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We consider Roumieu–Carleman ultraholomorphic classes and classes of func-
tions admitting asymptotic expansion in unbounded sectors, defined in terms of 
a log-convex sequence M. Departing from previous results by S. Mandelbrojt and 
B. Rodríguez-Salinas, we completely characterize the injectivity of the Borel map 
by means of the theory of proximate orders: A growth index ω(M) turns out to put 
apart the values of the opening of the sector for which injectivity holds or not. In 
the case of surjectivity, we considerably extend partial results by J. Schmets and 
M. Valdivia and by V. Thilliez, and prove a similar dividing character for the index 
γ(M) (introduced by Thilliez, and generally different from ω(M)) in some standard 
situations (for example, as far as M is strongly regular).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In 1886, H. Poincaré boosted the mathematical interest in formal (usually divergent) power series by in-
troducing the notion of asymptotic expansion, which is a kind of Taylor expansion which provides successive 
approximations: a complex function f , holomorphic on a sector S = {z ∈ C : 0 < |z| < r, a < arg(z) < b}, 
admits the complex formal power series f̂ =

∑∞
p=0 apz

p as its (nonuniform) asymptotic expansion at the 
origin if for every p ∈ N0 = N ∪ {0} and every proper bounded subsector T of S, there exists a positive 
constant Cp,T such that for every z ∈ T one has

∣∣f(z) −
p−1∑
n=0

anz
n
∣∣ ≤ Cp,T |z|p, (1)
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and we write f ∈ Ã(S). In this context it is natural to consider the asymptotic Borel map B̃ : Ã(S) → C[[z]]
sending a function f into its asymptotic expansion f̂ .

In 1916, J.F. Ritt showed that this map is surjective for any sector S, while it is never injective (given 
a sector bisected by direction 0, the exponential exp(−z−α), α > 0, is a nontrivial flat, i.e., asymptotically 
null, function for a suitable choice of α). Hence, given a formal power series f̂ and a sector S, it is in general 
hopeless to try to assign a well-defined sum to it, in the sense that there is not a unique holomorphic function 
in S asymptotic to f̂ .

Crucial and original advances were produced in this sense during the 1970s with the works of 
J.P. Ramis [22,23]. He noted that, although the formal power series solutions to differential equations are 
frequently divergent, under fairly general conditions the rate of growth of their coefficients is not arbitrary. 
Indeed, a remarkable result of E. Maillet [17] in 1903 states that for any solution f̂ =

∑
p≥0 apz

p of an ana-
lytic differential equation there will exist C, A, k > 0 such that |ap| ≤ CAp(p!)1/k for every p ∈ N0. Inspired 
by this fact, Ramis introduces and studies the notion of k-summability, that rests on classical results by 
G.N. Watson and R. Nevanlinna and generalizes Borel’s summability method. His developments are based 
on a modification of Poincaré’s asymptotic expansion where the growth of the constant Cp,T in (1) is made 
explicit in the form Cp,T = CTA

p
T (p!)1/k for some AT , CT > 0 (depending only on the subsector T of S), 

what entails the same kind of estimates for the coefficients ap in f̂ . The sequence M1/k = (p!1/k)p∈N0 is 
the Gevrey sequence of order 1/k, f is said to be 1/k-Gevrey asymptotic to f̂ (denoted by f ∈ ÃM1/k(S)), 
and f̂ , because of the estimates satisfied by its coefficients, is said to be a 1/k-Gevrey series (f̂ ∈ C[[z]]M1/k). 
The Borel map, defined in this case from ÃM1/k(S) to C[[z]]M1/k , is surjective if and only if the opening of 
the sector S is smaller than or equal to π/k (Borel–Ritt–Gevrey Theorem), and it is injective if and only 
if the opening is greater than π/k (Watson’s Lemma). So, in this well-known Gevrey case it turns out that 
(0, ∞) splits as the disjoint union of the intervals of surjectivity and injectivity.

However, motivated by the study of summability of formal power series solutions to different kind of 
equations, it is interesting to deal with M-asymptotic expansions, whose estimates in (1) correspond to a 
constant Cp,T = CTA

p
TMp for some AT , CT > 0 and for a suitable sequence M = (Mp)p∈N0 of positive 

real numbers. Such estimates then hold also for the coefficients of the power series involved in (1), and the 
corresponding class of formal power series is denoted by C[[z]]M. The main aim of this paper is to widen 
the knowledge of injectivity and surjectivity results for the Borel map in this general context.

One should emphasize that one may consider three closely related, so-called ultraholomorphic classes of 
functions in a sector S of the Riemann surface of the logarithm: the class ÃM(S) consisting of holomorphic 
functions with nonuniform asymptotic expansion in S; the class Ãu

M(S) of holomorphic functions with 
uniform asymptotic expansion in S, meaning that (1) holds uniformly on S for some constant Cp of the 
form CApMp, with C, A > 0; and, finally, the class AM(S) of functions for which there exists A = A(f) > 0
such that

sup
z∈S, p∈N0

|f (p)(z)|
App!Mp

< ∞.

In order to guarantee some stability properties for these classes, and to avoid trivial situations, we will always 
assume that M is a weight sequence, that is, a logarithmically convex sequence such that its sequence of 
quotients of consecutive terms, m = (mp = Mp+1/Mp)p∈N0 , tends to infinity. Moreover, since the problems 
under study do not depend on the bisecting direction of the sector, we will mainly work with sectors Sγ

bisected by the direction d = 0 and with opening πγ.
Injectivity and surjectivity of the Borel map for the corresponding ultradifferentiable classes, consisting 

of smooth functions on intervals of the real line subject to uniform estimates for their derivatives, have been 
fully characterized: The Denjoy–Carleman theorem (see, for example, [7]) characterizes injectivity or, in 
other words, the quasianalyticity of the corresponding classes, while the results of H.-J. Petzsche [20] prove 
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that the surjectivity amounts to a so-called ‘strong nonquasianalyticity’ condition for M. As the terminology 
suggests, the Borel map in this case is never bijective.

Regarding the ultraholomorphic framework, the injectivity for the classes Ãu
M(S) and AM(S) was com-

pletely solved, respectively, by S. Mandelbrojt [18] and B. Rodríguez-Salinas [24] in the 1950s (see Section 3), 
but the rest of the information was far from being complete.

The results of S. Mandelbrojt and B. Rodríguez-Salinas suggested the introduction of a growth index 
ω(M), initially given by the second author [25] for strongly regular sequences (i.e. those logarithmically 
convex, strongly nonquasianalytic and of moderate growth, see Definition 2.1), which puts apart the openings 
of quasianalyticity from those of nonquasianalyticity for the three ultraholomorphic classes considered. 
Nevertheless, in general it remained open the question about the quasianalyticity of the class ÃM(Sω(M)), 
that is, for sectors of optimal opening πω(M).

A first and partial solution to this situation relies on the concept of proximate order, available since 
the 1920s and extremely useful in the theory of growth of entire functions, and on some related results of 
L.S. Maergoiz [16] in 2001: if we define the auxiliary functions ωM(t) = supp∈N0

log(tp/Mp) and dM(t) :=
log(ωM(t))/ log(t) associated with M, it was shown in [25] that, whenever M is strongly regular and dM(t) is a 
nonzero proximate order, one is able to produce nontrivial flat functions in Sω(M), and a generalized version 
of Watson’s Lemma is available. Indeed, it was observed that, for the previous arguments to work, dM need 
not be a nonzero proximate order, but rather be close enough to one such order (we say M admits a nonzero 
proximate order, see Theorem 4.22). It is then natural to ask oneself whether every strongly regular sequence 
admits a nonzero proximate order, and the authors found a negative answer in [10, Examples 4.16 and 4.18]. 
So, the quasianalyticity of ÃM(Sω(M)) remained open in some cases.

As said before, for the surjectivity only very partial information was available. After the aforemen-
tioned Borel–Ritt–Gevrey Theorem in 1978, and by applying techniques from the ultradifferentiable setting, 
V. Thilliez [28] proved in 1995 that for the Gevrey class AMα

(Sγ) one has surjectivity if and only if γ < α, 
and gave a linear and continuous extension from C[[z]]Mα,A to AMα,dA(Sγ) for every A > 0, where d > 0
depends only on α and γ. In 2000 J. Schmets and M. Valdivia [27], by working with some nonclassical 
ultradifferentiable classes Er,M, Nr,M and Lr,M (see Subsection 4.1 for more details), obtained some con-
sequences of surjectivity of the asymptotic Borel map for a general weight sequence M in the Roumieu 
and Beurling cases and, in particular, characterized the existence of linear and continuous global extension 
from C[[z]]M to AM(S) for any sector S (which is much more demanding than surjectivity) as long as the 
weight sequence satisfies the property of derivation closedness (for short, (dc)), namely there exists A > 0
such that Mp+1 ≤ Ap+1Mp for every p ∈ N0. In 2003, V. Thilliez [29] improved their results for strongly 
regular sequences. He introduced the index γ(M), which for such sequences is always a positive real, and 
showed that for 0 < γ < γ(M), B̃ : AM(Sγ) → C[[z]]M is surjective and not injective, and again obtained 
right inverses for the Borel map with a control on the type appearing in the estimates, see Theorem 4.16. 
This theorem was reproved by A. Lastra, S. Malek and the second author [14] using the technique of the 
truncated Laplace transform with a suitable kernel. Finally, in [25, Theorem 6.1] the second author gener-
alized the Borel–Ritt–Gevrey theorem for strongly regular sequences such that the auxiliary function dM
is a proximate order (or, less demanding, sequences admitting a nonzero proximate order): the Borel map 
B̃ : ÃM(Sγ) → C[[z]]M is surjective if and only if 0 < γ ≤ ω(M).

So, some important issues arose:

(i) First, for the sequences appearing in applications the indices γ(M) and ω(M) always coincide, but only 
γ(M) ≤ ω(M) seemed to hold in general. The authors could prove in [10, Example 4.18] that these 
values may be different even for strongly regular sequences.

(ii) The admissibility of a nonzero proximate order, which happens to hold for most sequences appearing 
in applications, has some important consequences for a weight sequence M: It will be strongly regular 
and γ(M) = ω(M) (see [10, Remark 4.15], also [8]). So, these two different indices were hidden as being 
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just one. Moreover, it is not strange that both indices have appeared in the different statements of 
Thilliez and the second author related to surjectivity.

(iii) Since the value of ω(M) has been shown to be crucial for injectivity, one should decide whether γ(M)
is really putting apart the values of surjectivity from those of nonsurjectivity, and so Thilliez’s result 
is optimal in this sense.

After Section 2, dedicated to the necessary preliminaries, Section 3 is devoted to solving the injectivity 
problem. Our first important result in this paper, Theorem 3.15, will show that even the aforementioned 
assumption of admissibility for M may be skipped thanks again to the theory of proximate orders and 
regular variation, concluding that the classes ÃM(Sω(M)) are always nonquasianalytic. Moreover, with the 
help of the quasianalyticity results, we show in Theorem 3.17 that the Borel map is never bijective, as it 
occurred for ultradifferentiable classes.

Our results regarding surjectivity are gathered in Section 4. We start by showing (Lemma 4.5) that 
for arbitrary weight sequences, surjectivity for any opening requires γ(M) > 0 or, in other words, M has 
to be strongly nonquasianalytic. Without any other assumption on M, no result stating the surjectivity 
of the Borel map is available, but we may give some information on the maximal possible opening for 
which surjectivity could occur by resting on results by Schmets and Valdivia [27] and on the use of suitable 
Borel-like integral transforms, see Theorems 4.10 and 4.14 (in the second case, by imposing also (dc), see 
Table 3).

Finally, in Subsection 4.3 we concentrate in the case of strongly regular sequences M and prove, by some 
ramification arguments, that the results of Thilliez are optimal, in the sense that the index γ(M) is really 
the critical value putting apart the openings of surjectivity from those of nonsurjectivity (although, in some 
situations, the limiting case Sγ(M) is still an open problem, see Table 4). In Remark 4.21 we comment on 
the implications of the fact that γ(M) < ω(M) concerning the Borel map B̃.

We conclude analyzing if the value γ(M) belongs to these intervals or not in case the sequence is even 
better behaved and satisfies, for example, γ(M) = ω(M), or even the stronger condition of admitting a 
nonzero proximate order (see Table 5).

The results presented in this paper are part of the Ph.D. dissertation of the first author [8, Ch. 3], 
defended at the University of Valladolid (Spain) under the advice of the second author.

2. Preliminaries

2.1. Notation

We set N := {1, 2, ...}, N0 := N ∪ {0}. R stands for the Riemann surface of the logarithm, and C[[z]] is 
the space of formal power series in z with complex coefficients.
For γ > 0, we consider unbounded sectors bisected by direction 0,

Sγ := {z ∈ R : | arg(z)| < γ π

2 }

or, in general, bounded or unbounded sectors

S(d, α, r) := {z ∈ R : | arg(z) − d| < απ

2 , |z| < r}, S(d, α) := {z ∈ R : | arg(z) − d| < απ

2 }

with bisecting direction d ∈ R, opening απ and (in the first case) radius r ∈ (0, ∞).
A sectorial region G(d, α) with bisecting direction d ∈ R and opening απ will be a connected open set in 
R such that G(d, α) ⊂ S(d, α), and for every β ∈ (0, α) there exists ρ = ρ(β) > 0 with S(d, β, ρ) ⊂ G(d, α). 



