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Nontrivial solutions of nonlocal fourth order elliptic equation of

Kirchhoff type in R
3∗

Anmin Mao† Wenqing Wang
School of Mathematical Sciences, Qufu Normal University, Shandong 273165, P.R. China

Abstract This paper is devoted to a class of important and general nonlocal fourth order

elliptic problem

Δ2u− (1 + λ

∫
R3

|∇u|2dx)Δu+ V (x)u = f(x, u) in R
3,

where Δ2 = Δ(Δ) is the bi-harmonic operator, λ ≥ 0 is a constant. We focus on the case that

f(x, u) involves a combination of convex and concave terms and the potential V (x) is allowed

to be sign-changing. By new techniques, multiplicity results of two different type of solutions

are established. Our results improves and generalizes that obtained in the literature.

Key words: Bi-harmonic operator; Concave and convex terms; Sign-changing potential

2010 MSC: 35J05; 35J20; 35J60

1 Introduction and main results

In this paper, we consider a class of important fourth order elliptic equation

Δ2u− (1 + λ

∫
R3

|∇u|2dx)Δu+ V (x)u = f(x, u) in R
3. (1.1)

Problem (1.1) is often called nonlocal because of the presence of the integral term (
∫
R3 |∇u|2dx)Δu,

which implies that the equation (1.1) is no longer a pointwise identity. Problem (1.1) can be

seen as a linear couple of elliptic equation

Δ2u+ cΔu+ V (x)u = f1(x, u) in R
N , (1.2)

and the Kirchhoff type equation

−(a+ b

∫
RN

|∇u|2)Δu+ V (x)u = f2(x, u) in R
N . (1.3)

∗E-mail: maoam@163.com(A.Mao), 1923226881@qq.com(W.Wang)
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For problem (1.2), we refer the readers to [3]-[7]. When V (x) = 0, RN is replaced by a bounded

smooth domain Ω ⊂ R
N and set u = Δu = 0 on ∂Ω, then problem (1.3) can be reduced to

⎧⎨
⎩

− (a+ b

∫
Ω
|∇u|2)Δu = f(x, u) in Ω,

u = 0,Δu = 0 on ∂Ω.

(1.4)

It is well known that Problem (1.4) is related to

utt − (a+ b

∫
Ω
|∇u|2dx)Δu = g(x, u) (1.5)

proposed by Kirchhoff in [8]. Some early classical studies of Kirchhoff equations were those

of Bernstein [9] and Pohozaev [10]. However, (1.5) received great attention only after Lions

[11] proposed an abstract framework for the problem. Some interesting results can be found in

[12]-[18] and the references therein.

By fixed point theory, Ma [21] obtained positive solutions of the following nonlocal problem

in one dimension ⎧⎪⎨
⎪⎩
u4 −M

(∫ 1

0
|u′|2dx

)
u

′′
= h(x)f(x, u),

u(0) = u(1) = u′′(0) = u′′(1) = 0.

(1.6)

Based on the work in [21], Wang et al. in [21] obtained nontrivial solutions of

⎧⎨
⎩
Δ2u− λ

(
a+ b

∫
Ω
|∇u|2dx

)
Δu = f(x, u), in Ω,

u = Δu = 0, on ∂Ω,

(1.7)

by using the mountain pass and truncation method. Recently, Avci et al. [23] studied

Δ2u−
(
a+ b

∫
RN

|∇u|2dx
)
Δu+ cu = f(u) in R

N , (1.8)

and got at least one positive solution by using variational method and the truncation method.

Inspired by above-mentioned papers, we study

Δ2u− (1 + λ

∫
R3

|∇u|2dx)Δu+ V (x)u = f(x, u) in R
3

and focus on the case that f(x, u) involves a combination of convex and concave terms and the

potential V (x) is allowed to be sign-changing.

We make the following hypothesis on V (x) and f(x, u):

(V )For any M > 0, meas{x ∈ R
3 : V (x) ≤ M} < ∞, and there exist constants m, a satisfying

0 < m < a < 1
S2
2
, infx∈R3 V (x) > m− a, where S2 is defined in (2.1).
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Setting F (x, u) :=
∫ u
0 f(x, s)ds and suppose that F (x, u) = F̄ (x, u) + α(x)|u|s, where 1 <

s < 2 and F̄ , α satisfy the following conditions:

(f1) α(x) ∈ L
2

2−s (R3) and α(x) ≥ 0;

(f2) F̄ (x, u) ∈ C1(R3×R,R), F̄ (x, 0) ≡ 0 for all x ∈ R
3 and there exist a real number r > 4 and

two continuous bounded functions p, q : R3 → R with q > 0 on a bounded domain Ω such that

p(x) ≤ F̄ (x, u)

|u|r ≤ q(x) for all x ∈ R
3 and u ∈ R \ {0},

and

lim
|u|→∞

F̄ (x, u)

|u|r = q(x) uniformly in x ∈ R
3;

(f3) there exists d0 satisfying 0 ≤ d0 <
1−aS2

2

4S2
2

such that

F̄ (x, u)− 1

4
(f̄(x, u), u) ≤ d0|u|2 for all x ∈ R

3 and u ∈ R,

where f̄(x, u) = F̄u(x, u).

