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In this paper we consider a competitive economic equilibrium problem where 
preferences of consumers are expressed by means of a binary relation. The aim 
is to find a suitable quasi-variational inequality which characterizes the equilibria 
and, by using tools of variational theory, to study such equilibria. The novelty of 
this paper consists in the study of an economic equilibrium problem by a variational 
approach without the need of representing the consumer’s preferences by a utility 
function.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction and motivation

The variational inequality theory was introduced by Fichera and Stampacchia, in the early 1960s, in 
connection with several equilibrium problems originating from mathematical physics. Thanks to this theory, 
a large class of equilibrium problems have been analyzed such as the traffic equilibrium, the financial 
equilibrium, the pollution control, the vaccination problem, the oligopolistic market, see, for instance, [2,5,
9–11,16,17]. In particular, with this tool the authors (see e.g. [4,14,15], and the book [8] with its references) 
provide a qualitative analysis of the problems in terms of existence and uniqueness of solutions, stability 
and sensitivity analysis.

It is well-known that a minimization problem of a continuous and convex function can be reformulated 
as a variational inequality, with the operator the subdifferential of the object function. However, a central 
assumption in economic theory is the convexity of preferences, which corresponds to the quasiconcavity of 
utility functions. In the setting of quasiconvex functions, in [1] and [3], the authors introduced a Stampacchia 
variational inequality which involves the concept of normal operator. This variational problem represents 
a necessary and sufficient condition to a minimization problem when the object function is continuous and 
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quasiconvex. Such approach has been successfully applied to the study of the generalized Nash equilibrium 
(see e.g. [2]), the competitive equilibrium for exchange economy (see e.g. [9]), and the allocation-price 
equilibrium for production economy (see e.g. [10]).

These topics are well suited to solve economic equilibrium problems by means of a variational inequality 
without using representation of the consumer’s preferences by a utility function. A key role is represented 
by an adapted operator to the normal cone. The aim is to apply the variational inequality theory to study 
an economic equilibrium problem with uncertainty, where consumers’ preferences are expressed by means 
of a binary relation.

The problem considered here is a competitive economic equilibrium problem, which incorporates uncer-
tainty, so that several states of the world are possible. Uncertainty, introduced into the equilibrium theory 
by Arrow and Debreu, is represented by assuming that technologies, endowments, and preferences depend 
on the state of the world.

The paper is organized as follows. Section 2 is devoted to the preference relation: we introduce definitions 
and properties which will be useful to the variational approach. In Section 3 a competitive equilibrium model 
with uncertainty is then introduced. We characterize such a problem in terms of a suitable quasi-variational 
inequality and, by using arguments of variational theory and set-valued analysis, the existence of equilibrium 
is finally obtained.

2. Preference relation

This section is devoted to definitions and basic properties in order to introduce the preference relations 
of a single agent. An individual is characterized by a nonempty subset X of Rn and a binary relation �
on X. The set X represents the alternatives from which she can choose; the preference relation � describes 
the taste of individual, so that she can compare any pair of elements available on X.
By x � y we denote that the bundle y is at least as desired by the consumer as x; by the strict inequality 
x � y we denote that x is strictly preferred to y, i.e., x � y but not y � x. Finally, by x ∼ y we denote 
the case that x is indifferent to y, that is, x � y and y � x.

The subsequent definitions and results are mostly taken from [13]. To keep the paper self-contained, we 
restate them adapted to the context of this research.

Definition 2.1. The preference relation � is said to be:

• complete iff for all x, y ∈ X, one has that x � y or y � x (or both);
• transitive iff for all x, y , z ∈ X, if x � y and y � z, then x � z;
• reflexive iff for all x ∈ X, one has x � x.

Moreover, � is rational iff it is complete and transitive.

The assumption that � is complete says that the individual has well-defined preference between any two 
possible alternatives. Note that transitivity implies that preferences can not cycle.
From now on, let us consider (X, d) a metric space and � a rational and reflexive preference relation on X.

Definition 2.2. Given a preference relation � on a set X, for all x ∈ X, the strict upper contour set, Us(x), 
is the set of bundles strictly preferred to x, and the upper contour set, U(x), is the set of all bundles that 
are at least as good as x:

Us(x) := {y ∈ X : y � x} , U(x) := {y ∈ X : y � x} .

Clearly, for all x ∈ X one has Us(x) ⊂ U(x).
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Definition 2.3. The preference relation � is said to be:

• upper semicontinuous iff for each x the set U(x) is closed,
• lower semicontinuous iff for each x the set Us(x) is open.