140 J. Jiménez-Garrido et al. / J. Math. Anal. Appl. 469 (2019) 136–168
We simply write Gα for any sectorial region bisected by direction d = 0 and opening απ. In particular, 
sectors are sectorial regions.
A bounded sector T is said to be a proper subsector of a sectorial region G, and we write T � G, if T ⊂ G

(where the closure of T is taken in R, and so the vertex of the sector is not under consideration).

2.2. Sequences and associated functions

In what follows, M = (Mp)p∈N0 will always stand for a sequence of positive real numbers, and we will 
always assume that M0 = 1. The following properties for such a sequence will play a role in this paper.

Definition 2.1. We say that:

(i) M is logarithmically convex (for short, (lc)) if

M2
p ≤ Mp−1Mp+1, p ∈ N.

(ii) M is stable under differential operators or satisfies the derivation closedness condition (briefly, (dc)) if 
there exists D > 0 such that

Mp+1 ≤ Dp+1Mp, p ∈ N0.

(iii) M is of, or has, moderate growth (briefly, (mg)) whenever there exists A > 0 such that

Mp+q ≤ Ap+qMpMq, p, q ∈ N0.

(iv) M is nonquasianalytic (for short, (nq)) if

∞∑
k=0

Mk

(k + 1)Mk+1
< ∞.

(v) M satisfies the strong nonquasianalyticity condition (for short, (snq)) if there exists B > 0 such that

∞∑
q=p

Mq

(q + 1)Mq+1
≤ B

Mp

Mp+1
, p ∈ N0.

According to V. Thilliez [29], if M is (lc), has (mg) and satisfies (snq), we say that M is strongly regular.

Obviously, (mg) implies (dc), and (snq) implies (nq).

Definition 2.2. For a sequence M we define the sequence of quotients m = (mp)p∈N0 by

mp := Mp+1

Mp
p ∈ N0.

Remark 2.3. The sequence of quotients m is nondecreasing if and only if M is (lc). In this case, it is 
well-known that (Mp)1/p ≤ mp−1 for every p ∈ N, the sequence ((Mp)1/p)p∈N is nondecreasing, and 
limp→∞(Mp)1/p = ∞ if and only if limp→∞ mp = ∞.

We will restrict from now on to (lc) sequences M such that lim
p→∞

mp = ∞, which will be called weight 
sequences (the last assumption is included in order to avoid trivial situations, see for example Remark 2.12). 
It is immediate that if M is (lc) and (snq), then M is a weight sequence.
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Example 2.4. We mention some interesting examples. In particular, those in (i) and (iii) appear in the 
applications of summability theory to the study of formal power series solutions for different kinds of 
equations.

(i) The sequences Mα,β :=
(
p!α

∏p
m=0 logβ(e + m)

)
p∈N0

, where α > 0 and β ∈ R, are strongly regular (in 
case β < 0, the first terms of the sequence have to be suitably modified in order to ensure (lc)). In case 
β = 0, we have the best known example of strongly regular sequence, Mα := Mα,0 = (p!α)p∈N0 , called 
the Gevrey sequence of order α.

(ii) The sequence M0,β := (
∏p

m=0 logβ(e + m))p∈N0 , with β > 0, is (lc), (mg) and m tends to infinity, but 
(snq) is not satisfied.

(iii) For q > 1, Mq := (qp2)p∈N0 is (lc) and (snq), but not (mg).

For weight sequences, the auxiliary functions ωM(t) and hM(t), already appearing in the works of S. Man-
delbrojt [18], H. Komatsu [12] or V. Thilliez [29], play an important role. The map hM : [0, ∞) → R is 
defined by

hM(t) := inf
p∈N0

Mpt
p, t > 0; hM(0) = 0,

and it turns out to be a nondecreasing continuous map in [0, ∞) onto [0, 1]. In fact

hM(t) =
{
tpMp if t ∈

[ 1
mp

, 1
mp−1

)
, p = 1, 2, . . . ,

1 if t ≥ 1/m0.

One may also consider the function

ωM(t) := sup
p∈N0

log
( tp

Mp

)
= − log

(
hM(1/t)

)
, t > 0; ωM(0) = 0,

which is a nondecreasing continuous map in [0, ∞) with limt→∞ ωM(t) = ∞. Indeed,

ωM(t) =
{
p log t− log(Mp) if t ∈ [mp−1,mp), p = 1, 2, . . . ,
0 if t ∈ [0,m0).

Definition 2.5 ([20], [3]). Two sequences M = (Mp)p∈N0 and M′ = (M ′
p)p∈N0 of positive real numbers are 

said to be equivalent, and we write M ≈ M′, if there exist positive constants L, H such that

LpMp ≤ M ′
p ≤ HpMp, p ∈ N0.

In this case, it is straightforward to check that

hM(Lt) ≤ hM′(t) ≤ hM(Ht), t ≥ 0.

2.3. Asymptotic expansions, ultraholomorphic classes and the asymptotic Borel map

In this paragraph G is a sectorial region and M a sequence. We start recalling the concept of asymptotic 
expansion.

We say a holomorphic function f in G admits the formal power series f̂ =
∑∞

p=0 apz
p ∈ C[[z]] as its 

M-asymptotic expansion in G (when the variable tends to 0) if for every T � G there exist CT , AT > 0
such that for every p ∈ N0, one has
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∣∣∣f(z) −
p−1∑
n=0

anz
n
∣∣∣ ≤ CTA

p
TMp|z|p, z ∈ T.

We will write f ∼M f̂ in G. ÃM(G) stands for the space of functions admitting M-asymptotic expansion 
in G.

We say a holomorphic function f : G → C admits f̂ as its uniform M-asymptotic expansion in G (of type 
1/A for some A > 0) if there exists C > 0 such that for every p ∈ N0, one has

∣∣∣f(z) −
p−1∑
n=0

anz
n
∣∣∣ ≤ CApMp|z|p, z ∈ G. (2)

In this case we write f ∼u
M f̂ in G, and Ãu

M(G) denotes the space of functions admitting uniform 
M-asymptotic expansion in G. Note that, taking p = 0 in (2), we deduce that every function in Ãu

M(G) is a 
bounded function.

Finally, we define for every A > 0 the class AM,A(G) consisting of the functions holomorphic in G such 
that

‖f‖M,A := sup
z∈G,n∈N0

|f (n)(z)|
Ann!Mn

< ∞.

(AM,A(G), ‖ ‖M,A) is a Banach space, and AM(G) := ∪A>0AM,A(G) is called a Roumieu–Carleman ultra-
holomorphic class in the sectorial region G.

Remark 2.6. For any sequence M, the classes AM(G), Ãu
M(G) and ÃM(G) are complex vector spaces. If M

is (lc), they are algebras and if M is (dc), they are stable under taking derivatives.
Moreover, if M ≈ L the corresponding classes coincide.

For a sector S, since the derivatives of f ∈ AM,A(S) are Lipschitzian, for every n ∈ N0 one may define

f (p)(0) := lim
z∈S,z→0

f (p)(z) ∈ C. (3)

As a consequence of Taylor’s formula and Cauchy’s integral formula for the derivatives, there is a close 
relation between Roumieu–Carleman ultraholomorphic classes and the concept of asymptotic expansion 
(the proof may be easily adapted from [1,4]).

Proposition 2.7. Let M be a sequence, S a sector and G a sectorial region. Then,

(i) If f ∈ AM,A(S) then f admits f̂ :=
∑

p∈N0
1
p!f

(p)(0)zp as its uniform M-asymptotic expansion in S of 
type 1/A, where (f (p)(0))p∈N0 is given by (3). Consequently, we have that

AM(S) ⊆ Ãu
M(S) ⊆ ÃM(S).

(ii) f ∈ ÃM(G) if and only if for every T � G there exists AT > 0 such that f |T ∈ AM,AT
(T ). In case any 

of the previous holds and f ∼M

∑∞
p=0 apz

p, then for every T � G and every p ∈ N0 one has

ap = lim
z→0
z∈T

f (p)(z)
p! , (4)

and we can set f (p)(0) := p!ap.
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(iii) If S is unbounded and T is a proper unbounded sector of S (i.e. T ⊂ S, where the closure is taken in R), 
then there exists a constant c = c(T, S) > 0 such that the restriction to T , f |T , of functions f defined 
on S and admitting uniform M-asymptotic expansion in S of type 1/A > 0, belongs to AM,cA(T ).

(iv) If f ∈ ÃM(G), its M-asymptotic expansion f̂ is unique.

One may accordingly define classes of formal power series

C[[z]]M,A =
{
f̂ =

∞∑
n=0

anz
n ∈ C[[z]] : |a |M,A := sup

p∈N0

|ap|
ApMp

< ∞
}
.

(C[[z]]M,A, | |M,A) is a Banach space and we put C[[z]]M := ∪A>0C[[z]]M,A.
Given f ∈ ÃM(G) with f ∼M f̂ , and taking into account (4), it is straightforward that f̂ ∈ C[[z]]M, so it 

is natural to consider the following map.

Definition 2.8. Given a sectorial region G, we define the asymptotic Borel map

B̃ : ÃM(G) −→ C[[z]]M

sending a function f ∈ ÃM(G) into its M-asymptotic expansion f̂ .

Remark 2.9. If G is a sector S, by Proposition 2.7.(i) we see that the asymptotic Borel map is also well 
defined on AM(S) and Ãu

M(S).
If M is (lc), B̃ is a homomorphism of algebras; if M is also (dc), B̃ is a homomorphism of differential algebras. 
Finally, note that if M ≈ L, then C[[z]]M = C[[z]]L.

A fundamental role in the discussion about the injectivity and surjectivity of the asymptotic Borel map 
will be played by the flat functions.

Definition 2.10. A function f in any of the previous classes is said to be flat if B̃(f) is the null power series, 
in other words, f ∼M 0̂.

One may express flatness in ÃM(G) by means of the associated functions defined in Subsection 2.2.

Proposition 2.11 ([30], Prop. 4). Given a sequence M, a sectorial region G and a holomorphic function f
in G, the following are equivalent:

(i) f ∈ ÃM(G) and f is flat,
(ii) For every bounded proper subsector T of G there exist c1, c2 > 0 with

|f(z)| ≤ c1e
−ωM(1/(c2|z|)) = c1hM(c2|z|), z ∈ T.

In the Gevrey case of order α we recover the classical result that characterizes flatness in terms of 
exponential decrease of order 1/α.

2.4. Injectivity and surjectivity intervals for the asymptotic Borel map

By using a simple rotation, we see that the injectivity and the surjectivity of the Borel map in any of 
the previously considered classes do not depend on the bisecting direction d of the sectorial region G, so 



144 J. Jiménez-Garrido et al. / J. Math. Anal. Appl. 469 (2019) 136–168
we limit ourselves to the case d = 0. Moreover, in this paper we will restrict our study to the unbounded 
sectors Sγ , and include comments on what can be said, to our knowledge, for more general sectorial regions. 
So, we define

IM :={γ > 0; B̃ : AM(Sγ) −→ C[[z]]M is injective},

ĨuM :={γ > 0; B̃ : Ãu
M(Sγ) −→ C[[z]]M is injective},

ĨM :={γ > 0; B̃ : ÃM(Sγ) −→ C[[z]]M is injective}.

Whenever γ > 0 belongs to any of these sets, we say that the corresponding class is quasianalytic. So, 
nonquasianalyticity amounts to the existence of nontrivial flat functions in the class.

We easily observe that, by restriction and the identity principle, if γ > 0 is in any of those sets then every 
γ′ > γ also is. Hence, IM, ĨuM and ĨM are either empty or unbounded intervals contained in (0, ∞), which 
we call quasianalyticity or injectivity intervals.

Similarly, we define

SM :={γ > 0; B̃ : AM(Sγ) −→ C[[z]]M is surjective},

S̃u
M :={γ > 0; B̃ : Ãu

M(Sγ) −→ C[[z]]M is surjective},

S̃M :={γ > 0; B̃ : ÃM(Sγ) −→ C[[z]]M is surjective}.

It is also plain to check that if γ > 0 is in any of those sets then every 0 < γ′ < γ also is, so SM, S̃u
M and S̃M are 

either empty or left-open intervals having 0 as endpoint, called surjectivity intervals. Using Proposition 2.7.(i) 
we easily see that

IM ⊇ ĨuM ⊇ ĨM, (5)

SM ⊆ S̃u
M ⊆ S̃M. (6)

Remark 2.12. In the forthcoming results we will only deal with weight sequences. The requirement of (lc) 
condition is motivated in Remarks 2.6 and 2.9. In order to justify the limit condition for m, observe that 
for a (lc) sequence M, if limp→∞ mp �= ∞ then limp→∞ mp < ∞ and also limp→∞(Mp)1/p < ∞ (see 
Remark 2.3). Then there exists A > 0 such that hM(t) = 0 for all t ∈ [0, A]. Hence, by Proposition 2.11, 
if G is any sectorial region and f ∈ ÃM(G) is flat, we have that f(t) = 0 for every t ∈ (0, A] which, by 
the identity principle, implies that f(z) identically vanishes in G. Consequently, the Borel map is always 
injective.