Our main results read as follows.

Theorem 1.1. Assume (V ) and (f1)− (f3) hold. Then

(i) problem (1.1) has at least one nontrivial mountain-pass type of solution.

(ii) problem (1.1) has at least one nontrivial local minimum type of solution.

Compared with literature, the novelty of our results lies in two aspects. One is that problem

(1.1) considered here is set in whole space and the potential V (x) is allowed to be sign-changing,

furthermore, the nonlinearity f involves the combination of convex and concave terms which

makes it very hard to check the Mountain Pass geometry for energy functional. The other is

that we obtain two type of nontrivial solutions, one is obtained via the Mountain Pass lemma,

the other is constructed through the local minimization. Just as stated before, our main result

improves and generalizes the results obtained in [21, 22, 23].

This paper is organized as follows. In Sect.2, we state the variational framework of our

problem and some preliminary setting. Sect.3 is devoted to the proof of Theorem 1.1.

2 Preliminaries and functional setting

Throughout this paper we denote by → (resp.⇀) the strong (resp.weak) convergence. Let

H = H2(R3) = {u ∈ L2(R3) : Δu,∇u ∈ L2(R3)} with the inner product and norm

(u, v)H =

∫
R3

(ΔuΔv +∇u∇v + uv), ‖u‖H = (u, u)
1
2
H .
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For 1 ≤ q < +∞, by | · |q we denote the usual Lq-norm. Define our working space

E = {u ∈ H :

∫
R3

(|Δu|2 + |∇u|2 + (V (x) + a)u2)dx < ∞}

with the inner product and norm

(u, v) =

∫
R3

(ΔuΔv +∇u∇v + (V (x) + a)uv) dx, ‖u‖ = (u, u)
1
2 .

Since the embedding E → Lp(R3) is continuous for 2 ≤ p < 2∗, then there exist Sp > 0 such

that

|u|p ≤ Sp‖u‖, for all u ∈ E. (2.1)

Lemma 2.1 ([19]) Suppose (V ) holds, then embedding E → Lp(R3) is compact for 2 ≤ p < 2∗.

Define energy functional Iλ on E by

Iλ(u) =
1

2
‖u‖2 + λ

4
(

∫
R3

|∇u|2dx)2 −
∫
R3

F (x, u)dx− a

2

∫
R3

u2dx. (2.2)

u ∈ E is a solution of system (1.1) if and only if u ∈ E is a critical point of Iλ. Define

Ẽ = {u ∈ L2(R3) : ∇u ∈ L2(R3)} with the inner product and norm

(u, v)Ẽ =

∫
R3

∇u∇vdx, ‖u‖Ẽ = (u, u)
1
2

Ẽ
,

then Iλ can be rewritten as

Iλ(u) =
1

2
‖u‖2 + λ

4
(‖u‖Ẽ)4 −

∫
R3

F (x, u)dx− a

2

∫
R3

u2dx. (2.3)

The following theorem allows us to find Cerami type sequence. Recall that a sequence

{un} ⊂ E is said to be a Cerami sequence at the level c ∈ R ((C)c-sequence for short) if

I(un) → c and (1 + ‖un‖)I ′
(un) → 0 as n → ∞. I is said to satisfy the (C)c condition if any

(C)c-sequence has a convergent subsequence.

Theorem 2.2.([1]) Let E be a real Banach space with dual space E∗, and suppose that I ∈
C1(E,R) satisfies

max{I(0), I(e)} ≤ μ < η ≤ inf
‖u‖=ρ

I(u),

for some μ < η, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let ĉ ≥ η be characterized by

ĉ = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),
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where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}, then there exists a sequence {un} ⊂ E such

that

I(un) → ĉ ≥ η and (1 + ‖un‖)‖I ′(un)‖E∗ → 0, as n → ∞.

Lemma 2.3.([2]) Given a weakly lower semicontinuous functional I : X → R on a Banach

space X and a closed convex subset C ⊂ E on which I is bounded from below, then we can find

u0 ∈ C such that I(u0) = infu∈C I(u).

Lemma 2.4. Assume (f2) holds. Set

ψ(u) :=

∫
R3

F (x, u)dx,

then ψ is weakly continuous.

Proof. The proof is similar to lemma 2.2 in [2], we omit it.

3 Proof of Theorem 1.1

In this Section, we begin with some lemmas.