A preference relation � is continuous iff it is upper and lower semicontinuous.

As observed in [13] a preference relation � is continuous if and only if: if the sequence {(xn, yn)}n∈N
converges to (x, y) and yn � xn for each n, then y � x.

A central assumption in the economic theory is the convexity of preference. This hypothesis ensures that, 
despite the individual is indifferent between the two bundles x and y, the mixes are at least desired as much 
as the extremes.

Definition 2.4. The preference � is said to be:

• convex iff for any x, y ∈ X s.t. x � y one has

λx + (1 − λ)y � y ∀λ ∈ [0, 1] ;

• semistrictly convex iff for any x, y ∈ X s.t. x � y one has

λx + (1 − λ)y � y ∀λ ∈ (0, 1] ;

• strictly convex iff for any x, y ∈ X s.t. x � y one has

λx + (1 − λ)y � y ∀λ ∈ (0, 1) .

If � is strictly convex, then it is semistrictly convex and convex. In general, the semistrict convexity does 
not imply the convexity; but if � is semistrictly convex and upper semicontinuous, then it is convex (see 
[13]). Other important aspect of the preference concerns the desirability.

Definition 2.5. The preference relation � is said to be:

• locally non-satiated iff for every x ∈ X and every ε > 0 there is y ∈ X such that ‖y−x‖ ≤ ε and y � x;
• non-satiated iff for every x ∈ X there is y ∈ X such that y � x.

If the preference � is locally non-satiated, then it is non-satiated. The Definition 2.5 can be reformulated 
by means the strict upper contour sets.

Proposition 2.1. The preference relation � is

• locally non-satiated iff ∀x ∈ X, ∀ε > 0 one has Us(x) ∩B(x, ε) �= ∅;
• non-satiated iff for every x ∈ X one has Us(x) �= ∅.

Proposition 2.2. Following properties are satisfied:

(i) � is convex if and only if U(x) is convex for all x ∈ X if and only if Us(x) is convex for all x ∈ X.
(ii) If � is locally non-satiated and upper semi-continuous, then, for all x ∈ X, U(x) = Us(x).
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Proof. (i) It follows from definition of convexity of �.
(ii) U(x) ⊆ Us(x): fixed y ∈ U(x). For all n ∈ N, let ε = 1

n > 0, � being locally non-satiated, there 
exists yn ∈ B(y, 1n ) ∩X such that yn � y. Hence, being yn � y and y � x, from transitivity of � one has 
yn � x. Then {yn}n∈N ⊆ Us(x) and yn → y, namely y ∈ Us(x).

Us(x) ⊆ U(x): obvious. �
Theorem 2.1. Let � be a continuous relation preference. Then, � is locally non-satiated and convex if and 
only if it is non-satiated and semistrictly convex.

Proof. ⇒) It is sufficient to show that � is convex. Let x, y ∈ X be such that y � x. Since � lower 
semicontinuous, Us(x) is an open and convex set then, from item (ii) of Proposition 2.2, y ∈ Us(x) =
intU(x). Then, for all λ ∈ [0, 1) one has λx + (1 − λ)y ∈ intU(x), then λx + (1 − λ)y � x. Hence, � is 
semistrictly convex.

⇐) From upper semicontinuity and semistrict convexity it follows that � is convex. Let x ∈ X and 
ε > 0. Since � is non-satiated, there exists x′ ∈ X such that x′ � x. Let z := λx′ + (1 − λ)x, with 

λ ∈
(
0, min

{ ε

‖x′ − x‖ , 1
})

. One has z ∈ B(x, ε) and from semistrictly convexity of �, z � x. Then, � is 

locally non-satiated. �
Now, a suitable operator is introduced. This map will have a central role in characterizing the maximum 

for the preference by means of a variational inequality.
Let � be a convex and non-satiated preference relation; let N : X ⇒ Rn such that, for all x ∈ X

N(x) := {h ∈ Rn : 〈h, z − x〉 ≤ 0 ∀z ∈ Us(x)} .

Since � is convex and non-satiated, for all x ∈ X the set Us(x) is convex and nonempty, then N(x) coincides 
with the normal cone of the strict upper contour set Us(x). The following properties on the set-valued map 
N will be useful in the sequel.

Proposition 2.3. Let � be a continuous preference relation. Then, the set-valued map N(·) is closed and with 
convex and closed values.