On the other hand, in the same situation, the Borel map is never surjective: Choose R > 0 such that 
R < |z| for some z ∈ G. We can consider a holomorphic function at the origin L(z) whose Taylor expansion 
at 0 is given by a convergent lacunary series L̂ ∈ C[[z]]M, whose domain of convergence is the disk of radius 
R and has the circle of this radius as its natural boundary. We have that L ∼M L̂ on a region G′ ⊆ G, so by 
the injectivity of the Borel map there cannot exist another function E ∈ ÃM(G) ⊆ ÃM(G′) with E ∼M L̂. 
Since L cannot be analytically continued to G, the Borel map is not surjective.

3. Injectivity intervals: known results, and complete solution of the problem

The quasianalyticity intervals ĨuM and IM were determined in the literature in the 1950s. The first case is 
basically answered by the following result of S. Mandelbrojt in 1952.
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Theorem 3.1 ([18], Section 2.4.III). Let M be a weight sequence, γ > 0, b ≥ 0 and

Hb = {z ∈ C : �(z) > b}.

The following statements are equivalent:

(i)
∞∑
p=0

(
1
mp

)1/γ

diverges,

(ii) If f is holomorphic in Hb and there exist A, C > 0 such that

|f(z)| ≤ CApMp

|z|γp , z ∈ Hb, p ∈ N0, (7)

then f identically vanishes.

On the one hand, observe that a function f is holomorphic in H0 and verifies the estimates (7) if and 
only if the function g given by g(z) := f(1/z1/γ) belongs to Ãu

M(Sγ) and is flat.
On the other hand, the study of the divergence of the series in (i) is governed by the so-called exponent 

of convergence of the sequence m, appearing in the classical theory of growth and factorization of entire 
functions.

Proposition 3.2 ([6], p. 65). Let (cp)p∈N0 be a nondecreasing sequence of positive real numbers tending to 
infinity. The exponent of convergence of (cp)p is defined as

λ(cp) := inf{μ > 0 :
∞∑
p=0

1
cμp

converges}

(if the previous set is empty, we put λ(cp) = ∞). Then, one has

λ(cp) = lim sup
p→∞

log(p)
log(cp)

.

We consider now the closely related growth index (introduced in [25], see also [9]) for weight sequences M,

ω(M) := lim inf
p→∞

log(mp)
log(p) ∈ [0,∞],

and we easily see that

ω(M) = 1
λ(mp)

= 1
λ((p+1)mp)

− 1, (8)

or, in other words,

ω(M) = sup{μ > 0 :
∞∑
p=0

1
(mp)1/μ

< ∞},

ω(M) = sup{μ > 0 :
∞∑
p=0

1
((p + 1)mp)1/(μ+1) < ∞}. (9)

After all these remarks, we may rephrase Mandelbrojt’s result in the following way.
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Table 1
Injectivity intervals for a weight sequence with ω(M) ∈ (0, ∞).∑∞

p=0 σp = ∞
∑∞

p=0 σp = ∞
∑∞

p=0 σp < ∞∑∞
p=0 μp = ∞

∑∞
p=0 μp < ∞

∑∞
p=0 μp < ∞

IM [ω(M),∞) [ω(M),∞) (ω(M),∞)
Ĩu
M

[ω(M),∞) (ω(M),∞) (ω(M),∞)
ĨM (ω(M),∞) or [ω(M),∞)? (ω(M),∞) (ω(M),∞)

Theorem 3.3 ([18]). Let M be a weight sequence and γ > 0. The following statements are equivalent:

(i) B̃ : Ãu
M(Sγ) −→ C[[z]]M is injective.

(ii)
∑∞

p=0(mp)−1/γ = ∞.
(iii) Either γ > ω(M), or γ = ω(M) and 

∑∞
p=0(mp)−1/ω(M) = ∞.

Similarly, the knowledge of ĨuM amounts to the next equivalence (i) ⇔ (ii) obtained by B. Rodríguez 
Salinas [24] in 1955 (see also [13]), whereas the following item (iii) stems again from (8).

Theorem 3.4 ([24], Thm. 12). Let M be a weight sequence and γ > 0. The following statements are equiva-
lent:

(i) B̃ : AM(Sγ) −→ C[[z]]M is injective.
(ii)

∑∞
p=0((p + 1)mp)−1/(γ+1) = ∞.

(iii) Either γ > ω(M), or γ = ω(M) and 
∑∞

p=0((p + 1)mp)−1/(ω(M)+1) = ∞.

From Theorem 3.3 one may deduce the following partial generalization of Watson’s Lemma for nonuniform 
asymptotics, included in [9]; although in that paper strongly regular sequences are mainly considered, the 
proof given for this result is valid for general weight sequences, so we omit it here.

Theorem 3.5 ([9], Theorem 2.19). Let M be a weight sequence, γ > 0 and Gγ be any sectorial region of 
opening πγ. The following statements hold:

(i) If γ > ω(M), then B̃ : ÃM(Gγ) −→ C[[z]]M is injective.
(ii) If γ < ω(M), then B̃ : ÃM(Gγ) −→ C[[z]]M is not injective.

Remark 3.6. For any weight sequence M, the information from the previous results can be summarized as 
follows:

(i) If ω(M) = ∞, by Theorem 3.4, we see that IM = ∅ and (5) implies IM = ĨuM = ĨM = ∅.
(ii) If ω(M) = 0, by Theorem 3.5 we observe that ĨM = (0, ∞) and, by (5), we have that IM = ĨuM = ĨM =

(0, ∞).
(iii) If ω(M) ∈ (0, ∞), we have the situation described in Table 1, where 

∑∞
p=0 σp denotes the series ∑∞

p=0 ((p + 1)mp)−1/(ω(M)+1) and 
∑∞

p=0 (mp)−1/ω(M) is abbreviated to 
∑∞

p=0 μp (note that 
∑∞

p=0 σp <

∞ implies 
∑∞

p=0 μp < ∞ by applying Theorems 3.3 and 3.4 and using that AM(Sγ) ⊆ Ãu
M(Sγ)).

In conclusion, we see that the only injectivity interval not determined by the previous results is ĨM, and 
only when ω(M) ∈ (0, ∞) and 

∑∞
p=0 (mp)−1/ω(M) = ∞. Indeed, it only rests to decide whether ω(M) ∈ ĨM

or not. We will show the existence of nontrivial flat functions in the class ÃM(Sω(M)), and so one always 
has ω(M) /∈ ĨM and ĨM = (ω(M), ∞).
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Table 2
Injectivity intervals for the sequence Mα,β with α > 0, β ∈ R.

β ≤ α α < β ≤ α + 1 β > α + 1
IMα,β

[α,∞) [α,∞) (α,∞)
Ĩu
Mα,β

[α,∞) (α,∞) (α,∞)
ĨMα,β

(α,∞) or [α,∞)? (α,∞) (α,∞)

Example 3.7. We consider the sequence Mα,β =
(
p!α

∏p
m=0 logβ(e + m)

)
p∈N0

, α > 0, β ∈ R, we have that 
ω(Mα,β) = α. Hence, Table 2 contains all the information about the injectivity intervals deduced from the 
classical results for the sequences Mα,β.

Note that even if the Gevrey case Mα =
(
p!α

)
p∈N0

belongs to the first column of Table 2, all the 

information is known because the function f(z) := exp(−1/z1/α) ∼Mα 0̂ and f ∈ ÃMα
(Sα), so ĨMα

= (α, ∞). 
As mentioned before, we will find such functions for any sequence M using proximate orders.

Watson’s Lemma will be proved below for the class ÃM for arbitrary sectorial regions; regarding the other 
two classes, the following information is available.

Remark 3.8. Theorem 3.3 holds true for bounded sectors S(0, γ, r) with similar arguments. If∑∞
p=0 (mp)−1/γ

< ∞ the restriction to S(0, γ, r) of the nontrivial flat function defined in Sγ given by 
Theorem 3.3 solves the problem. Hence, we only need to prove (ii)⇒(i).

Consider the transformation z(w) = 1/(w + (1/r)1/γ)γ , which maps H0 into a region D contained in 
S(0, γ, r). Given a flat function g ∈ Ãu

M(S(0, γ, r)), the function f(w) := g(z(w)) is defined in H0 and, since 
for every w ∈ H0 we have |w + (1/r)1/γ | > |w|, we deduce that

|f(w)| = |g(z(w))| ≤ CApMp

|(w + (1/r)1/γ)γ |p ≤ CApMp

|w|γp , w ∈ H0, p ∈ N0,

for suitable C, A > 0. By Mandelbrojt’s Theorem 3.1, f identically vanishes, and so does g.
For more general regions, including sectorial regions, the solution was also given by Mandelbrojt [18, 
Sect. 2.4.I] and the answer depends on the way the boundary of the region approaches the origin.

Remark 3.9. The problem of quasianalyticity for classes of functions with uniformly bounded derivatives 
in bounded regions has also been treated. In the works of K.V. Trunov and R.S. Yulmukhametov [32,34] a 
characterization is given, for a convex bounded region containing 0 in its boundary, in terms of the sequence 
M and also of the way the boundary approaches 0. In particular, for bounded sectors, if γ ≤ 1, d ∈ R and 
r > 0, it turns out that the class AM(S(d, γ, r)) is quasianalytic precisely when condition (ii) in Theorem 3.4
is satisfied.

Now, our aim will be to construct nontrivial flat functions in ÃM(Sω(M)), what, according to Propo-
sition 2.11, amounts to obtaining holomorphic functions in Sω(M) whose growth is suitably controlled by 
ωM(t). The notion of proximate order will play a prominent role in this respect.

Definition 3.10 ([33]). We say a real function ρ(t), defined on (c, ∞) for some c ≥ 0, is a proximate order if 
the following hold:

(i) ρ(t) is continuous and piecewise continuously differentiable in (c, ∞),
(ii) ρ(t) ≥ 0 for every t > c,
(iii) limt→∞ ρ(t) = ρ < ∞,
(iv) limt→∞ tρ′(t) log(t) = 0.

In case the limit ρ > 0, we say that ρ(t) is a nonzero proximate order.
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Example 3.11. The following are proximate orders:

(i) ρα,β(t) = 1
α
− β

α

log(log(t))
log(t) , α > 0, β ∈ R.

(ii) ρ(t) = ρ + 1
tγ

and ρ(t) = ρ + 1
logγ(t) , ρ ≥ 0, γ > 0.

The next result by L.S. Maergoiz is the key for the construction.

Theorem 3.12 ([16], Thm. 2.4). Let ρ(t) be a nonzero proximate order with limt→∞ ρ(t) = ρ. For every 
γ > 0 there exists an analytic function V (z) in Sγ such that:

(i) For every z ∈ Sγ ,

lim
t→∞

V (zt)
V (t) = zρ,

uniformly in the compact sets of Sγ (i.e. V is regularly varying in Sγ).
(ii) V (z) = V (z) for every z ∈ Sγ (where, for z = (|z|, arg(z)), we put z = (|z|, − arg(z))).
(iii) V (t) is positive in (0, ∞), strictly increasing and limt→0 V (t) = 0.
(iv) The function t ∈ R → V (et) is strictly convex (i.e. V is strictly convex relative to log(t)).
(v) The function log(V (t)) is strictly concave in (0, ∞).
(vi) The function log(V (t))/ log(t), t > 0, is a proximate order and lim

t→∞
V (t)/tρ(t) = 1.

We denote by MF (γ, ρ(t)) the class of such functions V . As a consequence of its regular variation, they 
share a property that will be crucial.

Proposition 3.13 ([16], Property 2.9). Let ρ(t) be a nonzero proximate order with limt→∞ ρ(t) = ρ > 0, 
γ ≥ 2/ρ and V ∈ MF (γ, ρ(t)). Then, for every α ∈ (0, 1/ρ) there exist constants b > 0 and R0 > 0 such 
that

�(V (z)) ≥ bV (|z|), z ∈ Sα, |z| ≥ R0,

where � stands for the real part.

In [25] it was shown how one can construct flat functions in the class ÃM(Sω(M)) for strongly regular 
sequences such that the auxiliary function dM(t) := log(ωM(t))/ log(t) is a proximate order. In particular, the 
sequences Mα,β satisfy this condition, and so the Table 2 can be completed writing (α, ∞) in its left lower 
corner. It was also mentioned, see [25, Remark 4.11], that the weaker condition of admissibility of a proximate 
order (see Theorem 4.22) is enough. A better understanding of the connection between proximate orders 
and sequences has now been achieved, allowing us to extend this last result for arbitrary weight sequences. 
In fact, the admissibility of a proximate order ρ(t) guarantees that the associated function ωM is bounded 
above and below by a constant times the function tρ(t). These bounds are needed for most of the results 
in [15,25], but by suitably using the notion of regular variation we will see that the upper bounds are enough 
for the construction of flat functions. The existence of a proximate order such that the upper bounds are 
available is guaranteed for each nonnegative, nondecreasing continuous function of finite upper order by the 
following classical result.

Theorem 3.14 ([5], Ch. 2, Thm. 2.1). Let ω : (a, ∞) → (0, ∞) be a nonnegative, nondecreasing continuous 
function with ρ[ω] := lim supt→∞ log(ω(t))/ log(t) < ∞. Then, there exists a proximate order ρ(t) with 
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limt→∞ ρ(t) = ρ[ω] such that

lim sup
t→∞

ω(t)
tρ(t)

∈ (0,∞).

We have all the ingredients for the main result in this section.

