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Let (X, ‖ ·‖) be a uniformly convex Banach space and let C be a bounded closed and 
convex subset of X. Assume that C has nonempty interior and is locally uniformly 
rotund. Let T be a nonexpansive self-mapping of C. If T has no fixed point in the 
interior of C, then there exists a unique point x̃ on the boundary of C such that each 
sequence of iterates of T converges in norm to x̃. We also establish an analogous 
result for nonexpansive semigroups.

© 2019 Published by Elsevier Inc.

1. Introduction

Let (X, ‖ · ‖) be a Banach space, C a nonempty closed subset of X and let T : C → C be a nonexpansive 
mapping with a fixed point. The behavior of the sequence of Picard iterates of T and, in particular, its 
possible convergence in norm is one of the important problems in metric fixed point theory because this 
allows us to approximate a fixed point in the simplest way. It appears, for example, in the famous Banach 
Contraction Principle which has many applications in various branches of mathematics. In the case of 
nonexpansive mappings the situation is different because their iterates need not be strongly convergent. 
However, under additional assumptions they do converge. The first result of this type is due to J.-J. Moreau, 
who proved that if X is a Hilbert space, C is a closed subset of X and if the fixed point set Fix(T ) of T
has nonempty interior, then for each x ∈ C, the Picard iterates of T at x strongly converge to a point in 
Fix(T ) ([29]). W. A. Kirk and B. Sims generalized this result to Banach spaces which are strictly convex 
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and the nonempty closed subsets of which are densely proximal ([26]; see also [20], [23], [24] and [25]). In 
particular, they proved the following theorem.

Theorem 1.1. Let (X, ‖ ·‖) be a reflexive and locally uniformly rotund Banach space, and let C be a nonempty 
closed subset of X. Suppose that T : C → C is a nonexpansive mapping and that the interior of its fixed 
point set Fix(T ) is not empty. Then for each point x ∈ C, the Picard sequence {Tn(x)}∞n=0 converges in 
norm to a point in Fix(T ) as n → ∞.

An analogue of this result for orbits of nonexpansive semigroups was established in [16]. In this connection, 
see also [2], [30] and [31].

Theorem 1.2. Let (X, ‖ · ‖) be a reflexive and locally uniformly rotund Banach space, and let C be a closed 
subset of X. Suppose S is a nonexpansive semigroup on C and that the interior of its fixed point set Fix(S)
is not empty. Then for each point x ∈ C, the trajectory {S(t) : 0 ≤ t < ∞} converges in norm to a point of 
Fix(S) as t → ∞.

In the above theorems the assumption that the interior of the fixed point set Fix(T ) or Fix(S) is not 
empty is essential. If this set is empty, then the only possible case in which we can obtain convergence 
of iterates (orbits) in a general setting is the case where the fixed point set is a singleton and lies on the 
boundary of C, and C is not only strictly convex, but locally uniformly rotund. Our paper is devoted to this 
situation and we study both iterates of nonexpansive mappings and orbits of nonexpansive semigroups. In 
Section 5 we prove our main theorems by using strictly geometric arguments connected with ergodic results. 
In Section 6 we study the case of the closed unit ball in a Hilbert space, where, using the asymptotic center 
method, we arrive at simpler proofs of our results. Finally, we also mention that in Section 4 of our paper 
we obtain convergence results for approximating sequences and curves.

2. Basic notions and facts

Throughout this paper all Banach spaces are real except for Remark 6.4.
We begin by recalling the standard notion of a strictly convex Banach space.

Definition 2.1. ([17]) A Banach space (X, ‖ · ‖) is said to be strictly convex if ‖x+y
2 ‖ < 1 whenever x, y ∈ X, 

‖x‖ ≤ 1, ‖y‖ ≤ 1 and x �= y.

Next we recall the definition of a locally uniformly rotund Banach space.

Definition 2.2. ([28]) Let (X, ‖ · ‖) be a Banach space and let SX := {x ∈ X : ‖x‖ = 1} be its unit sphere. 
We say that (X, ‖ · ‖) is locally uniformly rotund (LUR) if for each x ∈ SX and for each ε ∈ (0, 2], there 
exists δ(x, ε) > 0 such that for each y ∈ SX with ‖x − y‖ ≥ ε, we have

1 − ‖x + y

2 ‖ ≥ δ(x, ε).

