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1. Introduction

Let (Q,F,{Fi}i>0,P) be a filtered complete probability space with the right continuous filtration F;.
Denote {W,}i>0 as a scalar Wiener process on (2, F,{F;}i>0,P). Let E be a ball B.(0) — {0} of radius
¢ without the center. Moreover, N is a time-homogeneous compensated Poisson random measure defined
on (Q,F,{Fi}i>0,P) (defined in Definition 2.2), which is independent of {W;};>¢ and with an intensity
measure v x Aon E x R,.

In the present study, we consider the existence, uniqueness, and regularity of the mild solution for the
following stochastic transport-diffusion equation:

dult,z) — blt, ) - Vult, z)dt — %Au(t, 2)dt
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= h(t,x)dt + f(t,z)dW; + /g(t,x,v)N(dt,dv), t>0, z € R% (1.1)
E

When the Lévy noise part is absent (g = 0), this stochastic partial differential equation (SPDE) (1.1)
has been studied widely. When g = h =0, b = 0, and the initial datum vanishes, (1.1) becomes:

1
du(t,z) — §Au(t,m)dt = f(t,x)dW;, t>0, z € R u(t,x)|i=o = 0. (1.2)

For example, Krylov [26] obtained the following estimate for the solution of the Cauchy problem (1.2) for
p =2

E”VU‘HZ[),F((O,T)X]Rd) < C(d7p)]EHf”l[),p((o,T)XRdy (13)

using a variant of the Littlewood—Paley inequality. This result was extended by Neerven, Veraar, and Weis
[36] to the case when the Laplace operator A is replaced by a linear operator A, which admits a bounded
H*-calculus for an angle less than 7 /2. For further details of the LP-theory for linear SPDEs, please refer to
previous studies [20,25,27,28], and for the LP-theory for nonlinear SPDEs, refer to other studies [9,8,22,39].
For p = 0o, an analogue and interesting estimate of (1.3) for (1.2) was also derived by Denis, Matoussi, and
Stoica [10]. By using Moser’s iteration scheme developed by Aronson and Serrin, they derived space-time
L estimates for certain nonlinear SPDEs. Moreover, after introducing a notion of stochastic BMO spaces,
Kim [21] obtained a BMO estimate for Vu, which is controlled by || f|| L. For further details regarding this
topic, please refer to previous studies [29,32].

Some Schauder estimates also exist for solutions of (1.1) when Lévy noise is absent (g = 0). The time and
space C* estimates were discussed by Kuksin, Nadirashvili, and Piatnitski [30] when f(t,-) belongs to LP
with a sufficiently large p (or p = 0o) and R? is replaced by a bounded domain Q (with a smooth boundary).
This result was further supported by [19], for general Holder estimates of the generalized solutions with
Ly(Ly) coefficients. Subsequently, Du and Liu [12] extended the result on bounded domains to R? and
constructed the C?T%theory. The C® estimates were also derived by Hsu, Wang and Wang [17] when f
and h are dependent on u (nonlinear SPDE case). They used a stochastic De Giorgi iteration technique
and proved that the solution is almost surely C* in both space and time. Some regularity results have been
reported for when u takes values in a Hilbert space [8,35].

When the Lévy noise part is present (g # 0), Kotelenez [24], and Albeverio, Wu, and Zhang [2] studied
the L2-theory for the SPDE (1.1). Moreover, an L? theory was developed by Marinelli, Prévot, and Réckner

However, to the best of our knowledge, very few studies have considered the Schauder estimates for
(1.1). Thus, in the present study, we address this deficiency and derive the Schauder estimates for the mild
solutions.

The remainder of this paper is organized as follows. After introducing some notions and stating the main
result in Section 2, we present several useful lemmas in Section 3. In Section 4, we prove the main result.
Finally, we conclude with some remarks regarding the regularity of the mild solutions to problem (1.1) in
Section 5.

Notations Denote B, (z) := {y € R? : |z —y| < r} as the ball centered at x with radius 7. a Ab = min{a, b},
a Vb= max{a,b}. Ry = {r € R, » > 0}. The letter C' denotes a positive constant with values that may
change in different places. The Lebesgue measure is denoted by A, or by dt if there is no confusion. N is
the set of natural numbers. Let N := NU {0} and N := Ny U {oc}. B(E) is the Borel o-algebra on E. We
denote M, (E) as the family of all o-finite positive measures on F and M, (E) as the o-field on M, (F)
generated by the functions ip : M4 (F) > p — u(B) € Ry, B € B(E).
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2. Main result

Let E and (2, F,{Fi}+>0,P) be as stated in the previous section. First, we recall the notion of a Poisson

random measure.

Definition 2.1. A time-homogeneous Poisson random measure N on (F,B(E)) over the filtered probability
space (Q, F,{F:}i>0,P) with an intensity measure v x X is a measurable function N : (2, F) — (M4 (E X
Ry), M4 (E x R,)) such that:

(i) For each B x I € B(E) x B(Ry), if v(B) < oo, then N(B x I) is a Poisson random variable with
parameter v(B)A(I);

(ii) N is independently scattered, i.e., if the sets E; x I; € B(E) x B(Ry), j = 1,..,n are pairwise
disjoint, then the random variables N(B; x I;), j = 1,..,n are mutually independent; and

(iii) For each U € B(E), the N-valued process {N((0,t],U)}i>0 is {Fi}i>0-adapted and its increments
are independent of the past.

Remark 2.1. In this definition, v is called a Lévy measure and it satisfies the following condition:

/1 AvPv(dv) < oo.

E

Definition 2.2. Let N be a homogeneous Poisson random measure on (E,B(E)) over the probability space
(Q, F,{Fi}t>0,P). The R-valued process {N((0,1], A)}+so defined by:

N((0,t],A) = N((0,t],A) —v(A)t, t>0, Aec B(E),

is called a compensator Poisson random measure. In addition, {N((0,t], A)};>o is a martingale on
(Qafv {Ft}t207p)'

In the present study, we focus on Schauder estimates of the mild solutions for (1.1). To formulate the
Cauchy problem, we assume that the initial value vanishes. The mild solution is defined as follows.