Theorem 3.15. Suppose M is a weight sequence with ω(M) ∈ (0, ∞). Then, ω(M) does not belong to ĨM.

Proof. For brevity, put ω := ω(M). By Theorem 2.24 in [26] (see also Theorem 2.1.30 in [8]), for the 
associated function ωM one has ρ[ωM] = 1/ω ∈ (0, ∞), and by Theorem 3.14 there exists a nonzero proximate 
order ρ(t), with limt→∞ ρ(t) = 1/ω, and constants A1 > 0 and t1 > 0 such that

ωM(t) ≤ A1t
ρ(t), t ≥ t1. (10)

Take now a function V ∈ MF (2ω, ρ(t)). The proof will be complete if we show that G(z) := exp(−V (1/z)), 
which is well defined and holomorphic in the sector Sω, belongs to ÃM(Sω) and it is flat, for what we will 
use Proposition 2.11. It is enough to work in subsectors S(0, β, r0) � Sω, where 0 < β < ω and r0 > 0. If 
z ∈ S(0, β, r0), we have 1/z ∈ Sβ . On the one hand, according to (vi) in Theorem 3.12, combined with (10), 
there exist A2 > 0 and t2 > 0 such that

ωM(t) ≤ A2V (t), t ≥ t2. (11)

On the other hand, Proposition 3.13 provides us with constants b > 0 and R0 > 0 such that

�(V (ζ)) ≥ bV (|ζ|), ζ ∈ Sβ , |ζ| ≥ R0. (12)

Choose a positive constant c such that c > (A2/b)ω. By property (i) in Theorem 3.12 we have

lim
t→∞

V (t/c)
V (t) =

(
1
c

)1/ω

<
b

A2
,

so that there exists R1 > 0 such that

bV (t) > A2V (t/c), t ≥ R1. (13)

Let R2 := max(R0, R1, ct2) and r := R−1
2 . Then, using (12), (13) and (11), for z ∈ S(0, β, r) we have

−�(V (1/z)) ≤ −bV (1/|z|) < −A2V (1/(c|z|)) ≤ −ωM(1/(c|z|)),

and so

|G(z)| = e−�(V (1/z)) ≤ e−ωM(1/(c|z|)).

We are done whenever r ≥ r0. Otherwise, by compactness there exists K > 0 such that the inequality

|G(z)| ≤ Ke−ωM(1/(c|z|))

is valid throughout S(0, β, r0). �
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So, the question mark in Table 1 can be deleted and the answer for that cell is (ω(M), ∞), what completes 
the study of injectivity for unbounded sectors.

Since flat functions in Sγ provide (by restriction) flat functions in any sectorial region Gγ of opening πγ, 
Theorems 3.5 and 3.15 imply the following result.

Corollary 3.16 (Generalized Watson’s Lemma for sectorial regions). Let M be a weight sequence, γ > 0 and 
Gγ be a sectorial region. The following statements are equivalent:

(i) The Borel map B̃ : ÃM(Gγ) −→ C[[z]]M is injective.
(ii) γ > ω(M).

We close this section proving that the Borel map is never bijective in this framework.

Theorem 3.17. Let M be a weight sequence. Then,

SM ∩ IM = S̃u
M ∩ ĨuM = S̃M ∩ ĨM = ∅.

In other words, the Borel map is never bijective.

Proof. In all three cases we will show that surjectivity for any γ > 0 implies noninjectivity.
(i) Let us see that S̃M ∩ ĨM = ∅. Suppose B̃ : ÃM(Sγ) −→ C[[z]]M is surjective. Since it is clear that 

the series 
∑∞

n=0 z
n belongs to C[[z]]M, there exists f ∈ ÃM(Sγ) such that f(z) ∼M

∑∞
n=0 z

n. The function 
g(z) := f(z) −

∑∞
n=0 z

n = f(z) − 1/(1 − z) is holomorphic in Sγ \ {1} and, by the identity principle, cannot 
vanish identically. Moreover, g ∈ ÃM(S(0, γ, 1/2)) and g(z) ∼M 0̂, and so the Borel map is not injective 
in ÃM(S(0, γ, 1/2)). By Corollary 3.16 we see that γ ≤ ω(M). Again by Corollary 3.16 we conclude that 
B̃ : ÃM(Sγ) −→ C[[z]]M is not injective.

(ii) Let us see that S̃u
M ∩ ĨuM = ∅. Suppose B̃ : Ãu

M(Sγ) −→ C[[z]]M is surjective. Since z ∈ C[[z]]M, there 
exists f ∈ Ãu

M(Sγ) such that f(z) ∼M z uniformly in Sγ . The function g(z) := f(z) − z is holomorphic in 
Sγ and, since f is bounded in Sγ , cannot vanish identically. Furthermore, g(z) ∼M 0̂ uniformly in S(0, γ, 1), 
so there exist C, A > 0 such that for every z ∈ S(0, γ, 1) one has

|g(z)| ≤ CApMp|z|p, p ∈ N0.

Hence, the holomorphic function ψ : {z ∈ C : �(z) > 0} → C, defined by ψ(u) = g(1/uγ), is not identically 
0 and

|ψ(u)| ≤ CApMp

|u|γp , p ∈ N0, �(u) > 1.

Now, we can apply Theorem 3.1 in H1 and we deduce that 
∑∞

n=0 m
−1/γ
p < ∞. By Theorem 3.3 we conclude 

that B̃ : Ãu
M(Sγ) −→ C[[z]]M is not injective.

(iii) Finally, let us show that SM∩IM = ∅. If B̃ : AM(Sγ) −→ C[[z]]M is surjective there exists f ∈ AM(Sγ)
such that f (p)(0) = δ1,p for every p ∈ N0, where δ1,p is Kronecker’s delta. By definition of the class, there 
exist C, A > 0 (without loss of generality, we may assume that C ≥ 1 and CAM1 ≥ 1) such that

|f (p)(z)| ≤ CApp!Mp, z ∈ Sγ , p ∈ N0. (14)

We consider the Laplace transform of the function f(z) − z,
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g(z) :=
∞(ϕ)∫
0

e−zt(f(t) − t) dt, z ∈ Sγ+1, (15)

where the integration is over the half-line parameterized by r ∈ (0, ∞) �→ reiϕ, whose argument is a real 
number

ϕ ∈
(
−πγ

2 ,
πγ

2

)
such that arg(z) + ϕ ∈

(
−π

2 ,
π

2

)
. (16)

This last condition guarantees the exponential decrease at infinity of the factor e−zt which, together with the 
linear growth of f(t) −t, ascertains that the function g is well defined. Moreover, for ϕ ∈ (−πγ/2, πγ/2) fixed 
and by standard results of holomorphy under the integral sign, the integral in (15) defines a function, say gϕ, 
holomorphic in the half-plane consisting of the points with argument in the interval (−ϕ −π/2, −ϕ + π/2). 
These functions gϕ are analytic continuations of each other for neighboring directions ϕ, as a consequence 
of Cauchy’s theorem, and so they glue together to define the function g, which is indeed holomorphic in 
Sγ+1. We proceed now to estimate |g(z)|. Firstly, parameterizing we have that

|g(z)| ≤

∣∣∣∣∣∣
∞∫
0

e−reiϕzf(reiϕ)eiϕ dr −
∞∫
0

e−reiϕzreiϕeiϕ dr

∣∣∣∣∣∣
≤

∞∫
0

e−r�(eiϕz)|f(reiϕ)| dr +

∣∣∣∣∣∣
∞∫
0

e−reiϕzr dr

∣∣∣∣∣∣ .
In the first integral we use (14) for p = 0 and compute the remaining integral, and in the second one we 
integrate by parts, and get that

|g(z)| ≤ C

�(eiϕz) +

∣∣∣∣∣∣ 1
eiϕz

∞∫
0

e−reiϕz dr

∣∣∣∣∣∣
≤ C

�(eiϕz) + 1
|z|�(eiϕz) (17)

for every z ∈ Sγ+1. A different estimation is obtained by integration by parts in (15), taking into account 
that f(0) = 0:

g(z) = 1
z

∞(ϕ)∫
0

e−zt(f ′(t) − 1) dt, z ∈ Sγ+1. (18)

Now we parameterize and split the integral as before, and use (14) for p = 1 to obtain that

|g(z)| ≤ CAM1

|z|�(eiϕz) + 1
|z|�(eiϕz) ≤ 2CAM1

|z|�(eiϕz) . (19)

Finally, if we iterate the integration by parts in (18) and use that f (p)(0) = δ1,p, we get for every p ≥ 2 the 
identity

g(z) = 1
zp

∞(ϕ)∫
e−ztf (p)(t) dt, z ∈ Sγ+1.
0
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Using again (14) for p ≥ 2 we deduce that

|g(z)| ≤ CApp!Mp

|z|p�(eiϕz) . (20)

Our aim is to apply Theorem 3.1 to the function h given by h(w) = g(wγ+1), w ∈ S1, when restricted to 
the half-plane {w : �(w) > 1}. Note that the estimates in (17) imply for �(w) > 1 (and so |w| > 1) that

|h(w)| ≤ C

�(eiϕwγ+1) + 1
|wγ+1|�(eiϕwγ+1) ≤ 2C

�(eiϕwγ+1) .

These last estimates and the ones in (19) and (20) can now be summed up for h as

|h(w)| ≤ 2CApp!Mp

|w|p(γ+1)�(eiϕwγ+1)
, �(w) > 1, p ∈ N0.

Now we choose ϕ in order to minimize the value �(eiϕwγ+1). We study two cases:

(i) If | arg(w)| < γπ/(2(γ + 1)), then | arg(wγ+1)| < γπ/2 and, according to (16), we may choose ϕ =
− arg(wγ+1), and we deduce that �(eiϕwγ+1) = |w|γ+1 > 1. So, for such w we get

|h(w)| ≤ 2CApp!Mp

|w|p(γ+1) , p ∈ N0. (21)

(ii) If | arg(w)| ∈ [γπ/(2(γ + 1)), π/2), the previous choice is not possible, and we choose

ϕε =

⎧⎨⎩−γπ
2 + ε if arg(w) ∈

(
−π

2 ,−
πγ

2(γ+1)

]
,

γπ
2 − ε if arg(w) ∈

[
πγ

2(γ+1) ,
π
2

)
,

for any ε ∈ (0, γπ/2). So, �(eiϕεwγ+1) = |w|γ+1 cos((γ + 1)| arg(w)| − γπ/2 + ε), and making ε tend 
to 0 we obtain that

|h(w)| ≤ 2CApp!Mp

|w|p(γ+1)|w|γ+1 cos((γ + 1)| arg(w)| − γπ/2)
, p ∈ N0. (22)

Now, observe that in this case

0 <
π

2 − | arg(w)| ≤ (γ + 1)(π2 − | arg(w)|) ≤ π

2 ,

and so

|w| cos
(
(γ + 1)| arg(w)| − γπ

2

)
= |w| sin

(
(γ + 1)

(π
2 − | arg(w)|

))
≥ |w| sin

(π
2 − | arg(w)|

)
= |w| cos(arg(w)) = �(w) > 1.

Since we also have |w|γ > 1, from (22) we obtain the same estimates (21) given in the first case.

Since h is not identically 0, by Theorem 3.1 we deduce that the series 
∑∞

p=0((p + 1)mp)−1/(γ+1) converges, 
and Theorem 3.4 implies that B̃ : AM(Sγ) −→ C[[z]]M is not injective. �
Remark 3.18. As an easy consequence we have that if ω(M) < ∞, then

SM ⊆ S̃u
M ⊆ S̃M ⊆ (0, ω(M)].
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4. Surjectivity intervals for the Borel map

In the study of the surjectivity intervals a new index for the sequence M, introduced in this regard by 
V. Thilliez [29, Section 1.3], will play a central role.

Definition 4.1. Let M = (Mp)p∈N0 be a strongly regular sequence and γ > 0. We say M satisfies property (Pγ)
if there exist a sequence of real numbers m′ = (m′

p)p∈N0 and a constant a ≥ 1 such that: (i) a−1mp ≤
m′

p ≤ amp, p ∈ N, and (ii)
(
(p + 1)−γm′

p

)
p∈N0

is increasing.
The index γ(M) is then defined as

γ(M) := sup{γ ∈ R : (Pγ) is fulfilled} ∈ (0,∞).

This definition makes sense for (lc) sequences, and in this case γ(M) ∈ [0, ∞]. Indeed, this index may be 
equivalently expressed by different conditions:

(i) A sequence (cp)p∈N0 is almost increasing if there exists a > 0 such that for every p ∈ N0 we have that 
cp ≤ acq for every q ≥ p. It was proved in [9] (for strongly regular sequences, but the argument works 
in general) that for any weight sequence M one has

γ(M) = sup{γ > 0 : (mp/(p + 1)γ)p∈N0 is almost increasing}.

(ii) For any β > 0 we say that m satisfies (γβ) if there exists A > 0 such that

(γβ)
∞∑
�=p

1
(m�)1/β

≤ A(p + 1)
(mp)1/β

, p ∈ N0.

Using this condition, which was introduced for β = 1 by H. Komatsu [12] (and named (γ1) after 
H.-J. Petzsche [20]), and generalized for β ∈ N by J. Schmets and M. Valdivia [27], we can obtain 
(see [11,8]) an alternative expression of the index:

γ(M) = sup{β > 0; m satisfies (γβ)}.