In his paper A. R. Lovaglia proved the following theorem regarding the �2-product of locally uniformly 
rotund Banach spaces.

Theorem 2.3. ([28]) Let {Xn} be a sequence of LUR Banach spaces. Denote by ‖ · ‖n the norm in Xn. Let 
X be the space of all sequences, x = {xn}, xn ∈ Xn, for which 

∑∞
n=1 ‖xn‖2

n is convergent. Define a norm 

‖ · ‖ on n X by ‖x‖ :=
(∑∞ ‖xn‖2

n

) 1
2 . Then (X, ‖ · ‖) is a locally uniformly rotund Banach space.
n=1
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We also mention the following equivalent definition of a locally uniformly rotund Banach space.

Definition 2.4. ([11]) We say that a Banach space (X, ‖ · ‖) is locally uniformly rotund (LUR) if for each 
x ∈ X, every sequence {xn}∞n=1 with limn ‖xn‖ = ‖x‖ and limn ‖x + xn‖ = 2‖x‖ tends strongly to x.

So it is natural to introduce the notion of a locally uniformly rotund set in the following way.

Definition 2.5. ([37]) Let (X, ‖ ·‖) be a Banach space, C be a nonempty bounded closed and convex subset of 
X, and let C have nonempty interior, that is, int(C) �= ∅. We say that C is locally uniformly rotund (LUR) 
if for each x ∈ ∂C and for each ε ∈ (0, dx), where dx := sup{‖x − x′‖ : x′ ∈ C}, there exists δ(x, ε) > 0 such 
that for each y ∈ C with ‖x − y‖ ≥ ε, we have

dist(x + y

2 , ∂C) := inf{‖x + y

2 − x′‖ : x′ ∈ ∂C} ≥ δ(x, ε).

Now we also recall the classical notion of uniform convexity.

Definition 2.6. ([12]) Let (X, ‖ ·‖) be a Banach space and let BX(0, 1) = {x ∈ X : ‖x‖ ≤ 1} denote its closed 
unit ball. If for each ε ∈ (0, 2], there exists δ(ε) > 0 such that for each x, x′ ∈ BX(0, 1) with ‖x − x′‖ ≥ ε, 
we have

‖x + x′

2 ‖ ≤ 1 − δ(ε),

then we say that the space (X, ‖ · ‖) is uniformly convex.

Definition 2.7. ([37]) Let (X, ‖ · ‖) be a Banach space, C be a nonempty bounded closed and convex subset 
of X, and let C have nonempty interior. We say that C is uniformly convex if for each ε ∈ (0, diam(C)), 
there exists ηC(ε) > 0 such that for each x, y ∈ C with ‖x − y‖ ≥ ε, we have

dist(x + y

2 , ∂C) ≥ ηC(ε).

Observe that if a Banach space (X, ‖ · ‖) admits a nonempty bounded closed and convex subset which 
has nonempty interior and is uniformly convex, then (X, ‖ · ‖) has to be reflexive (see [17]).

At this point we present a simple example of a bounded closed and convex subset of a Hilbert space, 
which is LUR but not uniformly convex.

Example 2.8. This example is a small modification of an example given in [28]. Let H = �2 and let

C := {x = {xi} ∈ H = �2 :
∞∑
k=2

(|x2k−1|k + |x2k|k)
2
k ≤ 1}.

Then C is bounded, closed, convex and has nonempty interior. Moreover, by Theorem 2.3, the set C is 
LUR, but not uniformly convex.

Now we recall a few facts from nonexpansive mapping theory.

Definition 2.9. Let (X, ‖ · ‖) be a Banach space and let C be a weakly compact and convex subset of X. We 
say that C has the fixed point property for nonexpansive mappings if each nonexpansive mapping T : C → C

(that is, ‖Tx − Tx′‖ ≤ ‖x − x′‖ for every x, x′ ∈ C) has a fixed point.
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Theorem 2.10. ([1]; see also [14]) If (X, ‖ · ‖) is a strictly convex Banach space, C is a nonempty closed and 
convex subset of X, T : C → C is nonexpansive, x, x′ ∈ C, x �= x′ and x, x′ are fixed points of T , then the 
whole linear segment [x, x′] lies in the fixed point set Fix(T ) of T .