Lemma 3.1.([20]) Let 1 < s < 2 < r,A,B > 0, and consider the function

ΨA,B = t2 −Ats −Bt
r

for t ≥ 0. Then maxt≥0ΨA,B(t) > 0 if and only if Ar−2B2−s < d(r, s) := (r−2)r−2(2−s)2−s

(r−s)r−s .

Furthermore, for t = tB = [ 2−s
B(r−s) ]

1
(r−2) , one has

max
t≥0

ΨA,B(t) = ΨA,B(tB) = t2B[
r − 2

r − s
−AB

2−s
r−2

(
r − s

2− s

) 2−s
r−2

] > 0.

Lemma 3.2. If (V ), (f1)− (f3) hold, then there exists r > 0 such that inf‖u‖=r Iλ(u) > 0 .

Proof. (f2) yields

F̄ (x, u) ≤ q+|u|r for all x ∈ R
3 and u ∈ R, (3.1)
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which implies ∫
R3

F (x, u)dx ≤ |q+|∞
∫

R3

|u|rdx+

∫
R3

α(x)|u|sdx

≤ |q+|∞Sr
r‖u‖r + (

∫
R3

|α(x)| 2
2−s )

2−s
2 (

∫
R3

|u|2) s
2

= C1‖u‖r + |α| 2
2−s

|u|s2
≤ C1‖u‖r + |α| 2

2−s
Ss
2‖u‖s

= C1‖u‖r + C2‖u‖s,

(3.2)

where C1 = |q+|∞Sr
r , C2 = |α| 2

2−s
Ss
2. Since

Iλ(u) =
1

2
‖u‖2 + λ

4
(‖u‖Ẽ)4 −

∫
R3

F (x, u)dx− a

2

∫
R3

u2dx

≥ 1

2
‖u‖2 + λ

4
(‖u‖Ẽ)4 − C1‖u‖r − C2‖u‖s − a

2
S2
2‖u‖2

=
1− aS2

2

2
‖u‖2 − C2‖u‖s − C1‖u‖r + λ

4
(‖u‖Ẽ)4

(3.3)

Lemma 3.1 together with (V ) gives that for r = tB and ‖u‖ = r,

I
λ
(u) ≥ 1− aS2

2

2
ΨA,B(tB) +

λ

4
‖u‖4

Ẽ
> 0, (3.4)

where A = C2
1−aS2

2
2

, B = C1
1−aS2

2
2

, it comes to the conclusion.

Lemma 3.3. Assume (V ) and (f1)− (f3) hold. Let r > 0 be as in Lemma 3.1, then there exists

e ∈ E with ‖e‖ > r such that Iλ(e) < 0.

P roof. Since q > 0 on a bounded domain Ω, we can choose a function u ∈ E such that

∫
R3

q(x)|u|rdx > 0.

Therefore, using the condition (f2) and Fatou’s lemma, we have

lim
l→+∞

Iλ(lu)

lr
= lim sup

l→+∞
(−

∫
R3

F̄ (x, lu)

lr|u|r |u|rdx)

≤ −
∫
R3

q(x)|u|rdx < 0.

(3.5)

So Iλ(lu) → −∞ as l → +∞, then there exists e ∈ E with ‖e‖ > r such that Iλ(e) < 0.

Thus by Theorem 2.2, we obtain that there exist a Cerami sequence {un} ⊂ E such that

Iλ(un) → c > 0 and (1 + ‖un‖)I ′λ(un) → 0 as n → ∞. (3.6)

Lemma 3.4. Assume (V ) and (f1) − (f3) hold, then {un} defined by (3.6) has a convergent

subsequence.
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Proof. For n large enough, by (f1)− (f3) we have

c+ 1 + ‖un‖ ≥ Iλ(un)− 1

4
(I

′
λ(un), un)

=
1

2
‖un‖2 + λ

4
‖un‖4Ẽ −

∫
R3

F (x, un)dx− a

2

∫
R3

u2ndx

− 1

4

(
‖un‖2 + λ‖un‖4Ẽ −

∫
R3

(f(x, un), un)dx− a

∫
R3

u2ndx

)

=
1

4
‖un‖2 + 1

4

∫
R3

(f(x, un), un)dx−
∫
R3

F (x, un)dx− a

4

∫
R3

u2ndx

≥ 1

4
‖un‖2 +

∫
R3

(
1

4
(f̄(x, un), un)− F̄ (x, un)

)
dx− a

4

∫
R3

u2ndx

≥ 1

4
‖un‖2 − d0

∫
R3

u2ndx− a

4

∫
R3

u2ndx

≥ (
1

4
− d0S

2
2 −

aS2
2

4
)‖un‖2 > 0,

which gives a boundedness for {un}.
Next, we prove that the sequence {un} has a convergent subsequence. Going if necessary to

a subsequence, we can assume that

un ⇀ u in E,

un → u a.e. R
3,

un → u in Ls(R3), 2 ≤ s < 2∗.