In [8, Ch. 2] and [11, Sect. 3], the connections between the indices γ(M) and ω(M), the growth properties 
usually imposed on weight sequences, and the theory of O-regular variation, have been thoroughly studied. 
In particular, whenever M̂ = (p!Mp)p∈N0 is (lc) and β > 0 we have that

(i) γ(M) > 0 if and only if M is (snq) (this fact is deduced from the works of K.N. Bari and S.B. Stečkin [2]
and S. Tikhonov [31, Lemma 4.5]).

(ii) γ(M̂) > 1 if and only if m̂ satisfies (γ1).
(iii) γ(M̂) > β if and only if m̂ satisfies (γβ) (this is a consequence of (ii)).

A straightforward verification shows that for every s > 0 one has

γ((p!sMp)p∈N0) = γ(M) + s, γ((Ms
p )p∈N0) = sγ(M),

ω((p!sMp)p∈N0) = ω(M) + s, ω((Ms
p )p∈N0) = sω(M). (23)

Next we compare the two indices introduced so far.

Proposition 4.2. For any weight sequence M we always have γ(M) ≤ ω(M).
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Proof. The statement is trivial if γ(M) = 0. Otherwise, it suffices to prove that whenever γ > 0 is such that 
(mp/(p + 1)γ)p∈N0 is almost increasing, one has γ ≤ ω(M). By definition, there exists a > 0 such that for 
every p ∈ N0 one has m0 ≤ amp/(p + 1)γ , and so log(mp) ≥ γ log(p + 1) + log(m0/a). From here and by 
the definition of ω(M) the conclusion easily follows. �
4.1. Weight sequences

Our first result is based on a theorem by H.-J. Petzsche in the ultradifferentiable setting and we need to 
consider the following space.

Definition 4.3. We say that f ∈ EM([−1, 1]) if f ∈ C∞([−1, 1]) and there exists a constant A > 0 for which

sup
p∈N0, x∈[−1,1]

|f (p)(x)|
App!Mp

< ∞.

Correspondingly, we consider the Borel map B : EM([−1, 1]) −→ C[[z]]M sending f into the formal power 
series 

∑∞
p=0(f (p)(0)/p!)zp (we warn the reader our notations differ from those in [20]).

All over the paper [20], H.-J. Petszche assumes that M̂ is a weight sequence and that M satisfies (nq). 
However, condition (nq) can be suppressed in the statement of the following theorem, since, if m̂ = ((p +
1)mp)p∈N0 satisfies (γ1) then M satisfies (snq) and, consequently, (nq), and there is only one direction that 
needs to be checked. This can be done by carefully inspecting his proof.

Theorem 4.4 ([20], Thm. 3.5). Let M be a sequence such that M̂ is weight sequence. Then, the Borel map 
B : EM([−1, 1]) −→ C[[z]]M is surjective if and only if m̂ satisfies (γ1).

We are ready to give the first connection between the growth index γ(M) with the surjectivity intervals 
which holds for arbitrary weight sequences.

Lemma 4.5. Let M be a weight sequence. If S̃M �= ∅, then M has (snq) or, equivalently, γ(M) > 0.

Proof. Let f̂ =
∑∞

p=0 apz
p ∈ C[[z]]M. Since there exists γ > 0 such that B̃ : ÃM(Sγ) −→ C[[z]]M is 

surjective, we may take a function f1 ∈ ÃM(Sγ) such that B̃(f1) = f̂ . A suitable rotation shows that 
also B̃ : ÃM(S(π, γ)) −→ C[[z]]M is surjective and so there exists a function f2 ∈ ÃM(S(π, γ)) such that 
B̃(f2) = f̂ . It is plain to check (by a recursive application of the Mean Value Theorem) that the function

h(x) = f1(x), x ∈ (0, 1]; h(x) = f2(x), x ∈ [−1, 0); h(0) = a0,

belongs to C∞([−1, 1]) and h(p)(0) = p!ap for every p ∈ N (see Proposition 2.7). Moreover, considering 
suitable subsectors of Sγ (respectively, S(π, γ)) containing (0, 1] (resp., [−1, 0)), and again by a double 
application of Proposition 2.7.(ii), one obtains a constant A > 0 such that

sup
p∈N0, x∈[−1,1]

|h(p)(x)|
App!Mp

< ∞.

Hence, we deduce that the Borel map B : EM([−1, 1]) −→ C[[z]]M is also surjective. Since M is a weight 
sequence, M̂ also is, so by Theorem 4.4 this surjectivity amounts to the fact that the sequence of quotients 
of M̂ = (p!Mp)p∈N0 , namely m̂, satisfies the condition (γ1), which is precisely condition (snq) for M. �
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No other result concerning the surjectivity of the Borel map is present in the literature without adding 
some additional condition on the weight sequence M in this ultraholomorphic setting.

Our next results, Theorem 4.10 and Theorem 4.14, are inspired by statements of J. Schmets and M. Val-
divia [27, Section 4] in the Beurling case. Although we do not treat this case here, some of their proofs can 
be adapted to, or suitably modified for, our Roumieu-like spaces.

While the aforementioned authors impose condition (dc) on the sequence M, i.e., there exists A > 0 such 
that Mp+1 ≤ ApMp for every p ∈ N0, we will show that, in some cases, one can obtain some information 
without it.

In the course of our arguments we will need to introduce suitable ultradifferentiable classes (the notations 
again differ from those in [27]):

For a natural number r ∈ N and a sequence M, we consider the space Nr,M([0, ∞)) of functions f ∈
C∞([0, ∞)) such that

(a) f (pr+j)(0) = 0 for every p ∈ N0 and j ∈ {1, . . . , r − 1} (this condition is empty when r = 1),
(b) there exists a constant A > 0 for which

sup
p∈N0, x∈[0,∞)

|f (pr)(x)|
App!Mp

< ∞.

The subspace of Nr,M([0, ∞)) consisting of those functions with support contained in [0, 1] will be denoted 
by Lr,M([0, ∞)).

Similarly, we introduce the space Er,M([0, 1]) of functions f ∈ C∞([0, 1]) such that

(a) f (pr+j)(0) = 0 for every p ∈ N0 and j ∈ {1, . . . , r − 1} (this condition is empty when r = 1),
(b) there exists a constant A > 0 for which

sup
p∈N0, x∈[0,1]

|f (pr)(x)|
App!Mp

< ∞.

Note that these spaces coincide with the classical ones for r = 1. In this context, it is natural to consider 
the next auxiliary sequence.

Definition 4.6. Given a sequence M and r ∈ N, its r-interpolating sequence Pr,M = P = (Pn)n∈N0 is defined 
by

Pkr+j =
(
Mr−j

k M j
k+1

)1/r
, k ∈ N0, j ∈ {0, . . . , r}.

Note that with j = r for k and j = 0 for k + 1 we obtain the same value. As it was pointed out in [27], 
a simple computation leads to

(i) P1,M = M,
(ii) Pkr = Mk for every k ∈ N0,
(iii) pkr+j = (mk)1/r for all k ∈ N0 and j ∈ {0, . . . , r − 1},
(iv) If M is a weight sequence, then P also is.

We also deduce the following relation for their injectivity indices.
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Lemma 4.7. Let M be a sequence and r ∈ N. Then

ω(M) = rω(P).

Proof. Fix j ∈ {0, . . . , r − 1}, the lemma is deduced from the next calculation

ω(M) = lim inf
k→∞

logmk

log k = r lim inf
k→∞

log(mk)1/r

log k = r lim inf
k→∞

log pkr+j

log(kr + j)
log(kr + j)

log(k)

= r lim inf
k→∞

log pkr+j

log(kr + j) . �
The introduction of this r-interpolating sequence is motivated by the following estimates, independently 

obtained by A. Gorny and H. Cartan (see [18, Sect. 6.4.IV]).

Lemma 4.8. If f ∈ Cr([−1, 1]) for some r ∈ N and

Q0 := sup
x∈[−1,1]

|f(x)|, and Qr := sup
x∈[−1,1]

|f (r)(x)|,

then

sup
x∈[−1,1]

|f (j)(x)| ≤ (8er/j)j max(Q1−j/r
0 , Qj/r

r , (r/2)jQ0),

for every j ∈ {1, . . . , r − 1}.

We will employ the integral representation for the reciprocal Gamma function, usually referred to as 
Hankel’s formula (see [1, p. 228]):

1
Γ(z) = 1

2πi

∫
γφ

w−zewdw

for all z ∈ C where γφ is a path consisting of a half-line in direction −φπ/2 (for any φ ∈ (1, 2)) with end 
point w0 on the ray arg(w) = −φπ/2 then the circular arc |w| = |w0| from w0 to the point w1 on the ray 
arg(w) = φπ/2 (traversed anticlockwise), and finally the half-line starting at w1 in direction φπ/2. Now, for 
every β ∈ (1, 3/2) and any t ∈ S(β−1)/2, we define

φβ,t := β + 2 arg(t)/π ∈ ((β + 1)/2, (3β − 1)/2) ⊆ (1, 7/4).

Hence, the change of variables u = t/w maps γφβ,t
into δβ which is a path consisting of a segment from the 

origin to a point u0 with arg(u0) = βπ/2, then the circular arc |u| = |u0| from u0 to the point u1 on the ray 
arg(u) = −βπ/2 (traversed clockwise), and finally the segment from u1 to the origin. Therefore, for every 
z ∈ C and all t ∈ S(β−1)/2 we have that

tz−1

Γ(z) = −1
2πi

∫
δβ

uz−1et/u
du

u
. (24)

Our first result is obtained as a consequence of the next proposition and the proof is inspired by Theo-
rem 4.6 in [27].
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Proposition 4.9 ([27], Prop. 5.1). Let M be a sequence such that M̂ is a weight sequence and r ∈ N. If the 
restriction map

Br : Lr,M([0,∞)) −→ C[[z]]M

sending f to the formal power series 
∑∞

p=0(f (pr)(0)/p!)zp is surjective, then m̂ satisfies (γr).

Theorem 4.10. Let M be a weight sequence.

(i) Let α > 0, α /∈ N, be such that B̃ : ÃM(Sα) → C[[z]]M is surjective. Then, γ(M) > �α�.
(ii) If we have that S̃M = (0, ∞), then γ(M) = ∞.

Proof. (i) Consider first the case α ∈ (0, 1). Then, it suffices to apply Lemma 4.5 to obtain that M has 
(snq), or equivalently γ(M) > 0 = �α�, as desired.

Suppose now that α > 1 and put r = �α�, a positive natural number. Firstly, for M̂ = (Mp/p!)p∈N0 we 
will prove that the restriction map Br : E

r,M̂
([0, 1]) −→ C[[z]]

M̂
is surjective. Since r /∈ N, we may choose 

two numbers β1, β2 with

1 < β1 < β2 < min{α
r
,
3
2}.

Given ĝ =
∑∞

p=0 apz
p ∈ C[[z]]

M̂
, we write bp := app! for all p ∈ N0, and there exist C0, A0 > 0 such that

|bp| ≤ C0A
p
0p!M̂p = C0A

p
0Mp, p ∈ N0.

Hence, the formal Laplace transform of ĝ, defined by f̂ := L̂ĝ =
∑∞

p=0 bpz
p belongs to C[[z]]M. By hypothesis, 

there exists ψ ∈ ÃM(Sα) such that B̃(ψ) = f̂ . Hence, given β2 and R > 1, there exist C, A > 0 such that 
for every p ∈ N0 one has

∣∣∣ψ(z) −
p−1∑
k=0

bkz
k
∣∣∣ ≤ CApMp|z|p, z ∈ S(0, rβ2, R

r). (25)

The function ϕ : Sα/r → C given by ϕ(u) = ψ(ur), is well defined and holomorphic in Sα/r, which contains 
Sβ2 as a proper unbounded subsector. Moreover, according to (25) for p = 0, for every w ∈ S(0, β2, R) one 
has

|ϕ(u)| = |ψ(ur)| ≤ CM0. (26)

We consider now a path δβ1 in S(0, β2, R) like the ones used in the classical Borel transform, made up of 
a segment δ1 from the origin to a point u0 with |u0| = R0 < R and arg(u0) = πβ1/2, then the circular 
arc δ2, traversed clockwise on the circumference |u| = R0 and going from u0 to the point u1 on the ray 
arg(u1) = −πβ1/2, and finally the segment δ3 from u1 to the origin.

Define the function f : S(β1−1)/2 → C given by

f(t) = −1
2πi

∫
δβ1

et/uϕ(u)du
u
.

Observe that ϕ(u) is holomorphic and bounded at 0 in S(0, β2, R), and for every t ∈ S(β1−1)/2 one may 
easily check that t/u runs over a half-line in the open left half-plane and tends to infinity as u runs over any 
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of the segments δ1 or δ3 and tends to 0. Hence, f is holomorphic in the sector S(β1−1)/2. We note that, by 
virtue of Cauchy’s theorem, the value assigned to R0 in the definition of δβ1 is irrelevant for the value of f .