Theorem 2.11. ([3]) If (X, ‖ · ‖) is a uniformly convex Banach space, C is a nonempty bounded, closed and 
convex subset of X, and T : C → C is nonexpansive, then the mapping T has a fixed point.

Theorem 2.12. ([1]; see also [14]) If C is a closed and convex subset of a strictly convex Banach space 
(X, ‖ · ‖), and if T : C → C is a nonexpansive mapping with Fix(T ) �= ∅, then the set Fix(T ) is closed and 
convex.

Definition 2.13. ([4]) Let (X, ‖ · ‖) be a Banach space, C a nonempty subset of X and T : C → C. The 
mapping T is said to be demiclosed if for any sequence {xn}∞n=1 in C, the following implication holds:

w − lim
n

xn = x and lim
n

‖Txn − y‖ = 0

imply that

x ∈ C and Tx = y.

Theorem 2.14. ([4]) If (X, ‖ · ‖) is a uniformly convex Banach space, C is a nonempty closed and convex 
subset of X, T : C → C is nonexpansive and I : C → C is the identity mapping, then the mapping F = I−T

is demiclosed on C.

In other words, any uniformly convex Banach space admits a demiclosedness principle for nonexpansive
mappings.

Theorem 2.15. ([5]) If (X, ‖ · ‖) is a uniformly convex Banach space, C is a nonempty bounded closed and 
convex subset of X, and T : C → C is nonexpansive, then for each point x ∈ C, we have

lim
n→∞

‖T ( 1
n

n∑
i=1

T i+kx) − 1
n

n∑
i=1

T i+kx‖ = 0,

uniformly in k > 0.

In the case of Hilbert spaces, we will also apply the asymptotic center technique, which is one of the 
basic tools in metric fixed point theory.

Definition 2.16. ([15]) Let (H, ‖·‖) be a Hilbert space. For x ∈ H and a bounded sequence {xn}∞n=1, the 
asymptotic radius of {xn} at x is the number

r (x, {xn}) := lim sup
n

‖x− xn‖ .

For a nonempty closed and convex subset C of H, the asymptotic radius of {xn} in C is the number

r (C, {xn}) := inf {r (x, {xn}) : x ∈ C} .

The asymptotic center of {xn} in C is, by definition, the set

Ac (C, {xn}) := {x ∈ C : r (x, {xn}) = r (C, {xn})} .
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Theorem 2.17. ([15], [17] and [18]) Let (H, ‖·‖) be a Hilbert space and C a nonempty bounded closed and 
convex subset of H. Then for each bounded sequence {xn} in H, we have

Ac (C, {xn}) = Ac (H, {xn})

and Ac (C, {xn}) is a singleton.

Theorem 2.18. ([15], [17] and [18]) Let (H, ‖·‖) be a Hilbert space. If C is a nonempty bounded closed 
and convex subset of H, and T : C → C is nonexpansive, then for each x ∈ C, we have Ty = y, where 
{y} = Ac (C, {Tnx}).

Next we recall the notions of a nonexpansive semigroup and a strongly measurable nonexpansive semi-
group.

Definition 2.19. ([32]) Let (X, ‖ · ‖) be a Banach space, C a nonempty subset of X and let S =
{S (t) : t ∈ [0,∞)} be a family of self-mappings of C. Then S is said to be a nonexpansive semigroup
acting on C if the following four conditions are satisfied:

(i) S (t) : C → C for each t ∈ [0,∞);
(ii) S (s + t)x = S (s)S (t)x for all s, t ∈ [0,∞) and x ∈ C;
(iii) S (0) = I;
(iv)

‖S (t)x− S (t) y‖ ≤ ‖x− y‖

for all x, y ∈ C and t ∈ [0,∞).
If, in addition,
(v) S (t)x is strongly measurable in t ∈ [0,∞) for each x ∈ C, then the semigroup S is called a strongly 

measurable nonexpansive semigroup.
The set of common fixed points of S is denoted by Fix (S).

