

Clearly, ω satisfies the conditions (a) and (b) from Theorem 3. Observe that ω also satisfies (c). Indeed,
for arbitrary x, z, u, v ∈ D and s ∈ {t, 1− t} we have

s‖u− z‖2 + (1− s)‖x− z‖2 − ‖s(u− z) + (1− s)(x− z)‖2
= s‖u− z‖2 + (1− s)‖x− z‖2 − s2‖u− z‖2
− (1− s)2‖x− z‖2 − 2s(1− s)(u− z|x− z)

= s(1− s)‖u− z‖2 + s(1− s)‖x− z‖2 − 2s(1− s)(u− z|x− z)

= s(1− s)‖u− x‖2 = s‖u− x‖2 − ‖s(u− x)‖2.
On account of Theorem 3 there is an (ω, t)-affine support of f at y i.e. a function gy : D → R satisfying
the following conditions: gy(y) = f(y), gy(x) ≤ f(x), x ∈ D and, moreover,

−ct(1− t)‖x− z‖2 = gy(tx+ (1− t)z)− tgy(x)− (1− t)gy(z), x, z ∈ D.

On the other hand,

ct(1− t)‖x− z‖2 = tc‖x‖2 + (1− t)c‖z‖2 − c‖tx+ (1− t)z‖2, x, z ∈ D,

therefore the function gy − c‖ · ‖2 is t-affine, so it has the form

gy(x)− c‖x‖2 = a(x) + b, x ∈ D,
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where a : X → R is additive and t-homogeneous function.

Since f(y) = gy(y) = a(y) + c‖y‖2 + b, then b = f(y)− a(y)− c‖y‖2, whence we get

gy(x) = a(x) + c‖x‖2 + f(y)− a(y)− c‖y‖2
= a(x− y) + f(y)− c(‖y‖2 − ‖x‖2)
= f(y) + a(x− y)− c‖x− y‖2 + 2c(x− y|y)
= f(y) + a(x− y)− c‖x− y‖2,

where a(x) := a(x) + 2c(x|y), x ∈ X is additive and t-homogeneous function.

Conversely, assume that f has at arbitrary point y ∈ D a support function gy : D → R of the form

gy(x) = a(x− y) + f(y)− c‖x− y‖2, x ∈ D,

where a : X → R is an additive and t-homogeneous function. It is easy to check that gy is an (ω, t)-affine
function, where ω(x, z, t) = ct(1 − t)‖x − z‖2, x, z ∈ D. Now, to the end of the proof it remains to
apply the Theorem 4. �

Observe that using similar arguments and Theorem 5 instead of Theorem 3 one can prove the following
theorem.

Theorem 13. Let (X, (·|·)) be a real inner product space, let D ⊆ X be a convex set such that
algint(D) = D and let c ∈ R. Then a function f : D → R satisfies the inequality

f(tx+ (1− t)z) ≤ tf(x) + (1− t)f(z) + ct(1− t)‖x− z‖2,
for all x, z ∈ D and all t ∈ [0, 1] if and only if at every point y ∈ D, f has a support hy : D → R of the
form

hy(x) = a(x− y) + f(y)− c‖x− y‖2, x ∈ D,

where a : X → R is a linear function (depending on y) i.e. additive and homogeneous (a(tx) =
ta(x), x ∈ X, t ∈ R).

The next consequence of our main result is a theorem which gives a characterization of inner product
spaces. In the literature there are a number of paper which gives conditions under which the norm in
a real-linear space can be defined from an inner product. The first result of this type is due to Jordan
and von Neumann [10] who showed that a linear metric space X is an inner product space if and only
if it satisfies the parallelogram low i.e.

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ X.

A rich collection of such characterizations is contained in the celebrated book of Amir [4].

Theorem 14. Let (X, ‖ · ‖) be a real normed space. The following conditions are equivalent to each
other:
(α) The map ω : D ×D × [0, 1] → R of the form

ω(x, y, t) = ct(1− t)‖x− y‖2, x, y ∈ X

satisfies the inequalities (c) from Theorem 3, for some c > 0 and t ∈ (0, 1).
(β) There exist a number t ∈ (0, 1) and a function g : X → R such that

‖x− y‖2 = tg(x) + (1− t)g(y)− g(tx+ (1− t)y), x, y ∈ X.

(γ) (X, ‖ · ‖) is an inner product space.
Proof. The implication (α) ⇒ (β) follows from Theorem 3, because for non-negative ω there is always
a function f which is an (ω, t)-convex (for example any constant function has this property).