Let us fix in the following estimations some t ∈ S(0, (β1 − 1)/2, R) and some natural number p ∈ N. 
Hankel’s formula (24) for z = kr + 1 allows us to write

f(t) −
p−1∑
k=0

bk
tkr

(kr)! = − 1
2πi

∫
δβ1

et/u

(
ϕ(u) −

p−1∑
k=0

bku
kr

)
du

u

= − 1
2πi

3∑
j=1

∫
δj

et/u

(
ϕ(u) −

p−1∑
k=0

bku
kr

)
du

u
. (27)

Taking into account (25), for every u ∈ S(0, β2, R) we have∣∣∣∣∣ϕ(u) −
p−1∑
k=0

bku
kr

∣∣∣∣∣ =

∣∣∣∣∣ψ(ur) −
p−1∑
k=0

bk(ur)k
∣∣∣∣∣ ≤ CApMp|u|pr. (28)

So, if we choose R0 = |t|/p < R, we may apply (28) and see that∣∣∣∣∣∣
∫
δ2

et/u

(
ϕ(u) −

p−1∑
k=0

bku
kr

)
du

u

∣∣∣∣∣∣ ≤ πβ1e
pCApMp

(
|t|
p

)pr

. (29)

On the other hand, by the same estimates (28) and by the choice made for R0, for j = 1, 3 we have∣∣∣∣∣∣∣
∫
δj

et/u

(
ϕ(u) −

p−1∑
k=0

bku
kr

)
du

u

∣∣∣∣∣∣∣ ≤ CApMp

|t|/p∫
0

spr|et/(se±iπβ1/2)| ds
s

≤ CC1A
pMp

(
|t|
p

)pr

, (30)

where C1 is a constant, independent of both t and p, given by

C1 = sup
t∈S(0,(β1−1)/2,R), p∈N

|t|/p∫
0

|et/(se±iπβ1/2)| ds
s

= sup
t∈S(0,(β1−1)/2,R), p∈N

|t|/p∫
0

e|t| cos(arg(t)∓πβ1/2)/s ds

s

≤ sup
|t|<R, p∈N

|t|/p∫
0

e−|t| cos(π(β1−1)/4)/s ds

s
= sup

p∈N

1/p∫
0

e− cos(π(β1−1)/4)/u du

u

≤
1∫

0

e− cos(π(β1−1)/4)/u du

u
< ∞.

According to (27), (29) and (30), and using Stirling’s formula, we find that there exist constants C2, A2 > 0
such that for every p ∈ N and t ∈ S(0, (β1 − 1)/2, R) one has
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∣∣∣∣∣f(t) −
p−1∑
k=0

bk
tkr

(kr)!

∣∣∣∣∣ ≤ C2A
p
2
Mp

(pr)! |t|
pr. (31)

This last estimation also holds for p = 0, in a similar way, taking R0 = |t| and using the definition of f
and (26). Hence one can show that f admits the series 

∑∞
p=0 bpt

pr/(pr)! as its asymptotic expansion as t
tends to 0 in the sector (if r ≥ 2 observe that for (p −1)r+1 ≤ n < pr we have |t|pr ≤ |t|n whenever |t| ≤ 1). 
It is then a standard fact that for every m ∈ N0 and every proper subsector T of S(0, (β1 − 1)/2, R) there 
exists

lim
t→0, t∈T

f (m)(t) =
{
bp if m = pr for some natural number p ∈ N0,
0 otherwise.

(32)

Finally, we define the function F : [0, 1] → C given by F (t) = f(t) for t ∈ (0, 1], F (0) = b0. Since f is 
holomorphic in S(0, (β1 − 1)/2, R) and we have (32), we immediately deduce that F belongs to C∞([0, 1])
and

F (m)(0) =
{
bp if m = pr for some p ∈ N0,
0 otherwise.

Moreover, we may take ε > 0 such that for every t ∈ (0, 1] the disk D(t, εt) is contained in S(0, (β1−1)/2, R). 
Then, Cauchy’s integral formula together with (31) allows us to deduce that for every p ∈ N0,

|F (pr)(t)| =

∣∣∣∣∣∣
(
f(t) −

p−1∑
k=1

bk
tkr

(kr)!

)(pr)∣∣∣∣∣∣ ≤ (pr)!
(

1 + ε

ε

)pr
C2A

p
2Mp

(pr)! = C3A
p
3Mp.

In conclusion, F ∈ E
r,M̂

([0, 1]) and Br(F ) = ĝ. So, S is surjective.
Secondly, according to Theorem 3.17 the map B̃ : ÃM(Sα) → C[[z]]M is not injective, this means by 

Theorem 3.16 that α ≤ ω(M), then r = �α� < ω(M) because α /∈ N. By Lemma 4.7 and (23), if P = Pr,M

we have that

ω(P̂) = ω(Pr,M) − 1 = ω(M)/r − 1 > 0.

Hence, since P is (lc), one may take into account (9) and deduce that P̂ has (nq), so by the Denjoy–Carleman 
theorem (see [7, Ch. 1]) there exists a C∞ nonnegative function ϕ in R with support contained in [−1, 1]
and which takes the value 1 in a neighborhood of 0, such that there exists A > 0 with

sup
t∈R, n∈N0

|ϕ(n)(t)|
AnPn

< ∞.

Applying the Gorny–Cartan estimates of Lemma 4.8, for every h ∈ E
r,M̂

([0, 1]) one can check that the 

product ϕh belongs to L
r,M̂

([0, ∞)) and, moreover, (ϕh)(p)(0) = h(p)(0) for every p ∈ N0.
Since Br : E

r,M̂
([0, 1]) → C[[z]]

M̂
is surjective, we deduce that Br : L

r,M̂
([0, ∞)) −→ C[[z]]

M̂
also is. By 

Proposition 4.9, we conclude that m satisfies (γr), what amounts to γ(M) > r = �α�.
(ii) It is an immediate consequence of (i). �

Corollary 4.11. Whenever M is a weight sequence, if γ(M) < ∞ one always has

S̃M ⊆ (0, �γ(M)� + 1].



160 J. Jiménez-Garrido et al. / J. Math. Anal. Appl. 469 (2019) 136–168
In case γ(M) ∈ N, then S̃M ⊆ (0, γ(M) + 1). Note that if γ(M) = ∞, the previous theorem does not provide 
any relevant information.

Proof. The case S̃M = ∅ is trivial. So, we treat the case in which the surjectivity interval is not empty, what 
according to Lemma 4.5 implies γ(M) > 0.

Let α ∈ S̃M. On the one hand, if α /∈ N, by Theorem 4.10 we have �α� < γ(M), and so α − 1 < �α� ≤
�γ(M)�, from where α < �γ(M)� + 1. On the other hand, if α ∈ N then we can apply Theorem 4.10 for 
any β ∈ (α − 1, α) (since β ∈ S̃M too) and deduce that α − 1 = �β� < γ(M), hence α < γ(M) + 1. We 
deduce that α ≤ �γ(M) + 1� = �γ(M)� + 1, except in case γ(M) ∈ N, where moreover α cannot coincide 
with γ(M) + 1. The conclusion easily follows. �
Remark 4.12. Summing up, for a weight sequence M and taking into account (6) and Theorem 3.17 we see 
that:

(i) if γ(M) = 0 (equivalently, if M has not (snq)) then SM = S̃u
M = S̃M = ∅;

(ii) if γ(M) ∈ (0, ∞) and
(a) γ(M) /∈ N, then SM ⊆ S̃u

M ⊆ S̃M ⊆ (0, �γ(M)� + 1] ∩ (0, ω(M)],
(b) γ(M) ∈ N, then SM ⊆ S̃u

M ⊆ S̃M ⊆ (0, γ(M) + 1) ∩ (0, ω(M)].
If ω(M) = ∞, the second interval in these intersections should be taken as (0, ∞).

4.2. Weight sequences satisfying derivation closedness condition

As it has been pointed out in Remark 4.12, Corollary 4.11 provides also information about S̃u
M. In order 

to slightly improve it, one needs to impose (dc), which is a natural condition on the sequence M, in the 
sense that it guarantees that the ultraholomorphic classes under consideration, consisting of holomorphic 
functions, are closed with respect to taking derivatives (see Remarks 2.6 and 2.9). We will also need the 
next result.

Proposition 4.13 ([27], Prop. 5.2). Let r ∈ N and M be a sequence such that M̂ = (p!Mp)p∈N0 is a weight 
sequence. If the map Br : Nr,M([0, ∞)) −→ C[[z]]M sending f to the formal power series 

∑∞
p=0(f (pr)(0)/p!)zp

is surjective, then the sequence m̂ = ((p + 1)mp)p∈N0 satisfies the condition (γr).

Following the ideas in the proof of Proposition 4.6 in [27], we will be able to deal also with the case α ∈ N

whenever B̃ : Ãu
M(Sα) → C[[z]]M is surjective.

Theorem 4.14. Let M be a weight sequence satisfying (dc).

(i) Let α > 0 be such that B̃ : Ãu
M(Sα) → C[[z]]M is surjective. Then, γ(M) > �α�.

(ii) If we have that S̃u
M = (0, ∞), then SM = S̃u

M = S̃M = (0, ∞) and γ(M) = ∞.

Proof. (i) Consider first the case α ∈ (0, 1), then α ∈ S̃u
M ⊆ S̃M and α /∈ N, so by Theorem 4.10 we conclude 

that γ(M) > 0. Note that in this case no use has been made of (dc).
Suppose now that α ≥ 1 and put r = �α�, a positive natural number (note that, by Theorem 4.10, we 

only would need to consider the case α = r ∈ N but the proof works anyway). Our aim is to show that 
Br : N

r,M̂
([0, ∞)) −→ C[[z]]

M̂
is surjective.

Given ĝ =
∑∞

p=0 apz
p ∈ C[[z]]

M̂
, we write bp := app! for all p ∈ N0 and we see that there exist C0, A0 > 0

such that

|bp| ≤ C0A
p
0p!M̂p = C0A

p
0Mp, p ∈ N0. (33)
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Consider the formal power series f̂ =
∑∞

p=0(−1)prbpzp ∈ C[[z]]M. By hypothesis, there exists ψ ∈ Ãu
M(Sα)

such that B̃(ψ) = f̂ , and so there exist C, A > 0 such that for every p ∈ N0 one has

∣∣∣ψ(z) −
p−1∑
k=0

(−1)krbkzk
∣∣∣ ≤ CApMp|z|p, z ∈ Sα. (34)

The function ϕ : Sα/r → C given by ϕ(w) = ψ(w−r) − b0, is well defined and holomorphic in Sα/r ⊇ S1. 
Moreover, according to (34) for p = 1, for every w ∈ S1 one has∣∣∣∣ϕ(w)

w

∣∣∣∣ = 1
|w| |ψ(w−r) − b0| ≤

CAM1

|w|r+1 . (35)

So, the function f : R → C given by

f(t) = 1
2πi

1+∞ i∫
1−∞ i

etu
ϕ(u)
u

du

is well defined and continuous on R. By the classical Hankel formula (24) for the reciprocal Gamma function, 
for every natural number p ≥ 2 and every t ∈ R we may write

f(t) −
p−1∑
k=1

(−1)krbk
tkr

(kr)! = 1
2πi

1+∞ i∫
1−∞ i

etu

(
ϕ(u)
u

−
p−1∑
k=1

(−1)krbk
ukr+1

)
du. (36)

Since, again by (34), we have∣∣∣∣∣ϕ(u)
u

−
p−1∑
k=1

(−1)krbk
1

ukr+1

∣∣∣∣∣ = 1
|u|

∣∣∣∣∣ψ(u−r) −
p−1∑
k=0

(−1)krbk(u−r)k
∣∣∣∣∣ ≤ CApMp

|u|pr+1 (37)

for every u ∈ S1, we can apply Leibniz’s theorem for parametric integrals and deduce that the function

f(t) −
p−1∑
k=1

(−1)krbk
tkr

(kr)!

belongs to Cpr−1(R). Moreover, all of its derivatives of order m ≤ pr − 1 at t = 0 vanish. This fact can be 
checked by differentiating the right-hand side of (36) m times under the integral sign, evaluating at t = 0, 
and then computing the integral by means of Cauchy’s theorem. For that, consider the paths Γs, s > 0, 
consisting of the arc of circumference centered at 1, joining 1 + si and 1 − si and passing through 1 + s, 
and the segment [1 − si, 1 + si]. It is plain to check that 

∫
Γs

um−1(ϕ(u) −
∑p−1

k=1(−1)krbku−kr)du = 0, and 
applying (37) a limiting process when s → ∞ leads to the conclusion.

As p is arbitrary, we have that f ∈ C∞(R) and, moreover,

f (m)(0) =
{

(−1)prbp if m = pr for some p ≥ 1,
0 otherwise.

Finally, we define the function

F (t) = b0 + f(−t), t ≥ 0.
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Obviously, F ∈ C∞([0, ∞)) and F (pr)(0) = bp, p ∈ N0; F (m)(0) = 0 otherwise. In order to conclude, we 
estimate the derivatives of F of order pr for some p ∈ N0. For p = 0 and t ≥ 0, we take into account (33)
and (35) in order to obtain that

|F (0)(t)| ≤ |b0| +
1
2π

∞∫
−∞

e−t CAM1

|1 + yi|r+1 dy ≤ C0 + CAM1

2π

∞∫
−∞

1
(1 + y2)(r+1)/2 dy, (38)

and so F is bounded. For p ≥ 1 we may write formula (36) evaluated at −t as

f(−t) −
p∑

k=1

bk
tkr

(kr)! = 1
2πi

1+∞ i∫
1−∞ i

e−tz

(
ϕ(z)
z

−
p∑

k=1

(−1)krbk
zkr+1

)
dz.