Definition 2.3. Let u be a B(R ) x B(RY) x F measurable function. We refer to u as a mild solution of (1.1)
when the initial data vanish if the following properties hold:

(1) u is Fe-adapted;

(2) {u(t,z, ) }+>0 comprises a family of L?(£2, F,P)-valued random variables, which are right continuous
and have left limits in the variable t € [0, ), i.e.:

u(t—,z,-) = L*(Q) — lim u(s,xz,-), t €[0,00); (2.1)

sTt

(3) u € Li5.([0,00); W (R% L2(Q2)));

loc

(4) for every t > 0, the following equation holds almost surely:

t t t

u(t,x) = /Pt_r(b(r7 - Vu(r, ) (z)dr + /Pt_rh(r, I(x)dr + /Pt_rf(r, N(x)dW,

0 0

+//Ptfrgoﬂ,',U)($>N(dT7dU), (2.2)

(0,t] E

where the stochastic integral in (2.2) is interpreted in Ité’s and P; denotes the forward heat semigroup, i.e.:
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Prea) = Gy [ €5 cluy, o € I¥(R). 23)
Rd

Remark 2.2. The definition is inspired by Marinelli, Prévot, and Rockner [33, Definition 2.1], and the
definition given by [2].

Before stating our main result, we recall some notations for function spaces. For 7' > 0, a > 0 and p > 2,
and we define L>([0,7]; Cs*(R?)) as the set of all CZ*(R%)-valued essentially bounded functions u such that:

ut, ) — u(t,y)|

:= esssup max |u(t, )| + esssup  sup < 0.
0<t<T TERY 0<t<T ,yeRd zy |z —yl®
When a = 0, ||ullrco,0 is written as |Ju|lrc for short and ||ul|e := maxgega |u(x)|. Correspondingly,

L>([0, T); €™ (R)) is the set of all functions in L>°([0, T]; Cg*(R?)) such that:

= esssup max |u(t, )| + esssup max |Du(t, z)|
0<t<T z€RY 0<t<T z€RY

|Du(t, x) — Du(t,y)]
-+ esssup sup < 0.
0<t<T z,yeRe aty |z — y|*

Similarly, we can define the spaces L>°([0,T];C2(R%; LP(R))) and L*([0,T]; LP(E,v;C3(RY))). For h €
L>=([0,T];C (R LP(Q))) and g € L*°([0, T); LP(E, v; C3(RY))), the norms are given by:

|A(t, ) — h(t,y)llLr (o)

12| 7,00,a,p := esssupmax ||A(t, z)||1» (o) + esssup  sup
0<t<T

T zeRd 0<t<T a,ycRe wy |z —y|*
and
o120 2= esssup | mac lg (¢, 2, ) 150
t7 ) T t7 5"
+ esssup sup lo(t,z,) =9t ,-)] ’ < 00,
0<t<T ! z,yeRd z#y |£L' - y‘oz Lr(E,v)
respectively.

Our main result is as follows.

Theorem 2.1. Let b, h, f, and g be measurable functions. We consider the stochastic transport-diffusion
equation (1.1) with zero initial data. For a > 0, p > 2, we assume that:

2
0<a+-—-1=7, (2.4)
p
and
f e L2.([0,00);CH(RY)), g € L5E.([0, 00); LPT(E, v; C(RY))) g(t, x,-) vanishes near 0. (2.5)
In addition, we assume that a real number 0 < 8 < v exists such that:
b Lis.([0,00);C (RLRY), h € L75,([0,00);C) (RY LP(02)). (2.6)

Then, a unique mild solution wu exists for the equation (1.1). Moreover, u is in the class of L{3.([0,00);
CH"y (R%; LP(Q))) and for everyt > 0, C(p,t, .3) > 0 (independent of u, h, f, and g) exists such that:
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ltoesttr-p < O, Blloc,s) I

[[u lt.00,8.0 + 1/ 00,0+ [19llt.00,04. 5.0 | (2.7)

where

CH (Y = lim €L () = Moy GV (B, LV (B,0) = lim L4(5,0),
Remark 2.3. (i) Let k& be a measurable function on (E,v) and k vanishes near 0. For any 1 < r; < rg,
if k € L™(E,v), then k € L™ (E,v) and ||k||,, g < C|k||r,, . We note that g(¢,z,-) vanishes near 0,
g(t,x,-) € LPT(E,v), and we have g(t, z,-) € U,>,L"(E,v), which implies that a positive real number € > 0
exists such that g(t,z,-) € LP*¢(E,v). Therefore, (2.7) can be understood as for every sufficiently small
€1 > 0, a sufficiently small positive real number e; (€2 < €) exists, and for every t > 0, C(p,t, ||b]|t,00,8) > 0
(independent of u, h, f, and g) exists such that:

[llt,0,147—e1.p < C 052 [[Bllt,00,5) {Ilh lt00,8.0 + [|.fllt.00,0 + [19llt,00p+2, 5.0 | (2.8)

(ii) From the proof, when the vector field b vanishes, we can also assert that for every p > 2 and
g € L2 ([0,00); LP(E,v;C2(RY))) with g(t,z,-) = 0 near 0, there is a unique mild solution u to (1.1).

loc

Moreover, u € Li2 ([0, 00);Cp 77 (R%; LP(Q))) and for every t > 0, C' > 0 exists such that:

loc

[ullt,c0,144.0 < C 1) |[IR]

t,00,8.0 + | fllt.00,0 4 [19lt,00,p. 0 |-

(iii) The assumption that g vanishes near 0 is not necessary if g € L% ([0,00); L2 N LPH(E, v; C&(R?))).

loc
There are no suitable techniques for obtaining the solution except for some unnecessary and tedious calcu-

lations, and thus for simplicity, we focus on g that vanishes near 0.
3. Useful lemmas

Next, we present several lemmas that are needed for the proof of the main theorem.

Lemma 3.1. (Minkowski inequality [38]) Assume that (S1, Fi,p1) and (S2,Fa, p2) are two measure spaces
and that G : S1 x Sy — R is measurable. For given real numbers 1 < p1 < p2, we also assume that
G € LP1(S1; LP2(S3)). Then, G € LP2(Sy; LP1(S1)) and:

[ ([16eprman) ] <[ [ ([ 10@rn) e e

Sz S1 Sl SQ

The next lemmas have important roles in the estimation of the stochastic integrals.