Theorem 2.20. ([3]) If (X, ‖ · ‖) is a uniformly convex Banach space, C is a nonempty bounded closed and 
convex subset of X, and S is a nonexpansive semigroup acting on C, then the semigroup S has a common 
fixed point.

Theorem 2.21. ([1]) If C is a closed and convex subset of a strictly convex Banach space (X, ‖ · ‖), and if S
is a nonexpansive semigroup acting on C with Fix(S) �= ∅, then the set Fix(S) is closed and convex.

We also recall the following result, which is due to the fourth author (see the proof of the Theorem in 
[32], pages 548–549).

Theorem 2.22. Let (X, ‖ · ‖) be a uniformly convex Banach space, C a nonempty bounded closed and convex 
subset of X, S a strongly measurable nonexpansive semigroup acting on C, x ∈ C, 0 < tn → ∞, and let the 
sequence { 1

tn

∫ tn
0 S(s)xds} tend weakly to x̃ ∈ C. Then x̃ ∈ Fix(S).

In Hilbert spaces we can also define the asymptotic center for bounded nets {xt}t≥0.

Definition 2.23. ([17] and [18]) Let (H, ‖·‖) be a Hilbert space. For x ∈ H and a bounded net {xt}t≥0, the 
asymptotic radius of {xt}t≥0 at x is the number

r (x, {xt}t≥0) := lim sup ‖x− xt‖ .

t→∞
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For a nonempty closed and convex subset C of H, the asymptotic radius of {xt}t≥0 in C is the number

r (C, {xt}t≥0) := inf {r (x, {xt}t≥0) : x ∈ C} .

The asymptotic center of {xt}t≥0 in C is, by definition, the set

Ac (C, {xt}t≥0) := {x ∈ C : r (x, {xt}t≥0) = r (C, {xt}t≥0)} .

Theorem 2.24. ([17] and [18]) Let (H, ‖·‖) be a Hilbert space and let C be a nonempty bounded closed and 
convex subset of H. Then for each bounded net {xt}t≥0 in H, we have

Ac (C, {xt}t≥0) = Ac (H, {xt}t≥0)

and Ac (C, {xt}t≥0) is a singleton.

Theorem 2.25. ([17] and [18]) Let (H, ‖·‖) be a Hilbert space. If C is a nonempty bounded closed and convex 
subset of H, and S is a nonexpansive semigroup acting on C, then for each x ∈ C, we have S(t)y = y for 
all t ≥ 0, where {y} = Ac 

(
C, {S(t)x}t≥0

)
.

3. An auxiliary lemma

In this section we prove a lemma which is a basic tool in our subsequent considerations.

Lemma 3.1. Let (X, ‖ · ‖) be a Banach space and let C be a bounded closed and convex subset of X. Assume 
that int(C) is nonempty, 0 ∈ int(C) and C is locally uniformly rotund. Let x̃ ∈ ∂C, x∗ ∈ X∗, ‖x∗‖ = 1, 
k ∈ (0, +∞) and let the hyperplane Vk,x̃ := {x ∈ X : x∗(x) = k} which supports C at the point x̃ be given. 
If r ∈ (0, +∞) and the set

Cr := C ∩ {x ∈ X : ‖x− x̃‖ ≥ r}

is nonempty, then there exists 0 < k1 < k such that

Cr ⊂ {x ∈ X : x∗(x) ≤ k1}.

Proof. Suppose to the contrary that there exists a sequence {xn} in Cr such that limn x
∗(xn) = k. By our 

assumptions, x̃ ∈ ∂C and xn ∈ Cr ⊂ C for all n = 1, 2, ..., that is, ‖xn − x̃‖ ≥ r for all n = 1, 2, .... Since 
C is locally uniformly rotund, there exists δ > 0 such that each closed ball B(xn+x̃

2 , δ) is a subset of C
(n = 1, 2, ...). Hence xn+x̃

2 + δ
‖x̃‖ x̃ ∈ C. This, however, contradicts the assumption

x∗
(
xn + x̃

2 + δ

‖x̃‖ x̃
)

≤ k

because we have

lim
n

x∗
(
xn + x̃

2 + δ

‖x̃‖ x̃
)

=
[
1 + δ

‖x̃‖

]
k > k.