Then,

F (pr)(t) = bp +
(
f(−t) −

p∑
k=1

bk
tkr

(kr)!

)(pr)

(t)

= bp + 1
2πi

1+∞ i∫
1−∞ i

e−tz(−z)pr
(
ϕ(z)
z

−
p∑

k=1

(−1)krbk
zkr+1

)
dz,

and we may apply (33), and (37) in order to obtain

|F (pr)(t)| ≤ C0A
p
0Mp + CAp+1Mp+1

2π

∞∫
−∞

1
(1 + y2)(r+1)/2 dy. (39)

From (38) and (39), and since M satisfies (dc), we deduce that there exist C1, A1 > 0 such that for every 
p ∈ N0 one has

|F (pr)(t)| ≤ C1A
p
1Mp = C1A

p
1p!M̂p, t ≥ 0,

and so F ∈ N
r,M̂

([0, ∞)) and Br(F ) = ĝ. In conclusion, Br is surjective as desired, and by Proposition 4.13
we deduce that m satisfies (γr), what amounts to γ(M) > r = �α�.

(ii) The fact that all the intervals of surjectivity are (0, ∞) is an easy consequence of (6) and Proposi-
tion 2.7.(iii), while γ(M) = ∞ stems from (i). �
Corollary 4.15. Whenever M is a weight sequence satisfying (dc), one has

SM ⊆ S̃u
M ⊆ (0, �γ(M)� + 1).

If moreover γ(M) ∈ N, then SM ⊆ S̃u
M ⊆ (0, γ(M)).

Proof. The arguments are similar to those in the proof of Corollary 4.11. The case S̃u
M = ∅ is trivial. 

Otherwise, S̃M �= ∅ and, by Lemma 4.5, γ(M) > 0.
Let α ∈ S̃u

M. By Theorem 4.14 we have �α� < γ(M), and so α < �α� + 1 ≤ �γ(M)� + 1, which is the 
first statement. In case γ(M) ∈ N, the condition �γ(M)� < γ(M) does not hold, and so γ(M) /∈ S̃u

M and the 
interval S̃u

M has to be contained in (0, γ(M)). �
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Table 3
Surjectivity intervals when M is (lc), (snq) and (dc).
γ(M) ∈ N γ(M) ∈ R\N
SM ⊆ (0, γ(M)) SM ⊆ (0, �γ(M)� + 1) ∩ (0, ω(M)]
S̃u

M
⊆ (0, γ(M)) S̃u

M
⊆ (0, �γ(M)� + 1) ∩ (0, ω(M)]

S̃M ⊆ (0, γ(M) + 1) ∩ (0, ω(M)] S̃M ⊆ (0, �γ(M)� + 1] ∩ (0, ω(M)]

Recall that if M has not (snq) the problem is solved (see Remark 4.12). Let M be (lc), (snq) and (dc) 
(the first two conditions imply that M is a weight sequence). Then γ(M) ∈ (0, ∞], and we have the situation 
described in Table 3, with the corresponding conventions if γ(M) = ∞ or ω(M) = ∞. With the same 
assumptions, one might be able to show at least that S̃M ⊆ S̃u

M ⊆ (0, γ(M)) and S̃M ⊆ (0, γ(M)] but it seems 
that a technique that only employs the properties of the spaces Er,M, Nr,M and Lr,M is not sufficient.

We mention that there exist sequences that are not strongly regular such that γ(M), ω(M) ∈ (0, ∞), and 
these values still are referring to some concrete openings in the injectivity and surjectivity problems.

4.3. Strongly regular sequences

We need to impose more conditions on the sequence M in order to get extra information about surjectivity. 
We recall that M is said to be strongly regular if is (lc), (snq) and (mg). As commented before, the 
first two conditions are natural in this context, and moderate growth, which is stronger than (dc), is 
our additional assumption. We recall that a (lc) sequence has (mg) if, and only if, supp∈N mp/M

1/p
p < ∞

(see [21, Lemma 5.3]). Hence, since for a (lc) and (mg) sequence one has, with Landau’s notation, log(Mp) =
O(p log(p)) as p tends to infinity (see [19, Theorem 2]), using (i) we deduce that

ω(M) = lim inf
p→∞

log(mp)
log(p) ≤ lim inf

p→∞
log(Mp)
p log(p) < ∞.

With this, Proposition 4.2 and the equivalence of (snq) and the condition γ(M) > 0, for a strongly regular 
sequence one always has 0 < γ(M) ≤ ω(M) < ∞ (see also [8,11]).

The main known result regarding surjectivity for strongly regular sequences was provided by V. Thilliez [29,
Theorem 3.2.1].

Theorem 4.16 ([29], Theorem 3.2.1). Let M be a strongly regular sequence and 0 < γ < γ(M). Then there 
exists d ≥ 1 such that for every A > 0 there is a linear continuous operator

TM,A,γ : C[[z]]M,A → AM,dA(Sγ)

such that B̃ ◦TM,A,γ = IdC[[z]]M,A
, the identity map in C[[z]]M,A. Hence, B̃ : AM(Sγ) −→ C[[z]]M is surjective.

Except in the classical Gevrey classes, no information about the optimality of γ(M) was provided. Our 
next attempt will be to obtain as much information as possible in this direction. The following result rests on 
Theorem 4.14 and a ramification argument, what makes us consider only rational values for the constant r
below.

Theorem 4.17. Let M be a strongly regular sequence, and let r ∈ Q, r > 0 be given. The following assertions 
are equivalent:

(i) r < γ(M),
(ii) there exists d ≥ 1 such that for every A > 0 there is a linear continuous operator

TM,A,r : C[[z]]M,A → AM,dA(Sr)

such that B̃ ◦ TM,A,r = IdC[[z]]M,A
the identity map in C[[z]]M,A,
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(iii) the Borel map B̃ : AM(Sr) → C[[z]]M is surjective,
(iv) the Borel map B̃ : Ãu

M(Sr) → C[[z]]M is surjective.

Proof. (i) =⇒ (ii) =⇒ (iii) This is Theorem 4.16.
(iii) =⇒ (iv) Trivial by inclusion.
(iv) =⇒ (i) In case r ∈ N, we use Theorem 4.14.(i) and we conclude.
Otherwise, we write r = p/q with p, q ∈ N relatively prime, q ≥ 2. Consider the sequence Mq = (Mq

n)n∈N0 , 
which also turns out to be strongly regular (see [29, Lemma 1.3.4]). We will prove that B̃ : Ãu

Mq (Sp) →
C[[z]]Mq is surjective, so, again by Theorem 4.14.(i), we see that p < γ(Mq). Hence, we get that r = p/q <

γ(M), as desired.
Let us prove the aforementioned surjectivity. Given f̂ =

∑∞
j=0 ajz

j ∈ C[[z]]Mq , there exist C, A > 0 such 
that |aj | ≤ CAjMq

j for every j ∈ N0. Let us define a new formal power series ĝ =
∑∞

j=0 bjz
j with coefficients

bqj = aj , j ∈ N0; bm = 0 otherwise.

The log-convexity of M implies that Mq
j ≤ Mqj for every j, so we have that

|bqj | ≤ CAjMq
j ≤ C(A1/q)qjMqj ,

and consequently, ĝ ∈ C[[z]]M. By hypothesis, there exists a function g ∈ Ãu
M(Sr) such that B̃(g) = ĝ, and 

so there exist C1, A1 > 0 such that for every z ∈ Sr and n ∈ N0 one has∣∣∣∣∣∣g(z) −
n−1∑
j=0

bjz
j

∣∣∣∣∣∣ ≤ C1A
n
1Mn|z|n. (40)

Consequently, the function f : Sp → C given by f(w) = g(w1/q) is well-defined and holomorphic in Sp. 
Moreover, for every w ∈ Sp and n ∈ N0 one deduces from (40) that∣∣∣∣∣∣f(w) −

n−1∑
j=0

ajw
j

∣∣∣∣∣∣ =

∣∣∣∣∣∣g(w1/q) −
n−1∑
j=0

bqj(w1/q)qj
∣∣∣∣∣∣ =

∣∣∣∣∣g(w1/q) −
qn−1∑
k=0

bk(w1/q)k
∣∣∣∣∣

≤ C1A
qn
1 Mqn|w1/q|qn. (41)

We apply now the property (mg) of M: it is straightforward to prove that there exists A0 > 0 such that for 
all n ∈ N0 we have Mqn ≤ An

0M
q
n. We may use this fact in (41) and obtain that∣∣∣∣∣∣f(w) −

n−1∑
j=0

ajw
j

∣∣∣∣∣∣ ≤ C1(A0A
q
1)nMq

n|w|n.

So, f ∈ Ãu
Mq (Sp) and B̃(f) = f̂ , what shows the surjectivity as intended. �

This result has several important consequences.

Corollary 4.18. Let M be a strongly regular sequence with γ(M) ∈ Q. Then, SM = S̃u
M = (0, γ(M)).

Proof. By Theorem 4.17 and (6), we have (0, γ(M)) ⊆ SM ⊆ S̃u
M, while (iv) =⇒ (i) in Theorem 4.17 ensures 

that, γ(M) being rational, it cannot be the case that γ(M) ∈ S̃u
M, and so S̃u

M ⊆ (0, γ(M)). �
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Table 4
Surjectivity intervals for strongly regular sequences.

γ(M) ∈ Q γ(M) ∈ I

SM (0, γ(M)) (0, γ(M)) or (0, γ(M)]
S̃u

M
(0, γ(M)) (0, γ(M)) or (0, γ(M)]

S̃M (0, γ(M)) or (0, γ(M)] (0, γ(M)) or (0, γ(M)]

In the following I stands for the set of irrational numbers.

Corollary 4.19. Let M be a strongly regular sequence, and let t ∈ R, t > 0. Each assertion implies the 
following one:

(i) t < γ(M),
(ii) the Borel map B̃ : AM(St) → C[[z]]M is surjective,
(iii) the Borel map B̃ : Ãu

M(St) → C[[z]]M is surjective,
(iv) the Borel map B̃ : ÃM(St) → C[[z]]M is surjective,
(v) for every ξ ∈ I with ξ < t, the Borel map B̃ : ÃM(Sξ) → C[[z]]M is surjective,
(vi) t ≤ γ(M).

Hence, (0, γ(M)) ⊆ SM ⊆ S̃u
M ⊆ S̃M ⊆ (0, γ(M)].

Proof. Only (v) =⇒ (vi) needs a short proof. For every q ∈ N we have that ζ = ξq /∈ N, we will show 
that B̃ : ÃMq (Sζ) → C[[z]]Mq is surjective so, by Theorem 4.10.(i), we see that �ζ� < γ(Mq). Then γ(M) >
�ξq�/q > ξ − 1/q. Since q is arbitrary, making q tend to ∞ we deduce that ξ ≤ γ(M) for every irrational 
ξ < t, so t ≤ γ(M).

The proof of the surjectivity follows the same ramification argument used in (iv) =⇒ (i) of Theorem 4.17, 
where the asymptotic relations obtained for bounded subsectors of Sξ are transformed into the analogous 
ones for the corresponding bounded subsectors of Sζ. �
Remark 4.20. The situation for strongly regular sequences is summed up in Table 4. The conjecture is that, 
at least for strongly regular sequences, one always has S̃M = (0, γ(M)] and SM = S̃u

M = (0, γ(M)). The 
main difference with the injectivity problem, in which the belonging of the value ω(M) to the injectivity 
interval depends on the convergence of a series, might lie in the fact that the value of γ(M) completely 
characterized (snq) condition, that is, γ(M) > 0 if and only if M has (snq), whereas for ω(M) we remember 
that if ω(M) > 0 then M is (nq), but if M is (nq) then only ω(M) ≥ 0 is known.

Remark 4.21. A question which was open for some time is: Are γ(M) and ω(M) always equal for strongly 
regular sequences? After some trial and error, a strongly regular sequence has been constructed with γ(M) =
2 < ω(M) = 5/2 (see Example 2.2.26 in [8], also Example 4.18 and Remark 4.19 in [10]). In fact, given any 
pair of values 0 < γ < ω < ∞ we are able to provide a strongly regular sequence M such that γ(M) = γ

and ω(M) = ω (see Remark 2.2.27 in [8] and Subsection 4.3 in [11]). This means that for opening απ with 
α in the interval (γ, ω), the Borel map is neither injective nor surjective and the corresponding injectivity 
and surjectivity intervals for this sequence are either [ω, ∞) or (ω, ∞) and (0, γ) or (0, γ], respectively.

4.4. Sequences admitting a nonzero proximate order

In this final subsection, taking into account that the Borel map is never bijective, Theorem 3.17, we will 
deduce more information regarding the surjectivity intervals. In order to be able to infer from that result 
whether or not γ(M) belongs to SM and S̃u

M, strongly regularity is not enough and we need to assume 
γ(M) = ω(M). Then,
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(i) If 
∑∞

p=0 (mp)−1/ω(M) = ∞, we know that ĨuM = IM = [ω(M), ∞) = [γ(M), ∞), and then

SM = S̃u
M = (0, γ(M)), (0, γ(M)) ⊆ S̃M ⊆ (0, γ(M)].

(ii) If 
∑∞

p=0 (mp)−1/ω(M)
< ∞ and 

∑∞
p=0 ((p + 1)mp)−1/(ω(M)+1) = ∞, we know that IM = [γ(M), ∞) and 

ĨuM = (γ(M), ∞), and so

SM = (0, γ(M)), (0, γ(M)) ⊆ S̃u
M ⊆ S̃M ⊆ (0, γ(M)].