To show (β) ⇒ (γ), note that, on account of the proof of Theorem 3 the map

ω(x, y, s) := ‖x− y‖2, x, y ∈ X, s ∈ [0, 1],
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satisfies conditions (a)− (c) from Theorem 3. It follows from Proposition 11 that

‖x‖2 + ‖y‖2 − 2
∥∥∥x+ y

2

∥∥∥
2 ≤ 2t

t(1− t)

∥∥∥y − x

2

∥∥∥
2 −

∥∥∥ty − x

2

∥∥∥
2
, x, y ∈ X,

which is equivalent to
2‖x‖2 + 2‖y‖2 ≤ ‖x− y‖2 + ‖x+ y‖2, x, y ∈ X.

Now, putting u := x+ y and v := x− y we get

‖u+ v‖2 + ‖u− v‖2 ≤ 2‖u‖2 + 2‖v‖2, u, v ∈ X.

Since the norm satisfies the two above inequalities, it satisfies the parallelogram low, which implies that
(X, ‖ · ‖) is an inner product space.

For the proof of implication (γ) ⇒ (α) take arbitrary c ∈ R and t ∈ (0, 1). Put f(x) := −c‖x‖2, x ∈
X. Because the norm is defined from an inner product then

f(tx+ (1− t)y)− tf(x)− (1− t)f(y) = ct(1− t)‖x− y‖2, x, y ∈ X,

which finishes our proof. �

Now, we apply the Theorem 3 to obtain the negative result concerning some inequality which is in the
spirit of the concept of t-strongly convexity. In the proof of this result we use the following statement
which is a particular case of result proved by Bruce Ebanks [7, Corollary 7].

Theorem 15. Let G be a uniquely 2-divisible abelian group, and let X be a rational vector space. Then
the map Δ : G×G → X satisfies conditions:
Δ(x, x) = 0, x ∈ G,
Δ(x, y) = Δ(y, x), x, y ∈ G,
Δ(x, y) + Δ(z, w) + 2Δ

(
x+y
2 , z+w

2

)
= Δ(x, z) + Δ(y, w) + 2Δ

(
x+z
2 , y+w

2

)
, x, y, w, z ∈ G.

if and only if there exists a function f : G → X such that

Δ(x, y) = f(x) + f(y)− 2f
(x+ y

2

)
, x, y ∈ G.

We are able to formulated our last result

Theorem 16. Let (X, ‖ · ‖) be a real normed space. Then for arbitrary t ∈ (0, 1) there is no function
f : X → R satisfying the inequality:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− c‖x− y‖, x, y ∈ X, (3)

where c > 0.

Proof. Assume to the contrary that there exist a number t ∈ (0, 1) and a function f satisfying the
inequality (3). From the identity of Daróczy and Páles [6] and the inequality (3) we obtain

f
(x+ y

2

)
≤ tf

(
t
x+ y

2
+ (1− t)y

)
+ (1− t)f

(
tx+ (1− t)

x+ y

2

)
− c

2
‖x− y‖

≤ t
[
tf
(x+ y

2

)
+ (1− t)f(y)− c

2
‖x− y‖

]

+ (1− t)
[
tf(x) + (1− t)f

(x+ y

2

)
− c

2
‖x− y‖

]
− c

2
‖x− y‖,

which means that

t(1− t)f
(x+ y

2

)
≤ t(1− t)

f(x) + f(y)

2
− c

2
‖x− y‖,

and consequently,

f
(x+ y

2

)
≤ f(x) + f(y)

2
− c

2t(1− t)
‖x− y‖.
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Now, we apply the Theorem 3 for the map ω : D ×D × [0, 1] → R given by the formula

ω(x, y, s) := − c

2t(1− t)
‖x− y‖, x, y ∈ X, s ∈ [0, 1].

It is easy to check that ω satisfies conditions (a)-(c) from Theorem 3. By virtue of this theorem there
exists a function g : X → R such that

‖x− y‖ =
g(x) + g(y)

2
− g

(x+ y

2

)
, x, y ∈ X.

On account of Ebanks theorem the following identity

‖x− y‖+ ‖z − w‖+ 2
∥∥∥x− z + y − w

2

∥∥∥ = ‖x− z‖+ ‖y − w‖+ 2
∥∥∥x− y + z − w

2

∥∥∥,
holds for all x, y, w ∈ X. Substituting in the above equality z = w we get

‖x− y‖+ ‖x+ y − 2w‖ = ‖x− w‖+ ‖y − w‖+ ‖x− y‖,
hence,

‖(x− w) + (y − w)‖ = ‖x− w‖+ ‖y − w‖, x, y, w ∈ X,

or equivalently,
‖a+ b‖ = ‖a‖+ ‖b‖, a, b ∈ X.

This contradiction ends the proof.
�
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