Proof. From definition of N and from continuity of the inner product, one has that for all x ∈ X, N(x) is a 
convex and closed set. Let {xn}n∈N ⊆ X and {hn}n∈N ⊆ Rn be two sequences such that hn ∈ N(xn), xn →
x and hn → h. It is necessary to prove that h ∈ N(x). To this aim let us prove that for all z ∈ Us(x), z � xn. 
Indeed, if there exist z ∈ Us(x) and ν ∈ N such that xn � z for all n > ν; one has {xn} ⊆ U(z). From 
continuity of �, one has that U(z) is a closed set, then, since xn → x, it follows x � z, which contradicts 
the assumption z ∈ Us(x). Hence z ∈ Us(xn). Since hn ∈ N(xn) and z ∈ Us(xn), one has 〈hn, z − xn〉 ≤ 0; 
passing to the limit 〈h, z − x〉 ≤ 0. �
Proposition 2.4. Let � be a lower semicontinuous preference relation and x ∈ X. For all h ∈ N(x) with 
h �= 0, one has

〈h, z − x〉 < 0 ∀z ∈ Us(x) .

Proof. From definition of N one has 〈h, z − x〉 ≤ 0 for all z ∈ Us(x). We suppose there exists z̃ ∈ Us(x)
such that 〈h, ̃z−x〉 = 0. Since � is lower semicontinuous Us(x) is an open set, then z̃ ∈ Us(x) = intUs(x): 
there exists ε > 0 such that B(z̃, ε) ⊆ Us(x). Set z := z̃ + αh, with α ∈

(
0, ε

‖h‖

)
. One has z ∈ Us(x), and 

〈h, z − x〉 = α‖h‖2 ≤ 0, that is ‖h‖ = 0. A contradiction with h �= 0. �
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3. General equilibrium under uncertainty

In this Section a market economy under uncertainty is introduced. Agents of economy produce, trade, 
and consume L commodities; let L be the set of L physical commodities L := {1, . . . , l, . . . , L}. In an 
economy with uncertainty, commodities are to be distinguished, not only by their physical characteristics 
and the location and dates of their availability and/or use, but also by the environmental event in which 
they are made available and/or used. S := {1, . . . , s, . . . , S} denotes the finite set of S states of the world, 
is given. The dependence of the characteristics of economic agents on the state of the world is expressed by 
introducing the concept of contingent commodities vectors.

Definition 3.1. For every physical commodity l ∈ L and state s ∈ S a unit of state-contingent commodity 
ls is a title to receive a unit of the physical good l if and only if s occurs. Accordingly, a state-contingent 
commodity vector is specified by

x := (x11, . . . , xL1, . . . , x1S , . . . , xLS) ∈ RLS ,

and is understood as an entitlement to receive the commodity vector (x1s, . . . , xLs) if state s occurs.

In the market, there are two kinds of agents, I consumers and J producers; I := {1, . . . , i, . . . , I} and 
J := {1, . . . , j, . . . , J} are, respectively, the sets of consumers and the producers.

The system price To each state-contingent commodity is assigned a nonnegative price, denoted by p ∈
RLS

+ . Given a state-contingent commodity vector x, the inner product 〈p, x〉 denotes its value at the current 
price p.

The producers Each producer j is characterized by a set Yj ⊂ RLS of possible production plans. yj
denotes a state-contingent commodity vector which lies in Yj: the positive components of yj denote the 
output of commodity, while the negative components represent the inputs. The product Y :=

∏
j∈J Yj

represents all possible output-input schedules for the production sector. Given the production plan y ∈ Yj , 
the inner product 〈p, y〉 is the profit of the agent at the system price p. Each producer acts in the market 
to maximize his profit. For all j ∈ J the following assumptions hold:

Assumption 3.1. Yj are closed, convex, bounded, and 0 ∈ Yj .

The consumer Each consumer i is characterized by a consumption set Xi, a preference relation �i on 
Xi, and an endowment ωi. The set Xi is a non-empty subset of RLS

+ and represents the set of all possible 
state-contingent commodities which consumer i can choose to consume. xi ∈ Xi denotes the consumption 
plan of agent i. The preference relation �i is assumed to be complete, reflexive, and transitive and describes 
the tastes of the consumer i on the consumption set Xi. Finally, the contingent commodity vector ωi ∈ RLS

specifies the quantity of initial endowment for each one of the commodities and of the state. For all consumer 
i ∈ I the following assumptions hold:

Assumption 3.2. The consumption set Xi is closed and convex.

Assumption 3.3. The preference relation �i is continuous, non-satiated, and semistrictly convex.