The contradiction we have reached completes the proof of this lemma. �
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4. Convergence of approximating sequences

In this section we consider the behavior of approximating sequences of nonexpansive mappings with 
no fixed points in the interior of their domains. Recall that a sequence {xn}∞n=1 ⊂ C is said to be an 
approximating sequence of a nonexpansive mapping T : C → C if limn ‖xn − Txn‖ = 0. We begin with the 
following theorem.

Theorem 4.1. Let (X, ‖ · ‖) be a reflexive Banach space which admits a demiclosedness principle with respect 
to nonexpansive mappings. Assume that C ⊂ X is bounded, closed and convex with nonempty interior. 
Assume further that C is locally uniformly rotund. Let T be a nonexpansive self-mapping of C. If T has a 
unique fixed point x̃ and x̃ lies on the boundary ∂C of C, then every approximating sequence {xn}∞n=1 of T
tends strongly to x̃.

Proof. We may assume without any loss of generality that 0 ∈ int(C). Suppose to the contrary that there 
exists a sequence {xn}∞n=1 in C such that limn ‖xn − Txn‖ = 0, but {xn} does not strongly converge to x̃. 
Without any loss of generality we may assume that there exists limn ‖xn− x̃‖ = r > 0 and that the sequence 
{xn} is weakly convergent. By our assumption, (X, ‖ · ‖) admits a demiclosedness principle with respect to 
nonexpansive mappings and therefore the weak limit of {xn} is a fixed point of T . Since the mapping T has 
a unique fixed point x̃, it follows that w- lim xn = x̃.

Next, note that for 0 < η < r, there exists n0 ∈ N such that

xn ∈ Cr−η = C ∩ {x ∈ X : ‖x− x̃‖ ≥ r − η}

for each n ≥ n0. Let x∗ ∈ X∗, ‖x∗‖ = 1 and 0 < k ∈ R be such that the hyperplane Vk,x̃ = {x ∈ X :
x∗(x) = k} supports C at the point x̃. By Lemma 3.1, there exists 0 < k1 < k such that

Cr−η ⊂ {x ∈ X : x∗(x) ≤ k1}.

It follows that x̃ ∈ {x ∈ X : x∗(x) ≤ k1}. But this contradicts the assumption that x∗(x̃) = k because 
k1 < k. The contradiction we have reached completes the proof. �

Directly from this theorem we get the following corollary.

Corollary 4.2. Let (X, ‖ ·‖) be a reflexive Banach space which admits a demiclosedness principle with respect 
to nonexpansive mappings. Assume that C ⊂ X is bounded closed and convex with nonempty interior. 
Assume further that C is locally uniformly rotund. Let T be a nonexpansive self-mapping of C and let T
have a unique fixed point x̃ which lies on the boundary ∂C of C. Then for each x ∈ C, the approximating 
curve zx : [0, 1) → C, defined implicitly by zx(s) = (1 − s)x + sTzx(s), where s ∈ [0, 1), tends strongly to x̃
as s → 1. In addition, this convergence is uniform with respect to x ∈ C.

5. Convergence of iterates of nonexpansive mappings and orbits of nonexpansive semigroups

This section is the main part of our paper. Our goal is to state and prove an analogue of Theorem 1.1.

Theorem 5.1. Let (X, ‖ · ‖) be a uniformly convex Banach space and let C be a bounded closed and convex 
subset of X. Assume that C has nonempty interior and is locally uniformly rotund. Let T be a nonexpansive 
self-mapping of C. If T has no fixed point in int(C), then there exists a unique point x̃ on the boundary ∂C
of C such that each sequence of iterates {Tnx}∞n=1 of T converges strongly to x̃.
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Proof. Without any loss of generality we may assume that 0 ∈ int(C). It follows from Theorems 2.11
and 2.12 that the nonexpansive mapping T has exactly one fixed point x̃ and that this point lies on the 
boundary ∂C of C. We claim that each sequence of iterates {Tnx} of T converges to x̃ in norm. To show 
this, we first observe that for each point x ∈ C, the real sequence {‖Tnx − x̃‖} is decreasing and therefore 
there exists limn ‖Tnx − x̃‖. Now suppose to the contrary that there exists a point y ∈ C such that 
limn ‖Tny − x̃‖ = r > 0. Since the sequence {‖Tny − x̃‖} is decreasing, we have