Lemma 3.2. (Burkholder’s inequality [3, Theorem 4.4.21]) Let F' be an {F;}+>0 adapted stochastic process.
Suppose that {M,}1>0 is a Brownian type integral of the form:

t

M, — / F(r)dw,,
0

for which F € LP(Q; L2, _([0,00))). Then, for any p > 2, a positive constant C(p) > 0 exists such that for
each t > 0:
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(NS

B P) < COE[ [ 176 Par]

Corollary 3.1. Let F be a B(R}) x B(Ry) x B(R?)-measurable function. Suppose that {M(z)}i>0 is a
Brownian type integral of the form:

t
M(z) = /F(t,r,:z:)dWT,
0

for which:

t
/ |F(t,r,z)2dr < oo, for almost everywhere x € R%. (3.2)
0

Then, for any p > 2, a positive constant C(p) > 0 that is independent of x exists such that for each t >0

t

B|M(o)P) < )| [ |Ptra)Par] . (3.3

0

(M|

Proof. First, we assume that F' has the following form:

m

F(tr,x) =Y Fi(t,x)l,_,0(r), (3.4)

j=1
where m € N, Fj are (Ry x R% B(R;) x B(R?))-measurable, and 0 =t < t; < ta <..< t,, =t.
Using Lemma 3.2, for p = 2, we obtain:

t

E| M, (x ]E|Z — Wy, ) Fy(t,x) :Z ()2 (t —tj_1) = /|F(t7r,x)|2dr. (3.5)

0

For p = 4, we also have:
E|M; (x)|*

_]E|Z — Wi, ) F(t,2)*

= Z]E‘Wt] - Wtj—l |4|Fj(t7x)|4 + GZElwtz - Wti—l |2]E|Wtj - Wtj—l |2|Fi(t?z)|2|Fj(t?‘T)|2
Jj=1 i#£j

Ms

=6|>_It; — t; 1 PIF (e W+ (s —tioa)(t — t )| Fi(t,2) P Fy (¢, @)

j=1 i#]

1~ B )]

N
103

j=1

:6:/|F(t,r,x)|2drr. (3.6)
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In addition, we have the LP-interpolating formulation:

(P3—p2)P1 (p2—p1)P3

FeL"nL? = ||Flce <|Fl 7 IFIES ™72, YV pr<p2 < ps. (3.7)

By combining (3.5), (3.6), and (3.7) for p € (2,4), we conclude that a C(p) > 0 that is independent of m
exists such that:

E| M, (z /|F (t,r,z)2dr|". (3.8)

We observe that the functions that satisfy the condition (3.2) can be approximated by the step functions of
the form (3.4), and for p € [2,4], (3.2) holds for step functions, so we have completed the proof for p € [2,4].

Analogously, we can prove that (3.3) holds for every even number and every step function of the form
(3.4). Given (3.7), we can derive an inequality of (3.8) for every p > 4. Then, we complete the proof by an
approximating argument.

Remark 3.1. When F(t,r,z) = F(t — r,z) = e"4f(r,.)(z) (where A is the generator of a strongly
continuous semigroup), we obtain a Burkholder type inequality for a stochastic convolution. This estimate
was considered by Kotelenez [23] for square integral martingales where the stochastic convolution takes
values in a Hilbert space. The Hilbert space where the Burkholder inequality holds is then generalized to
2-uniformly smooth Banach spaces, and thus in the Lebesgue spaces in particular, W*4(R%) (2 < ¢ < o0),
which follows from [37, Proposition 2.4], [31, Lemma 1.1]. Other regularities and related problems for
stochastic convolution taking values in 2-uniformly smooth Banach spaces were described in previous studies
(see [4,6,7,15,34,36] and the references cited therein). L>°(R?) is not a 2-uniformly smooth Banach space,
so the following inequality is generally not true:

H/ (=04 (y, LW(RH) /H/ (t=nA (. H;(Rd)dr}g. (3.9)

However, instead of (3.9), as a consequence of (3.3), we can obtain:

t
(t—r)A ] P H (t—r)A 5
[f [ e-rsam )|, <c /\e £(r, )]
0

Lemma 3.3. (Kunita’s first inequality [3, Theorem 4.4.23]) Let E = B.(0) — {0} (0 < c € R). Suppose that
H e LP(; L2 ([0,00); L2(E,v)) N LY. ([0,00); LP(E,v))) is an {Fi}eo0 adapted stochastic process and:

loc

I, = //Hrv (dr, dv).

(0,t] E

(3.10)

Loo(R4)

Then, for every p > 2 and t > 0, a positive constant C(p) > 0 exists such that:

t t

E[|L7] < C(p){]E[//|H(r,v)|2u(dv)dr}g —|—E//|H(r,v)|py(dv)dr}.

0 FE 0 FE

From the lemma given above, by combining with a similar manipulation of Corollary 3.1, we derive the
following



8 J. Wei et al. / J. Math. Anal. Appl. 474 (2019) 1-22

Corollary 3.2. Let H be a B(Ry) x B(R;) x B(R?) x B(E)-measurable function. Suppose that {I,(x)}i>0 is
a Poisson type integral of the form.:

- //H(t,r,x,u)zv(dr,dv), (3.11)

(0,t] E
for which H(t,r,x,-) vanishes near 0 and:

t

// |H(t,r,z,v)[Pv(dv)dr < oo, for almost everywhere x € R?.