Assumption 3.4. There exists x̂i ∈ Xi such that ωi >> x̂i.1

1 It means ωl
i > x̂l

i for all l = 1, . . . , LS.
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Given a price system p and his wealth wi the i-th consumer tries to satisfy her preferences �i in the subset 
of Xi defined by the wealth constraint 〈p, xi〉 ≤ wi. Each consumer i receives a share of total production ∑
j∈J

θijyj , determined by a system of fixed weights θij , where θij ≥ 0 and 
∑
i∈I

θij = 1. Given a price system 

p and production yj the wealth of i-th consumer is wi := 〈p, ωi〉 +
∑
j∈J

θij〈p, yj〉.

In summary, an economy Σ is described by the I-list (Xi, �i, ωi), by the IJ-shares (θij), and the J-list 
(Yj), defining thus the economy Σ := ((Xi, �i, ωi), (θij), (Yj)).

In the market there is an equilibrium if, simultaneously, each producer maximizes her profit, each con-
sumer maximize her preferences on the budget set, and for each commodity the excess of demand over 
supply is less or equal to zero. Mathematically, one has the following definition.

Definition 3.2. An allocation (x̃1, . . . , ̃xl, ̃y1, . . . , ̃yJ ) ∈ X1 × . . . XI × Y1 × . . . YJ ⊂ RLS(I+J) and a system 
of prices for the contingent commodities p̃ = (p̃11, . . . , ̃pLS) ∈ RLS constitute an Arrow Debreu equilibrium
for the economy Σ if

(i) for every j ∈ J , ỹj satisfies 〈p̃, ̃yj〉 ≥ 〈p̃, yj〉 for all yj ∈ Yj ;
(ii) for every i ∈ I, x̃i is maximal for �i in the budget set

Ki(p̃, ỹ) := {xi ∈ Xi : 〈p̃, xi〉 ≤ 〈p̃i, ωi〉 +
∑
j∈J

θij〈p̃, ỹj〉} .

(iii) for every l ∈ L and s ∈ S: ∑
i∈I

x̃i
ls ≤

∑
j∈J

ỹj
ls +

∑
i∈I

ωls
i

〈p̃,
∑
i∈I

x̃i −
∑
j∈J

ỹj −
∑
i∈I

ωi〉 = 0

Without loss of generality, we can consider prices that lie in the simplex set of RLS
+ , denoted by P :=

{p ∈ RLS
+ :

∑
l∈L, s∈S

pls = 1}.

The first aim is to rewrite the Arrow Debreu equilibrium in terms of a suitable variational inequality. 
For all i ∈ I, let Us

i (xi) and Ui(xi) be, respectively, the strict upper contour set and the upper contour 
set at the consumption plan xi; let Ni : Xi ⇒ Rn be the set-valued map defined in the Section 2 and let 
K(p̃, ̃y) :=

∏
i∈I

Ki(p̃, ̃y) × Y × P . Let us introduce the following quasi-variational inequality QV I(N, K):

Find (x̃, ̃y, ̃p) ∈ K(p̃, ̃y) and h := (hi)i∈I ∈ N(x̃) :=
∏
i∈I

Ni(x̃i) \ {0} s.t.

∑
i∈I

〈hi, xi − x̃i〉 −
∑
j∈J

〈p̃, yj − ỹj〉 − 〈
∑
i∈I

x̃i −
∑
j∈J

ỹj −
∑
i∈I

ωi, p− p̃〉 ≥ 0

∀(x, y, p) ∈ K(p̃, ỹ) . (1)

Lemma 3.1. Let �i be continuous, semistrictly convex and non-satiated. Let (p, y) ∈ P ×Y and x̃ := (x̃i)i∈I
be such that for all i ∈ I, x̃i is maximal for �i in Ki(p, y). Then:

〈p,
∑
i∈I

x̃i〉 = 〈p,
∑
i∈I

ωi〉 + 〈p,
∑
j∈J

yj〉 . (2)
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Proof. Since for any j, 
∑
i∈I

θij = 1, it is sufficient to prove that, for all i ∈ I:

〈p, x̃i〉 = 〈p, ωi〉 +
∑
j∈J

θij〈p, yj〉 . (3)