Tny ∈ Cr := C ∩ {x ∈ X : ‖x− x̃‖ ≥ r}

for all n = 1, 2, .... Now let x∗ ∈ X∗, ‖x∗‖ = 1, and 0 < k ∈ R be such that the hyperplane Vk,x̃ = {x ∈ X :
x∗(x) = k} supports C at the point x̃. By Lemma 3.1, there exists 0 < k1 < k such that

Cr ⊂ {x ∈ X : x∗(x) ≤ k1}.

By Theorem 2.15, we have

lim
n→∞

‖T ( 1
n

n∑
i=1

T iy) − 1
n

n∑
i=1

T iy‖ = 0.

Taking

xn := 1
n

n∑
i=1

T iy

for n = 1, 2, ..., we obtain an approximating sequence {xn} of T . Since T i(y) ∈ Cr, for all i, it follows that

x∗(xn) = x∗

(
1
n

n∑
i=1

T iy

)
≤ k1.

Using the strong convergence of {xn} to x̃ (see Theorem 4.1), we obtain

k1 ≥ lim
n

x∗(xn) = x∗(x̃) = k > k1.

The contradiction we have reached completes the proof of Theorem 5.1. �
The following example shows that the assumption that C is locally uniformly rotund is crucial.

Example 5.2. Let H = R
2 be endowed with the standard Euclidean norm and let C := {(x, y) ∈ R

2 : |x| ≤
1, |y| ≤ 1}. If T (x, y) := (1, −y) for (x, y) ∈ C, then T is nonexpansive and (1, 0) ∈ ∂C is its unique fixed 
point, but the iterates Tn(1, 1), n = 1, 2, ..., do not converge to (1, 0).

Remark 5.3. Observe that Example 2.8 shows that there exist subsets of X which satisfy the conditions of 
Theorem 5.1.

In the second part of this section we consider orbits of nonexpansive semigroups and establish result 
which constitutes an analogue of the previous theorem. The proof of this result is similar to the proof of 
Theorem 5.1, but for the convenience of the reader we repeat it with the necessary changes.
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Theorem 5.4. Let (X, ‖ · ‖) be a uniformly convex Banach space and let C be a bounded closed and convex 
subset of X. Assume that C has nonempty interior and is locally uniformly rotund. Let S be a strongly 
measurable nonexpansive semigroup acting on C. If S has no common fixed point in the interior of C, then 
there exists a unique point x̃ on the boundary ∂C of C such that each orbit {S(t)x : t ≥ 0} converges strongly 
to x̃.

Proof. Without any loss of generality we may assume that 0 ∈ int(C). By Theorems 2.20 and 2.21, the 
semigroup S has exactly one common fixed point x̃ and this point lies on the boundary ∂C of C. Suppose 
that for some point y ∈ C, its orbit {S(t)y : t ≥ 0} does not strongly converge to x̃. Since for this y the 
function ‖S(·)y − x̃‖, t ≥ 0, is decreasing, there exists r := limt→∞ ‖S(t)y − x̃‖ > 0. Put

Cr := C ∩ {x ∈ X : ‖x− x̃‖ ≥ r}.

Then we have S(t)y ∈ Cr for all t ≥ 0. Now consider the hyperplane Vk,x̃ = {x ∈ X : x∗(x) = k} which 
supports C at the point x̃ (here x∗ ∈ X∗, ‖x∗‖ = 1, and k ∈ (0, +∞)). By Lemma 3.1, there exists 
0 < k1 < k such that

Cr ⊂ {x ∈ X : x∗(x) ≤ k1}.

Consider a weakly convergent sequence { 1
tn

∫ tn
0 S(s)yds}∞n=1 with 0 < tn → ∞. Then by Theorem 2.22, we 

have

w- lim
n

1
tn

tn∫
0

S (s) yds = x̃.