0 FE

Then, for any p > 2, a positive constant C(p) > 0 that is independent of x exists such that for each t >0

E[|L ()] < C(p) / / \H (¢, 2, 0)|Pv(dv)dr. (3.12)

0 E
Proof. First, suppose that H has the following form:

mi M2

H(t,r,x,v) ZZH” (t,2) L,y 2 (1) 1E; (V), (3.13)

=1 j=1

where mi,ms € N, H; ; are (Ry x RGB(R1) x B(R?Y))-measurable, 0 = ty < t; < to <..< ty,, = t,
Ej € B(E), and Ejl N Ej2 =9 (]1 # jg)

Using Lemma 3.3 and the property of an independently scattered Poisson random measure (see Defini-
tion 2.1 (ii)), after combining with an argument analogous to Corollary 3.1, for p = 2, we have:

t

E[|1,(2)[?] ://\H (t,7, 2, v)| 2w (dv)dr (3.14)

0

For p = 4, we also have:

E[|1,(z /t/Htrmv|udvdr +/t/|Htr:cv [u(dv)dr ). (3.15)

H(t,r,z,-) vanishes near 0, so by employing Holder’s inequality, from (3.15), we have:

E[|L,(z //|H (t,7, 2, v)|*v(dv)dr (3.16)

From (3.14) and (3.16), we can conclude that for every ¢t > 0, the linear operator given by (3.11) is
bounded from L?([0,¢]x E) to L*() and also bounded from L*([0,#] x E) to L*(£2). Then, the Marcinkiewicz
interpolation theorem ([1, Theorem 2.58]) is applied and for every p € (2,4), (3.12) holds for step functions,
and thus we have completed the proof for p € [2, 4] based on an approximating argument.

The remaining part is similar to the proof of Corollary 3.1. Thus, the proof is complete.
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Remark 3.2. (i) When H(¢,r, z,v) is replaced by U (¢,7)h(r—) (U is an evolution operator), the estimate was
discussed by Kotelenez [24] initially for a square integral martingale where the stochastic convolution takes
values in a Hilbert space. The estimate was then strengthened by Ichikawa [18], and Hamedani and Zangeneh
[13]. Some other extensions were given by [5,11,14,16], where these results considered the stochastic evolution
by taking values in Banach spaces of martingale type 1 < p < co. As noted in [14, Remark 2.11], L>=(R?) is
not a Banach space of martingale type p for any p > 1, so the estimate of (3.9) for Poisson random measure
is generally not true. However, as a consequence of (3.12), if H(t,r,z,v) = e*="Ah(r,.,v)(z) (A is the
generator of a strongly continuous semigroup), then we can obtain:

¢
HE‘//e(t*T)Ah(r,,v)]\Nf (dr, dv) ’ H
Lo (RY)
0 E

<CH/t/|e(t_")Ah(r7~,v)|py(dv)drH . (3.17)
0B

Lo (R%)

This estimate (3.17) plays an important role in proving the Schauder estimates later in this study.
(ii) The assumption that H vanishes near 0 is not necessary if for almost everywhere x € R%:

¢ t
//| (t,r,x,v)[Pr(dv) dr—i—// (t, 7, z,v)|?v(dv)dr < co.
0 0

E E

Now, from (3.15) and (3.16), we can conclude that for every ¢ > 0, the linear operator given by (3.11) is
bounded from L2([0,t] x E) to L?(Q2) and also bounded from L? N L4([0,¢] x E) to L*(). Next, if the
Marcinkiewicz interpolation theorem ([1, Theorem 2.58]) is applied for every p € (2,4), then Lemma 3.3
holds for step functions, and thus we have completed the proof for p > 2 using an approximating argument.
Based on this result and the proof of Theorem 2.1, we prove Remark 2.3 (iii) in the next section.

4. Proof of Theorem 2.1

Proof. We divide the proof into three parts: uniqueness, existence, and regularity.

(Uniqueness). The stochastic transport-diffusion equation (1.1) is linear, so in order to show the uniqueness,
it is sufficient to show that a mild solution with h = f = g = 0 vanishes identically. When h = f = g = 0,
the equation becomes a deterministic equation. Due to the classical Schauder estimates, we find that v = 0,
so the mild solution is unique.

To demonstrate the existence and regularity, we first assume that b =0

(Existence). The result follows by using the explicit formula:

t t

u(t,x):/Pt_rh(r,~)(:r)dr+/Pt_rf( x)dW, + / /Pt +g(r, -, v) (@) N (dr, dv), (4.1)

0 0 (0,¢] E

where P, is defined by (2.3).
According to this obvious representation, u satisfies properties (1), (2), and (4) in Definition 2.3

(for further details, refer to [2]). To prove the existence of mild solutions, we need to show that u €
Li5. ([0, 00); Wh (RY; L*(92))).
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For every t > 0, from (4.1) and by using (3.3) and (3.12), we can deduce that:

/ / lg(r,-,2) v (dz)dr]

Now, let us verify that u € L2 ([0,00); WH°(R%; LP(Q2))). Denote K(r,x) =
use Corollary 3.1 and Corollary 3.2, then for a given p:

el .02 < C) |10

_l=l? .
7, and if we

1
(2mr)d/2 €

Efu(t, z)[”

p)E‘ /t / K(t—rx— 2)h(r, z)dzd’r‘p

0 Rd

C’p)[/t’/K(tr,xz)f(r,z)dz’zdr]%
0 Rd
p)/t/’/K(tr,xz)g(r,z,’u)dz‘py(dv)dr
0 E Rd

<0)|

<) 1011 05

2 A o

P
t,00,p,E,0

+ 1918 o p 0 (4:2)

where we have used Lemma 3.1 in the second inequality and the Hélder inequality in the last inequality.
Moreover, C(p,t) is continuous and non-decreasing in ¢, and C(p,t) — 0 as t — 0.
Now, let us calculate |Dul. For every 1 < i < d:

8Iiu(t7 18)

t t

/dr/8 K(t -7,z — 2)h(r, z)dz+/dW /a K(t—ra—2)f(r,2)dz

///%Kt—”f—z) (r, z,v)dzN (dr, dv)

(0,4] E Rd

t

- /dr/axi[((t —r,x — 2)[h(r,z) — h(r,z)]dz
0 Rd

+/dWT/3miK(t —rx—2)[f(r,z) — f(r,z)]dz
0 R4

+ / //&HK(t —r,x—2)[g(r, z,v) — g(r,z,v)]dzN (dr, dv).
(0,t] E Rd

Thus, by Corollary 3.1 and Corollary 3.2, we conclude that:

|0z u(t, x)[”
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< C(p)E‘ //&HK(t —r,x — z)[h(r,z) — h(r, m)]dzdr‘p