Hence, the information we have for strongly regular sequences with γ(M) = ω(M) is summarized in the 
first two rows of Table 5. Note that for nonuniform asymptotics this assumption does not produce any 
improvements and we will need to go one step further.

Our final result was given by the second author, Theorem 6.1 in [25], for strongly regular sequences M
such that the function dM, defined by dM(t) := log(ωM(t))/ log(t), t large enough, is a proximate order. 
For nonuniform asymptotics, he proved that S̃M = (0, γ(M)] employing the truncated Laplace transform 
technique, where the classical exponential kernel was replaced by a function which is constructed using 
proximate orders and Maergoiz’s functions. The weight sequences M for which dM is a nonzero proximate 
order have been characterized in [10, Theorem 3.6]. However, this property turned out not to be stable 
under equivalence, what motivated the study of a weaker condition which is indeed stable, as shown by the 
following statement.

Theorem 4.22 ([10], Theorem 4.14). Let M be a weight sequence. The following are equivalent:

(a) There exists a weight sequence L and positive constants A and B such that ApLp ≤ Mp ≤ BpLp and 
dL(t) is a nonzero proximate order.

(b) M admits a nonzero proximate order ρ(t), i.e., there exist a nonzero proximate order ρ(t) and constants 
C and D such that

C ≤ log(t) (dM(t) − ρ(t)) ≤ D, t large enough.

Remark 4.23.

(i) The functions ρα,β in the Example 3.11 are admissible for the corresponding sequences Mα,β in the Ex-
ample 2.4. This is useful even if, as it happens in this case, the functions dα,β(t) := log(ωMα,β

(t))/ log(t)
already are proximate orders, since ρα,β are easier to handle and enjoy better regularity properties.

(ii) In the Gevrey case in particular, i.e. for Mα = (p!α)∈N0 , the constant proximate order ρ(r) ≡ 1/α
is admissible, and any V ∈ MF (2α, ρ(r)) will provide us, by Theorem 3.15, with a flat function in 
the class ÃMα

(Sα). Since the choice V (z) = z1/α is possible, we obtain the classical flat function 
G(z) = exp(−z−1/α).

As it is deduced from [25, Remark 4.11.(iii)], the construction in [25, Theorem 6.1] is also available 
whenever M is a weight sequence admitting a nonzero proximate order. We recall that if M admits a 
nonzero proximate order then it is strongly regular and γ(M) = ω(M) ∈ (0, ∞) (see [10, Remark 4.15]) but 
the converse does not hold [10, Example 4.16], so this is the most regular situation we will consider.

Theorem 4.24 (Generalized Borel–Ritt–Gevrey theorem). Let M be a weight sequence admitting a nonzero 
proximate order and γ > 0 be given. The following statements are equivalent:

(i) γ ≤ ω(M) = γ(M),
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Table 5
Surjectivity intervals for weight sequences admitting a nonzero proximate order.

γ(M) ∈ Q

γ(M) ∈ I
∞∑

p=0

( 1
mp

) 1
ω(M)

= ∞
∞∑

p=0

( 1
(p + 1)mp

) 1
ω(M)+1

= ∞
∞∑

p=0

( 1
(p + 1)mp

) 1
ω(M)+1

< ∞

SM (0, γ(M)) (0, γ(M)) (0, γ(M)) (0, γ(M)) or (0, γ(M)]
S̃u

M
(0, γ(M)) (0, γ(M)) (0, γ(M)) or (0, γ(M)] (0, γ(M)) or (0, γ(M)]

S̃M (0, γ(M)] (0, γ(M)] (0, γ(M)] (0, γ(M)]

Table 6
Surjectivity intervals for the sequences Mα,β , α > 0, β ∈ R.

β ≤ α α < β ≤ α + 1 β > α + 1
SMα,β

(0, α) (0, α) (0, α) or (0, α]
S̃u

Mα,β
(0, α) (0, α) or (0, α] (0, α) or (0, α]

S̃Mα,β
(0, α] (0, α] (0, α]

(ii) For every f̂ =
∑

p∈N0
apz

p ∈ C[[z]]M there exists a function f ∈ ÃM(Sγ) such that

f ∼M f̂ ,

i.e., B̃(f) = f̂ . In other words, the Borel map B̃ : ÃM(Sγ) −→ C[[z]]M is surjective.

Hence, S̃M = (0, γ(M)] = (0, ω(M)].

Table 5 gathers the information about surjectivity in case M admits a nonzero proximate order. For the 
sequence Mα,β =

(
p!α

∏p
m=0 logβ(e + m)

)
p∈N0

, α > 0, β ∈ R, the information is summarized in Table 6, 
note that the Gevrey case always belongs to the first column.
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5 (1956) 483–522 (in Russian).

[3] J. Chaumat, A.M. Chollet, Surjectivité de l’application restriction à un compact dans des classes de fonctions ultradif-
férentiables, Math. Ann. 298 (1) (1994) 7–40.

[4] F. Galindo, J. Sanz, On strongly asymptotically developable functions and the Borel–Ritt theorem, Studia Math. 133 (3) 
(1999) 231–248.

[5] A.A. Goldberg, I.V. Ostrovskii, Value Distribution of Meromorphic Functions, Transl. Math. Monogr., vol. 236, Amer. 
Math. Soc., Providence, RI, 2008.

[6] A.S.B. Holland, Introduction to the Theory of Entire Functions, Academic Press, New York, London, 1973.
[7] L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, second 

edition. Springer Study Edition, Springer-Verlag, Berlin, 1990.
[8] J. Jiménez-Garrido, Applications of Regular Variation and Proximate Orders to Ultraholomorphic Classes, Asymptotic 

Expansions and Multisummability, PhD dissertation, University of Valladolid, 2018. Available at http://uvadoc .uva .es /
handle /10324 /29501. (Accessed 6 June 2018).

[9] J. Jiménez-Garrido, J. Sanz, Strongly regular sequences and proximate orders, J. Math. Anal. Appl. 438 (2) (2016) 920–945.

http://refhub.elsevier.com/S0022-247X(18)30746-7/bib62616C736572757478s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib62616C736572757478s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib42617269537465636B696Es1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib42617269537465636B696Es1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib6368617563686Fs1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib6368617563686Fs1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib67616C696E646F73616E7As1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib67616C696E646F73616E7As1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib476F6C64626572674F7374726F77736B6969s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib476F6C64626572674F7374726F77736B6969s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib686F6C6C616E64s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib486F726D616E64657231393930s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib486F726D616E64657231393930s1
http://uvadoc.uva.es/handle/10324/29501
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib4A696D656E657A53616E7A535253504Fs1
http://uvadoc.uva.es/handle/10324/29501


168 J. Jiménez-Garrido et al. / J. Math. Anal. Appl. 469 (2019) 136–168
[10] J. Jiménez-Garrido, J. Sanz, G. Schindl, Log-convex sequences and nonzero proximate orders, J. Math. Anal. Appl. 448 (2) 
(2017) 1572–1599.

[11] J. Jiménez-Garrido, J. Sanz, G. Schindl, Indices of O-regular variation for weight functions and weight sequences, submitted 
for publication, available at http://arxiv .org /abs /1806 .01605. (Accessed 6 June 2018).

[12] H. Komatsu, Ultradistributions, I: structure theorems and a characterization, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 
20 (1973) 25–105.

[13] B.I. Korenbljum, Conditions of nontriviality of certain classes of functions analytic in a sector, and problems of quasiana-
lyticity, Sov. Math., Dokl. 7 (1966) 232–236.

[14] A. Lastra, S. Malek, J. Sanz, Continuous right inverses for the asymptotic Borel map in ultraholomorphic classes via a 
Laplace-type transform, J. Math. Anal. Appl. 396 (2012) 724–740.

[15] A. Lastra, S. Malek, J. Sanz, Summability in general Carleman ultraholomorphic classes, J. Math. Anal. Appl. 430 (2015) 
1175–1206.

[16] L.S. Maergoiz, Indicator diagram and generalized Borel–Laplace transforms for entire functions of a given proximate order, 
St. Petersburg Math. J. 12 (2) (2001) 191–232.

[17] E. Maillet, Sur les séries divergentes et les équations différentielles, Ann. Éc. Norm. Supér. Paris, Sér. 3 20 (1903) 487–518.
[18] S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Collection de monographies sur la théorie des 

fonctions, Gauthier-Villars, Paris, 1952.
[19] W. Matsumoto, Characterization of the separativity of ultradifferentiable classes, J. Math. Kyoto Univ. 24 (4) (1984) 

667–678.
[20] H.-J. Petzsche, On E. Borel’s theorem, Math. Ann. 282 (2) (1988) 299–313.
[21] H.-J. Petzsche, D. Vogt, Almost analytic extension of ultradifferentiable functions and the boundary values of holomorphic 

functions, Math. Ann. 267 (1984) 17–35.
[22] J.P. Ramis, Dévissage Gevrey, Astérisque 59–60 (1978) 173–204.
[23] J.P. Ramis, Les séries k-sommables et leurs applications, Lecture Notes in Phys., vol. 126, Springer-Verlag, Berlin, 1980.
[24] B.R. Salinas, Funciones con momentos nulos, Rev. Acad. Ci. Madrid 49 (1955) 331–368.
[25] J. Sanz, Flat functions in Carleman ultraholomorphic classes via proximate orders, J. Math. Anal. Appl. 415 (2014) 

623–643.
[26] J. Sanz, Asymptotic analysis and summability of formal power series, in: G. Filipuk, Y. Haraoka, S. Michalik (Eds.), 

Analytic, Algebraic and Geometric Aspects of Differential Equations, in: Trends in Mathematics, Birkhäuser, Basel, 2017.
[27] J. Schmets, M. Valdivia, Extension maps in ultradifferentiable and ultraholomorphic function spaces, Studia Math. 143 (3) 

(2000) 221–250.
[28] V. Thilliez, Extension Gevrey et rigidité dans un secteur, Studia Math. 117 (1995) 29–41.
[29] V. Thilliez, Division by flat ultradifferentiable functions and sectorial extensions, Results Math. 44 (2003) 169–188.
[30] V. Thilliez, Smooth solutions of quasianalytic or ultraholomorphic equations, Monatsh. Math. 160 (4) (2010) 443–453.
[31] S. Tikhonov, On generalized Lipschitz classes and Fourier series, J. Anal. Appl. 23 (2004) 745–764.
[32] K.V. Trunov, R.S. Yulmukhametov, Quasianalytic Carleman classes on bounded domains, St. Petersburg Math. J. 20 (2) 

(2009) 289–317.
[33] G. Valiron, Théorie des Fonctions, Masson et Cie, Paris, 1942.
[34] R.S. Yulmukhametov, Quasianalytical classes of functions in convex domains, Math. USSR, Sb. 58 (2) (1987) 505–523.

http://refhub.elsevier.com/S0022-247X(18)30746-7/bib4A696D656E657A53616E7A536368696E646C4C43534E504Fs1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib4A696D656E657A53616E7A536368696E646C4C43534E504Fs1
http://arxiv.org/abs/1806.01605
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib6B6F6D61747375s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib6B6F6D61747375s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib6B6F72656E626C6A756Ds1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib6B6F72656E626C6A756Ds1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib6C61737472616D616C656B73616E7As1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib6C61737472616D616C656B73616E7As1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib6C61737472616D616C656B73616E7A32s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib6C61737472616D616C656B73616E7A32s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib4D616572676F697As1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib4D616572676F697As1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib4D61696C6C6574s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib4D616E64656C62726F6A74s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib4D616E64656C62726F6A74s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib4D617473756D6F746Fs1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib4D617473756D6F746Fs1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib506574s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib5065747A73636865566F6774s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib5065747A73636865566F6774s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib52616D697331s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib52616D697332s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib53616C696E6173s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib53616E7A466C617450726F784F72646572s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib53616E7A466C617450726F784F72646572s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib53616E7A4C6563747572654E6F7465734265646C65776Fs1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib53616E7A4C6563747572654E6F7465734265646C65776Fs1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib5363686D65747356616C6469766961s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib5363686D65747356616C6469766961s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib5468696C6C69657A31s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib7468696C6C69657As1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib5468696C6C69657A32s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib54696B686F6E6F76s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib5472756E6F7659756C6D756B68616D65746F76s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib5472756E6F7659756C6D756B68616D65746F76s1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib56616C69726F6Es1
http://refhub.elsevier.com/S0022-247X(18)30746-7/bib59756C6D756B68616D65746F76s1

	Injectivity and surjectivity of the asymptotic Borel map in Carleman ultraholomorphic classes
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Sequences and associated functions
	2.3 Asymptotic expansions, ultraholomorphic classes and the asymptotic Borel map
	2.4 Injectivity and surjectivity intervals for the asymptotic Borel map

	3 Injectivity intervals: known results, and complete solution of the problem
	4 Surjectivity intervals for the Borel map
	4.1 Weight sequences
	4.2 Weight sequences satisfying derivation closedness condition
	4.3 Strongly regular sequences
	4.4 Sequences admitting a nonzero proximate order

	Acknowledgments
	References