This, however, is impossible because 1
tn

∫ tn
0 S(s)yds ∈ Cr for each n and therefore

k = x∗(x̃) = lim
n

x∗( 1
tn

tn∫
0

S (s) yds) ≤ k1 < k.

The contradiction we have reached completes the proof. �
6. The case of the closed unit ball in a Hilbert space

In this section we present simple proof of a theorem regarding the strong convergence of iterates of 
nonexpansive mappings to a point on the unit sphere of a Hilbert ball.

Theorem 6.1. Let (H, ‖ · ‖) be a Hilbert space and let T be a nonexpansive self-mapping of the closure BH

of its open unit ball BH = {x ∈ H : ‖x‖ < 1}. If T has no fixed point in BH , then it has a unique fixed 
point x̃, which lies on the boundary ∂BH of BH , and for each point x ∈ BH , the sequence of its iterates 
{Tnx}∞n=1 converges in norm to x̃.

Proof. Without loss of generality we may assume that dimH ≥ 2 (see Remark 6.2 below). First observe 
that by Theorems 2.10 and 2.12, and by the strict convexity of the Hilbert space, the nonexpansive mapping 
T has a unique fixed point x̃ in BH and this point lies on the boundary ∂BH . Now take an arbitrary point 
x ∈ BH . We claim that the sequence of its iterates {Tnx} is strongly convergent. Suppose to the contrary 
that this is not true. Then the asymptotic radius r := r

(
BH , {Tnx}

)
of {Tnx} is positive and 0 < r ≤ 1. 

It is obvious that r is, in fact, strictly less than 1 because by Theorems 2.17 and 2.18, one would otherwise 
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obtain {0} = Ac 
(
BH , {Tnx}

)
and T0 = 0. Therefore, applying once more Theorems 2.17 and 2.18, we get 

{x̃} = Ac 
(
BH , {Tnx}

)
. Take r < r1 < 1 such that

r1

√
1 − r2

1
4 < r.

Then there exists n1 ∈ N such that

‖Tnx− x̃‖ ≤ r1

for each n1 ≤ n ∈ N. Now it is sufficient to observe that using the point (1 − r2
1
2 )x̃ in BH , which is equal to 

the orthogonal projection of each x ∈ ∂BH ∩ ∂B(x̃, r1) onto the line generated by x̃, we get

(1 − r2
1
2 )x̃ �= x̃

and

BH ∩B(x̃, r1) ⊂ B((1 − r2
1
2 )x̃, r1

√
1 − r2

1
4 ).

In order to obtain the last inclusion we take x = αx̃+ βe = [s + (1 − r2
1
2 )]x̃+ βe ∈ ∂(BH ∩B(x̃, r1)), where 

e⊥x̃ and ‖e‖ = 1 and consider two cases.
Case 1 : x ∈ ∂B(x̃, r1)). Then we have α = (1 − r2

1
2 ) − s, |β| =

√
r2
1 − ( r

2
1
2 + s)2, where 0 ≤ s ≤ r1 − r2

1
2 , 

and the function f : [0, r1 − r2
1
2 ] → [0, +∞), defined by

f(s) = ‖x− (1 − r2
1
2 )x̃‖2 = s2 + r2

1 − (r
2
1
2 + s)2 = r2

1 − r4
1
4 − sr2

1,

is strictly decreasing and

max
0≤s≤r1−

r21
2

f(s) = r2
1 − r4

1
4 ;

Case 2 : x ∈ ∂(BH). Then we have α = (1 − r2
1
2 ) + s, |β| =

√
1 − (1 − r2

1
2 + s)2, where 0 ≤ s ≤ r2

1
2 , and 

the function f1 : [0, r
2
1
2 ] → [0, +∞), defined by

f1(s) = ‖x− (1 − r2
1
2 )x̃‖2 = s2 + 1 − (1 − r2

1
2 + s)2

= r2
1 − r4

1
4 − s(2 − r2

1),

is strictly decreasing and

max
0≤s≤ r21

2

f1(s) = r2
1 − r4

1
4 .