0 R4

0

+C’(p)[/‘/c%iK(t—r,x—z)[f(r,z) *f(r,x)]dzrdr}%
Rd

+C(p) // ‘ /&;J((L‘ —rx—z)[g(r,z,v) — g(r, m,v)]dz‘pu(dv)dr. (4.3)
E Rd

0

From assumptions (2.5) and (2.6), h € L2 ([0, oo);Cbﬁ(Rd;Lp(Q))), f € L2 ([0,00); Cs(RY RY)) and

loc loc

g € L2 ([0,00); LPT(E,v;C2(RY))), and from (4.3), we obtain:

loc

E|0q, u(t, z)|”
t t
=1 _Lls2 P 1,2 LR 0P
<O | [ 15 dr [ P O] [ro7ar] [ [ fopas
0 R4 0 R4
t
(a—1)p _1z12 a P
+C(p)[g]f7m’p7E,a/r 2 dr[/e 2 |z dz} . (4.4)
0 Rd

Due to «, 3,7 > 0, the first two terms on the right-hand side of (4.4) are finite. Moreover, by (2.4),
a+2/p > 1, so the last term on the right-hand side of (4.4) is also finite. g(¢, z, -) vanishes near 0, and thus
for every t > 0:

B+1p (a=Dp+1
2 2

p

(1]t 5[]l + (917 00.p. .

t,00,8,p

Bl u(t, )" < C(p)]¢
< OO [ opp + [ + 9 e 0 (4.5)

where C(p,t) is continuous and non-decreasing in ¢, and C(p,t) — 0 as t — 0.

(Regularity). We still need to show the Holder estimate for Du. We demonstrate that Du € L2 ([0, 00);

loc
C)” (R4 LP(12))) and (2.7) holds. We observe that g(t,,-) vanishes near 0 and g € L$2,([0,00); LP*(E, v;
C2(R))). According to Remark 2.3 (i), we need to prove that for every sufficiently small e; > 0, a sufficiently
small positive real number e3(e1) (€2 < €) exists, and for every t > 0, C(p, t, ||b]|t,00,3) > 0 (independent of

u, h, f, and g) exists such that:

[ Dul

tioo—erp < O(D, 4, [bllt,00,8) | 11,0080 + 1 flI,00,0 + ||g||t;OO;P+627E7O¢:|' (4.6)
For every z,y € R%and 1 <i < d:

aziu(ta (E) - ayqzu(ta y)
= /dr / 0, K(t —r,x — 2)[h(r,z) — h(r,z)]dz

i
0 Jo—z|<2lz—y|
t

— / dr / Oy, K(t — 7,y — 2)[h(r, 2) — h(r,y)]dz

0 Jz—z|<2lz—y|
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+ / dr / Oy K(t —r,y — 2)[h(r,y) — h(r,z)]dz

0 |x—z[>2|z—y|

—l—/dr / Op, K(t — 1,2 — 2) — 0y, K(t — 1,y — 2)][h(r, 2) — h(r, z)]|dz
0 |lz—z|>2|z—y|

—l—/dWr 0, K(t —r,x— 2)[f(r,2) — f(r,2)]dz
0 Ja—sl<2le—yl

~fawe [ oK@y -2 - frs

0 lo—z|<2|z—y|

s fawe [ K-yl ry) - S
0 |z —2z|>2]|z—y|
+ / aw, / 00, K (t = 1y — 2) = Dy K (t— 1,y — 2)|f(rs 2) — f(ry))d2

0 |z—z|>2|z—y|

+ / / Do K (t — @ — 2)lg(r, 2,v) — g(r, 2, v)|d=N (dr, dv)
(O,t}E

/

lz—2]<2|z—yl

Oy K (t =1y = 2)lg(r, 2,0) — g(r,y, v)|d=N (dr, dv)

m—
—

0] E |z—z|<2]z—y|

+ / / Oy, K(t — 1,y — 2)[g(r,y,v) — g(r, x, U)]dZN(d’I“, dv)
(0,t] E |z—z|>2|z—y]

[ ka2 = 0K~y 2ol z0) - oo, 0)deN dr do)
(0,t] E |z—z|>2|xz—y]

= L(t) + L) + I3(t) + Ls(t) + Is(t) + L6 (t) + I7(t) + Is(t) + Io(t) + Lio(t) + T11(t) + Li2(t).

Let us estimate I; — I15. First, we manipulate the terms I; — I4. To simplify the calculations, we set
p1=2p/(ap—pPp—ep+2),and then 1 <p; <pand f—1+2/p1 =~ — €.
By using condition (2.6) and Lemma 3.1:

EIL (1) < C()E] / / 0 K (6 — 12— 2)[ [h(r 2) — h(r, ) |dzdr|

0 |z—z|<2lz—yl

t
< C(p)[h]f,oo,ﬁ,p‘/ / P e T o — 2P dedr

0 |z—z|<2|z—y|

‘ p

(4.7)

By utilizing the Holder inequality and (3.1), from (4.7), we have:
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t
» (p1=V)p P _d+1 _ |z—z2|? 8 p1 %
EIL @ < Ot | [ | e o= s ar]
0

jo—2<2la—y|
¢
ey izl 212 ﬁ P
<O s, | [ = -
ozl <2la—y| D

oo
( ) r p
< C(pyt)[h]f7oo767p[ ‘/7‘ (P 7%d7“ p | Z|B d— 1+p1 dz}
0

|lz—2z|<2|z—y|
<O, O o 5yl —y| o0

= C O oo ko — 07 (4.8)

Analogously:

ElLOF < Cp )[R} o 5|z =y 07", (4.9)
For I3, we employ the Gauss—Green formula mainly to obtain:

I;(t) = /dr / K(t—r,y—z)n;[h(r,y) — h(r,z)]dS. (4.10)

0 ly—z|=2]z—y|

From (4.10), due to the Minkowski and Hélder inequalities, we obtain:

BLoP <[ [ KE-ny- 2l - bl edsdr]”

0 |y—z|=2]|z~y|

t
(P1-Vp P1 ﬁ
<C)t " gl — gl [/ | / K(t=r,y - 2)ds| dr]