Since (1 + ‖un‖)I ′λ(un) → 0, we have

(I ′λ(un), un) = ‖un‖2 + λ‖un‖4Ẽ −
∫
R3

(f(x, un)undx− a

∫
R3

u2ndx = o(1), (3.7)

(I ′λ(un), u) = (un, u) + λ‖un‖2Ẽ
∫
R3

∇un∇udx−
∫
R3

f(x, un)udx− a

∫
R3

unudx = o(1), (3.8)

so in order to prove that ‖un‖ → ‖u‖, we just need to check

∫
R3

f(x, un)undx−
∫
R3

f(x, un)udx = o(1), (3.9)

∫
R3

∇un∇undx−
∫
R3

∇un∇udx = o(1), (3.10)

and ∫
R3

u2ndx−
∫
R3

unudx = o(1). (3.11)

In fact, by Lemma 2.1, it is easy to check (3.9) hold. (3.10) and (3.11) follow from that the

embedding E → Ẽ is continuous.
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Proof of Theorem 1.1. (i) As a consequence of Lemma 3.1-3.4, using Theorem 2.2, we get

the desired result.

(ii) Since α(x) ≥ 0, it is easy to take a ϕ ∈ E such that
∫
R3 α(x)|ϕ|sdx > 0, it follows from

(f2) that for t > 0 sufficiently small,

Iλ(tϕ) =
t2

2
‖ϕ‖2 + λ

4
t4‖ϕ‖4

Ẽ
−

∫
R
3
F̄ (x, tϕ)dx− ts

∫
R3

α(x)|ϕ|sdx− at2

2

∫
R3

|ϕ|2dx

≤ t2

2
‖ϕ‖2 + λ

4
t4‖ϕ‖4

Ẽ
− tr

∫
R3

p(x)|ϕ|rdx− ts
∫
R3

α(x)|ϕ|sdx− at2

2

∫
R3

|ϕ|2dx
< 0.

It follows from Lemma 2.3 that the minimum of the functional Iλ on any closed ball in E with

center 0 and radius r̂ < r satisfying

Iλ(u) ≥ 0 for all u ∈ E with ‖u‖ = r̂

is achieved in the corresponding open ball and thus yields a nontrivial solution u2 of (1.1)

satisfying

Iλ(u2) < 0 and ‖u2‖ < r̂ < r.

This completes the proof.
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Berlin, 2006.

[3] Claudianor O. lves, Nodal ground state sulution to a biharmonic equation via dual method,

J.Differential Equations 260 (2016) 5174-5201.

[4] A. Ferrero, F. Gazzola, A partially hinged retangular plate as a model for suspension

bridges, Discrete Contin. Dyn.Syst. 35 (2015) 5879-5908.

[5] J. Zhou, X. Wu, Sign-changing solutions for some fourth-order nonlinear elliptic problems,

J.Math.Anal.Appl. 342 (2008) 542-558.

[6] B.T. Cheng, X.H. Tang, High energy solutions of modified quasilinear fourth-order elliptic

equations with sign-changing potential, Comput. Math. Appl. 1(2017) 27-36.

[7] J. Chabrowski, J. Marcos Do O, On some fourth-order semilinear elliptic problems in RN ,

Nonlinear Anal. 49 (2002) 861-884.

[8] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

8



[9] S. Bernstein, Sur une classe d’equations fonctinnelles aux derivees partielles, Bull. Acad.

Sci. URSS Ser.[Izv. Akad. Nauk SSSR] 4(1940) 17-26.

[10] S.I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.) 96

(138)(1975) 152-166, 168(in Russian).

[11] J.L. Lions, On some questions in boundary value problems of mathmatical physics, in:

Contemporary Developments in Continuum Mechanics and Partial Differential Equations,

Proc. Internat. Sympos. Inst. Mat. Univ. Fed. Rio de Janeiro, 1977, in: North-Holland

Math. Stud. vol. 30, North-Holland, Amsterdam, New York, 1978, pp. 284-346.

[12] J.T. Sun, Tsung-fang Wu, Ground state solutions for an indefinite Kirchhoff type problem

with steep potential well, J.Differential Equations, 256 (2014) 1771-1792.

[13] Z.J. Guo, Ground states for Kirchhoff equations without compact condition, J.Differentional

Equations 259 (2015) 2884-2902.

[14] S. Wei, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains,

J.Differentional Equations 259 (2015) 1256-1274.

[15] Z.P. Liang, F.Y. Li, J.P. Shi, Positive solutions to Kirchhoff type equations with nonlinearity

having prescribed asymptotic behavior, Ann.I.H.Poincaré-AN., 31 (2014) 155-167.
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