The inclusion we have obtained, namely,

BH ∩B(x̃, r1) ⊂ B((1 − r2
1 )x̃, r1

√
1 − r2

1 ),
2 4
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implies the following contradiction:

r < lim sup
n

‖Tnx− (1 − r2
1
2 )x̃‖ ≤ r1

√
1 − r2

1
4 < r.

This means that limn T
nx = x̃ in norm, as asserted. �

Remark 6.2. It is generally known that the above result is valid for each continuous self-mappings of [−1, 1] ⊂
R with a unique fixed point which, in addition, lies on the boundary ∂[−1, 1] = {−1, 1}. For example, if 
T : [0, 1] → [0, 1] and Fix(T ) = {1}, then for each x ∈ [−1, 1), we have T (x) > x by the intermediate value 
property of continuous mappings and therefore limn T

nx = 1. For more information regarding the behavior 
of the iterates of continuous decreasing functions, see [19].

Remark 6.3. When dimH ≥ 2 Theorem 6.1 is false, in general, for continuous self-mappings of BH . Indeed, 
assume that H = H1 + H2, where e1 ∈ H is fixed, ‖e1‖ = 1, H1 = span{e1} and e1⊥H2. If x ∈ BH and 
x = x1 + x2 ∈ H1 + H2, then we set Tx :=

√
1 − ‖x2‖2e1 − x2. It is not difficult to observe that T maps 

BH into the boundary ∂BH of BH , has the unique fixed point e1 and for every e ∈ ∂BH ∩ H2, we have 
Te = −e, T (−e) = e.

Remark 6.4. Observe that in the case of the complex Euclidean space Cn with its open unit ball Bn and a 
holomorphic fixed point free self-mapping T of Bn, the Wolff-Denjoy theorem guarantees the convergence 
of all iterates Tn(x) to the unique fixed point ξ ∈ ∂Bn of T (see, for example, [6], [9], [10], [13], [18], [35], 
[36] and the references therein). However, if H is an infinite-dimensional complex Hilbert space, then the 
Wolff-Denjoy theorem does not hold in the Hilbert ball BH ([34]; see also [7], [8], [18], [21], [22], [27], [33]
and the references therein).

Now we present two examples of self-mappings of the closed unit ball BH , which satisfy the assumptions 
of Theorem 6.1.

Example 6.5. Let (H1, ‖ · ‖1) be a Hilbert space, dim(H1) ≥ 1, H = R ×H1, and let the norm ‖ · ‖ in H be 
defined by

‖(t, x)‖ :=
√
t2 + ‖x‖2

1

for (t, x) ∈ H = R ×H1. Let BH be the closed unit ball in H, R : H → BH be the radial retraction and let 
c ∈ (0, 1). Define a nonexpansive mapping T : BH → BH by

T (t, x) := R((1 − c)t + c, x),

where (t, x) ∈ BH . Then (1, 0) ∈ ∂BH is the unique fixed point of T .

We can, in fact, generalize this example in the following way.

Example 6.6. Let (H1, ‖ · ‖1) be a Hilbert space, dim(H1) ≥ 1, H = R ×H1, and let the norm ‖ · ‖ in H be 
defined by

‖(t, x)‖ :=
√
t2 + ‖x‖2

1
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for (t, x) ∈ H = R ×H1. Let BH be the closed unit ball in H, BH1 the closed unit ball in H1, T1 : BH1 → H1 a 
nonexpansive mapping, R : H → BH the radial retraction and let c ∈ (0, 1). Define a nonexpansive mapping 
T : BH → BH by

T (t, x) = R((1 − c)t + c, T1x),

where (t, x) ∈ BH . It is not difficult to check that T has a unique fixed point and this point lies on the 
boundary ∂BH of BH .

Finally, observe that an analogue of Theorem 6.1 is valid for nonexpansive semigroups (in this connection, 
see also Theorems 2.24 and 2.25).

Theorem 6.7. Let (H, ‖ · ‖) be a Hilbert space and let S be a nonexpansive semigroup acting on the closure 
BH of the open unit ball BH = {x ∈ H : ‖x‖ < 1}. If S has no fixed point in BH , then it has a unique fixed 
point x̃, which lies on the boundary ∂BH of BH , and for each point x ∈ BH , the orbit {S(t)x}t≥0 converges 
in norm to x̃.
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