0 Jo—z|=2fc—y|

t
_a _ly—z p1 pp
<C(p,t)[h]f,oo,@plﬂf*ylﬁp[/’ / rie o dS’ dr} t (4.11)

0 |z—z|=2lz—y]

By employing Minkowski’s inequality, from (4.11), we have:

ElI3 ()P
p1|y 2|2 % p
C(pa )[h]t ,00,03, p|x 7y|ﬁp{ / /T ) dS]
lz—z|=2]z—y| O

oo

SOOI gl o [ e ([

|z—z|=2]|z—y| 0

< C(p, A o g plw =y~ (4.12)

P
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To calculate I, we first use (3.1), followed by the Holder inequality and (3.1) to obtain:

E[L(t)["

t
(p1=Dp P 7y
<C(pt = [h]f,oo,ﬁ,p[/‘ / |x—z|ﬁ\81iK(t—r,m—z)—8yiK(t—r,y—z)|dz‘ dr}
0

le—2[>2|z—y|

t,00,8,p

< C(p,t)[R]} [ / xz|ﬂ(/8ziK(r,:Ez)amK(r,yz)pldr)ﬁdz}p.
0

| —z[>2|z—y]|

We note that |z — z| > 2|z — y|. Thus, for every £ € [z, y]:
Sle =2 <€ — 2] <2z — 2|

Due to the mean value inequality, we have:

E[L(t)[?
¢ 1
1 1lz—=2 P1 p
< C(p, t)[h]zoo,ﬁ,p|m _ y|p[ / x _ Z|ﬂ /7” (d+2>p P ‘87‘ 12 dr ) 1 dz]
lo—z|>2fo—y] 0
® 1
r P1 p
< C(p, t)[h’]f,oo,,ﬁ’,pkr _ y|p[ / |z — Z|/3—d—2+ /T(d+2)P1 _%dr> 1 dz]
lo—z|>2]o—y] 0
< Cp, )M o 5l =yl 7. (4.13)

Let us estimate Is — Is. Now, we set p2 = 2p/(2 — €1p), and then 2 < ps <pand o — 14 2/py = — 3.
To calculate the term I, we first use (3.3) to derive:

L)) < C() [/‘ / 0u K (t— 1,2 — 2)[f(r, 2) — f(r7$)]dz‘2dr] 3

0 Jz—z[<2lz—y|

<C(p)[f]f7oo7a[/’ / W |zfz|adz’ drf. (4.14)

0 |o—z|<2lz—y|

Then, we apply the Hélder inequality and for every ¢ > 0, from (4.14), we obtain:

t
(p )p oz pL
S0P < O [ | [ 0]
0

|z —z[<2|z—y|

p2 > 2, so by using the Minkowski inequality, we find that:

E|Ls ()"

t
(d+1) |z —=12 o P
g C(pa t)[f]f,oo,oc[ ( T +21 2 67172 2r d’l") = |1‘ — Z‘adZ

le—z|<2]z—y] O
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o0

<CONwa| [ ([

lz—z|<2lz—y| O
a—1+-2
< OP)[fIF soalz —y[ @ o7

t,00,a

= C( )[f]toooz|x_y|(’y_q)p'

Similar calculations also imply that:

1
7%drdr> e — 2T

ElL()P < Cpt)[f]} oo alz — |7 =P

For I7, we first employ the Gauss—Green formula to obtain:

t

I7(t):/dWr / K(t—ry—

0 ly—z|=2]|z—y|

2)ni(f(r,y) — f(r,2)ldz

From (4.17), after applying Corollary 3.1 and the Holder inequality, we have:

snor<co|[| [ Ke-ry- 2l - fo)ds] o]

0 Jo—z|=2lo—y|

<C (pz 2)p / ’ / K(t -7y — z)nl[f(r, y) - f(?’, I)]dS’%dT} Pz

0 |z—z|=2lz—y|

CWJ”H&“”x‘“”ﬂ/\ [ el

0 Je—z|=2lc—y|

which also suggests that:

E|L; ()]

oo

<Ol — vl / (/;JQ

|o—z|=2]z—y| O

S C@U oo,alr — Wp[

|z —z|=2|z—y|

< COO M ale =3+ 1”(/-—-

<O@O coalt =y,

ly — z|_d+%dz}p</r%d_

0

parT L
e__dr) .

by using Minkowski’s inequality, where we have used ps > 2 in the last inequality.

P
E—d—ug}

P
2

)

15

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

First, we estimate Ig in terms of Corollary 3.1, the Holder inequality, and then the Minkowski inequality

to obtain:
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ElZs(t)[”

P)[O/’ / Op, K(t — 1,2 — 2) — 0y, K(t — 1,y — 2)][f(r, 2) —f(T,x)]dzrdr}%

|z —z[>2|z—y|

(p2—=2)p 2)p P2 )
<SCO)t 2 [fl} v /‘ / |xfz|a\8xiK(th,zfz)fﬁyiK(tfr,yfz)\dz‘ dr}

0 Jo—z|>2e—y

éC(p,t)[f]f,oo,a[ / J;—z|a(/|8@K(r,x—z)—8yiK(r,y_Z)p2dr)plde]P.
0

le—z|>2je—y

We note that |z — z| > 2|z — y|, so for every & € [z,y]:
Seoad<le -2 <2l

Thus, due to the mean value inequality, we have:

ElIs ()
t
1
< C(p’ t)[f]f,oo,a|x_y|p{ / $—Z| /T (d+2)p2 p2‘;7‘Z| dr )pz dz]iﬂ
|o—2|>2|z—y| 0
<O alr—oP[ [ oo s ([ e ) ]
|lz—2z|>2|z—y| 0
< OO s alz =yl VP, (4.20)

Now, let us calculate Iy — I 5. First, we apply analogous manipulations of I5 — Is and according to
Corollary 3.2, we find that:

ElLo(8)[?

») //( / Ou K (1t — 1, = 2)lg(r,2,0) — g(r, 2, v))d=| v(dv)ir
E

|o—2[<2|z—y|

ptez

tp+fz / ‘ / Op, K(t =1, — 2)[g(r, 2,v) — g(r,x,v)]dz‘ y(dv)dr} pte

E z—z<2lz—y|

/
<Cp,t)| O/t E/ | / \8miK(t—r,w—z)||x—z|“dz’p+62[g(r,-,v)]£+€2 (dv)ir] e

le—z|<2]z—y
t
» o, |PTe FEay
<CONHoprsa| [| [ 10— 2= s ] (4:21)
0 Jo—z|<2lz—y|

After applying the calculations from (4.14) to (4.15) again, we have:

at—2
E|To(t)" < C(p, [0} o psep.malt —yl @772 VP, (4.22)
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By setting ez = €1p%/(2 — €1p), then as ¢ — 0, e — 0, and thus if €; is sufficiently small, ez < e. Moreover,
a+2/(p+e2) —1=~v—¢€, so we conclude that:

E‘I9(t)‘p < C(p, t)[g]f,oo,erez,E,a'x - yl('y—el)p. (4'23)
By the previous argument, we conclude that:

_ep Ca
E|Lo(t)[P vV E[L11(t)[P vV E|L12(t) [P < C(p)trrez[g]} |z — y|(mer, (4.24)

t,00,pte2,E,a

By combining (4.8)—(4.9), (4.12)—(4.13), (4.15)—(4.16), (4.19)—(4.20), and (4.23)—(4.24), we obtain the
estimate (4.6). According to Remarks 2.3 (i) and (2.8), and (4.2) and (4.5), this also implies that:

lullt o < Cp,8)| I8 LooptBal (4.25)

|t.00,6.p + [[fllt,00,0 + ll4]

where C(p, t) is continuous and non-decreasing in ¢, and as t — 0, C(p,t) — 0.
Thus, we can complete the proof for b = 0. For general values of b, we use the continuity method. First,
we consider the following family of equations:

1
du(t, z) + 0b(t, z) - Vu(t, z)dt — EAu(t, x)dt
= h(t,z)dt + f(t,z)dW; + /g(t,x,v)N(dt,dv), t>0, z € RY (4.26)
E

for 6 € [0,1]. We refer to a value of 6 € [0, 1] as “good” if for any:

loc loc

g € L2 ([0,00); LPH(E, v;C2(RY))), g(t,,-) vanishes near 0,

loc

{ f € Li5.((0,00):C5 (RY), B € L35, ([0,00);C} (RY L(12), )

a unique mild solution u to (4.26) exists such that (2.7) is satisfied. Moreover, if u belongs to
L52.([0,00); €, T (R LP(€2))) and (4.26) holds in the sense of Definition 2.3, where b is in the class of
Ly ([0, oo);C?(]Rd; R%)), and f, h, g satisfy (4.27), and by using the estimate (4.25), for every given t > 0,
C(p,t) > 0 exists that is continuous and non-decreasing in ¢ such that:

||U||t,<>o71+7—,p

<CP[Ib- Vulloosp +

et + I oo + 19ll0opr 5.

< C0,0) [l 051Dl + Il 5.0 + 1 00,0+ gl ot 0] (4.28)

From (4.28), given that C(p,t) — 0 as t — 0, for any given Ty > 0, a T > 0 exists that is sufficiently small
such that 2C(p,T) < 1/|1b||1,.00,3- Therefore:

lullzce.t42-p < CO T [8]170.00,) [1Bl17.008.0 + 1 f 17,000 + 19l17.00p4 520 (4.29)

where the constant C' is independent of 6. Clearly, 0 is a “good” point.
Now, we claim that for T given above, on [0, T, all the points from [0, 1] are “good.” To prove this claim,
we take a “good” point 0y (say 6y = 0) and rewrite (4.26) as:
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1
du(t, z) + 0pb(t, x) - Vu(t, z)dt — §Au(t, x)dt

= (6o — 0)b(t,x) - Vu(t,x)dt + h(t,z)dt + f(t,z)dW; + /g(t, x,v)N(dt, dv). (4.30)
B

For measurable functions f,g, and h that satisfy (4.27), we define a mapping S, which maps u; €
L([0, T);C, 7~ (R LP(R2))) to the solution u € L=([0,T];C, 7~ (R?; LP(Q))) of the equation:

1
du(t, z) + 6pb(t, z) - Vu(t, z)dt — §Au(t, x)dt

= (6 — 0)b(t, z) - Vuy (t, z)dt + h(t,x)dt + f(t,z)dW; + /g(t,x,v)N(dt, dv). (4.31)
B

We observe that the mapping S is well defined due to our assumptions and the choice of 6y. Estimate
(4.29) shows that for any uy, ug € L®([0,T];CL 7™ (R%; LP(Q))):

[Sur — Sual|T,c014v—p < C(0, T, |bll7,00,8)10 — Oolllur — vzl 00,144 (4.32)

where C'is independent of 0y, 0, u1, and ug. Thus, it follows that an e > 0 exists such that for |§ —0y| < €, the
mapping S is contractive in L*(]0, T];C;+A’7(Rd; L?(€2))) and it has a fixed point u that obviously satisfies
(4.26). Therefore, these values of 0 are “good,” which certainly proves our claim on the time interval [0, T.

w is given by (2.2), so it is right continuous in ¢. Thus, u(T) € C;JW*(Rd;LP(Q)). We then repeat the
previous argument to extend our solution to the time interval [T, 27]. By continuing this procedure with
finitely many steps, we construct a solution on the interval [0, Ty] for every given Ty > 0. T} is arbitrary, so
our proof is complete. O

As shown by the preceding proof, we obtain a stronger result when the non-Gaussian Lévy noise is absent
(9 =0).

Corollary 4.1. (Lévy noise is absent: g = 0) Consider the stochastic transport-diffusion equation with Brow-
nian noise:

du(t,z) + b(t,x) - Vu(t, z)dt — %Au(t,x)dt = h(t,z)dt + f(t,x)dW,, t>0, z € R% (4.33)

with zero initial data. Assume that b and h satisfy the condition (2.6) with 8 > 0 and p > 2. Let f
satisfy the condition (2.5) with o > 0. Then, a unique mild solution u exists to (4.33) in the space
L2 ([0,00); CL T (R LP(R2))). Moreover, for every given t > 0, a C(p,t,||blls,00,5) > O (independent of
u,h, and f) exists such that:

||uHT,00,1+aﬁp < C(p,t, Hb”t,OO,B) [Hth,oo,B,p + Hf”t,m,a . (4'34)

Proof. If we can prove the case where b = 0, then by using the continuity method, we will obtain the
conclusion for b # 0 that satisfies the assumption (2.6). Hence, it is sufficient to prove this corollary in the
case where b = 0.

The existence and uniqueness of the mild solution in the space L ([0,00); W (R4; LP(Q))) can be
deduced from (4.2) and (4.5). Thus, we still need to derive the C1T%~ estimate.

Using the notations in the proof in Theorem 2.1, we can prove that for every sufficiently small ¢; > 0, a
sufficiently small real positive number es(€1) (€2 < €) exists, and for every ¢ > 0, a C(p,t) > 0 (continuous

and non-decreasing in ¢, and independent of u, h, f) exists such that:
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[1Dullt,00,0—e1 p < C(p,1) [Hth,oo,Bm + 1 f1lt00,0 |- (4.35)

For 1 < ¢ < p, from (4.7) and (4.8), we obtain:

g—1)p _ 2
E|L(6)7 < Cp)t ™ " [h)E g e —y| @ DP, (4.36)
Similarly, we have:
(a— l)p _ 2
E|L(t)[? v E[L;()F VE|L(t)P < Cp)t o " [h)} o g 1z —y| PP, (4.37)

We take g =2/(1+a—f —¢€1). Then, 1 <g<2<pand f—1+4+2/¢=a — €. From (4.36) and (4.37),
we obtain:

E[L ()P VE|L ()P VE[I()[P VE| L) < C(p, )[R} o 5,17 — yl P (4.38)

To calculate I5 — Ig, we use (4.14)—(4.20). For every 2 < ¢; < p, we have:

Bl V Ell()P VEILOF VEIOP < COE 5 [ wale -y (439)
If we take ¢ = 2/(1 —€1), then 2 < ¢1 < p and:
E|L(1)[P V El ()" V E[I(1)[P V ElIs()[” < C(p, 6)[f]} oo ol — y/ @7 VP. (4.40)
From (4.38), (4.40), and Remark 2.3 (i), we have completed the proof. O
5. Concluding remarks

Given Remark 2.3 (ii) and Corollary 4.1, we have obtained the following result. For every « > 0, we
assume that f € L0 ([0,00);C(R)), and that a real number 8 (with 0 < 8 < «) exists such that h €
L2 (10, 00); CB(R L?(Q))). Then the Cauchy problem:

1
du(t,x) — §Au(t,a:)dt = h(t,z)dt + f(t,x)dW;, t>0, z€R, ul= =0, (5.1)

has a unique mild solution u € L2,([0, 00); C}T*(R; L2(R))), which is given by:

t

_ O/dr R/ K(t - — 2)h(r, 2)dz + /dWr HZ K(t—ry—2)f(r,2)dz. (5.2)

0

In Lg2 ([0 ,oo);C;+O‘(R)), we select a non-negative and time-independent function f such that:

(i) f is non-decreasing on R and suppf C Ry;
(if) For z,y € [0, 1], |f(z) = f(y)| = & — y|*.
For this function and 0 < # < 1, we conclude that by using (3.5):

E|0,u(t, ) — Oyult, O)|2

— / | / 0K (r, )z — 2) — f(—2))dz| dr
0 R
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We observe that f is non-negative and non-decreasing. For every ¢ (with 1 > § > «), from (5.3), we have:

2K f(a+2) — f)de] dr

S O —
S— g F—

;K(r, 2[f(x+2) — f(z)]dz‘zdr. (5.3)

||8$U(t, Jf) - awu(tv O)H2

sup

0<zr<1 xd
t [e%e]
_ 2 1
= sup {/’/EK(EZ)M""Z—WM‘ dr]2
o<z<1 0 T X

> swp | / | / 2 ) L DT ]

In addition, if we select h(t,z,w) = hy(t, x)he(w) with hy € Lloc([O,oo);Cf(R)) ho € L2(2), then the first
term on the right-hand side of (5.2) belongs to L7 ([0, 00); C1+5(Rd' L?(Q))) for every 6 (with a < 6 < 1).
Based on this result, we can see that for every § > «, u is not in the class of Ly?.([0, 00); C;H(Rd; L?(Q))),
i.e., the Holder index « is now optimal.

Analogously, by taking g(t,z,v) = f(t,x)g1(v), where f satisfies the properties described above and
g1 € L?(E,v), we claim the following. For every a > 0, if a real number 0 < 3 < « exists such that

h e L2 ([0, 00); C'bﬁ (R; L?(€2))), then the following Cauchy problem:

1 -
du(t,x) — EAu(t,x)dt = h(t,z)dt + /g(t, z,v)N(dt,dv), t>0, z €R, ul;= =0, (5.4)
B

has a unique mild solution u € L2,([0, 00); Cp T (R; L2(R))), which is given by:

- /t dr / K(t— .2 — 2)h(r, 2)dz + /t / / K(t—ry— 2)g(r, 2 v)dzN(dt,dv).  (5.5)

Given (3.14) and (5.3), and by using (3.5), we conclude that for 0 < 2 < 1:

E|d,u(t, ) — dyult, 0)[? / / [f(z+2) dz‘ dr/|91 ) 2u(dv), (5.6)

0

which shows that the Holder index « is optimal for (5.4).

The stochastic processes {W;}>0 and {Nt}@o are independent, so the Wiener—It6 integral in (5.2) (in-
terpreted as a stochastic process) and the Wiener—Lévy integral in (5.5) are also independent. By combining
(5.3) and (5.6), we conclude that when p = 2, the Holder index « for the Cauchy problem:
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1 -
du(t,z) — §Au(t,x)dt = h(t,z)dt + f(t,x)dW; + /g(t,x,’u)N(dt,d’u), t>0,z€R, ult—g =0,
E

is also optimal.
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