Let us assume that for some i ∈ I one has 〈p, ̃xi〉 < 〈p, ωi〉 +
∑
j∈J

θij〈p, yj〉. Then, there exists ε > 0 such that 

for all z ∈ B(x̃i, ε) ∩Xi one has 〈p, z〉 < 〈p, ωi〉 +
∑
j∈J

θij〈p, yj〉, that is B(x̃i, ε) ∩Xi ⊆ Ki(p, y). Since the 

preference relation �i is continuous, semistrictly convex and non-satiated, from Theorem 2.1 it follows that 
�i is locally non-satiated: there exists z̃ ∈ B(x̃i, ε) ∩Xi such that z̃ � x̃i. Since B(x̃i, ε) ∩Xi ⊆ Ki(p, y), 
this contradicts the fact that x̃i is maximal in Ki(p, y). Hence, equation (3) holds for all i ∈ I. �
Theorem 3.1. Let Σ be an economy which satisfies Assumptions 3.1, 3.2, 3.3, and 3.4. Then, (x̃, ̃y, ̃p) is a 
solution to QV I(N, K) (1) if and only if it is an Arrow Debreu equilibrium for the economy Σ.

Proof. First, let us observe that:
i) the vector (x̃, ̃y, ̃p) is a solution to QV I(N, K) (1) if and only if, simultaneously there exists h = (hi)i∈I ∈
N(x̃) such that:

for every i ∈ I 〈hi, xi − x̃i〉 ≥ 0 ∀xi ∈ Ki(p̃, ỹ) ; (4)

for every j ∈ J 〈−p̃, yj − ỹj〉 ≥ 0 ∀yj ∈ Yj ; (5)

〈
∑
j∈J

ỹj +
∑
i∈I

ωi −
∑
i∈I

x̃i, p− p̃〉 ≥ 0 ∀p ∈ P . (6)

ii) VI (5) is equivalent to condition (i) of Definition 3.2.

Claim A). For any i ∈ I, x̃i is a solution to VI (4) if and only if x̃i is maximal for �i in Ki(p̃, ̃y).

Let x̃i be a solution to VI (4). We suppose that x̃i is not maximal for �i in Ki(p̃, ̃y): there exists 
z̃i ∈ Ki(p̃, ̃y) such that z̃i � x̃i. Since z̃i ∈ Us

i (x̃i), �i is continuous and hi ∈ Ni(x̃i) \{0}, from Proposition 2.4
one has 〈hi, ̃zi − x̃i〉 < 0 which contradicts the fact that x̃i is a solution to VI (4). Hence, condition (ii) of 
Definition 3.2 holds.

Let x̃i be maximal for �i in Ki(p̃, ̃y). From item i) of Proposition 2.2 Us
i (x̃i) �= ∅, and intUs

i (x̃i) ∩
Ki(p̃, ̃y) = ∅; then from separation theorem, there exists hi ∈ Rn \ {0} such that

〈hi, s〉 ≤ 〈hi, t〉 ∀s ∈ Us
i (x̃i), ∀t ∈ Ki(p̃, ỹ) . (7)

Observing that relation � is semistrictly convex, non-satiated and continuous, it is also, according to The-
orem 2.1, locally non-satiated and convex and thus, as a consequence of Proposition 2.2 iii), x̃i ∈ Us

i (x̃i). 
Combining with (7) it gives

〈hi, t− x̃i〉 ≥ 0 ∀t ∈ Ki(p̃, ỹ) .

Moreover, replacing in (7), t = x̃i one has

〈hi, s− x̃i〉 ≤ 0 ∀s ∈ Us
i (x̃i) .
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Then, hi ∈ Ni(x̃i) \ {0} and it is such that x̃i is a solution to (4).

Claim B). If (x̃, ̃y, ̃p) is a solution of QV I(N, K) (1), it is an Arrow Debreu equilibrium.

Thanks to step ii) and Claim A), it remains to prove condition (iii) of Definition 3.2. Since x̃i is maximal 
for �i in Ki(p̃, ̃y), from Lemma 3.1, it follows the second condition of (iii), and moreover, from VI (6) and 
equality (2), one has:

〈
∑
j∈J

ỹj +
∑
i∈I

ωi −
∑
i∈I

x̃i, p〉 ≥ 0 ∀p ∈ P . (8)

Fixed l̃ ∈ L and s̃ ∈ S, let p ∈ P be such that

p ls :=
{

0 for ls �= l̃s̃

1 for ls = l̃s̃

Replacing p in (8), one has: ∑
i∈I

x̃ l̃s̃
i ≤

∑
j∈J

ỹ l̃s̃
j +

∑
i∈I

ω l̃s̃
i .

It follows that conditions (iii) of Definition 3.2 hold.

Claim C). If (x̃, ̃y, ̃p) is an Arrow Debreu equilibrium, it is a solution to QV I(N, K) (1).

Thesis follows from steps ii), Claims A) and B) and from the fact that condition (iii) of Definition 3.2
implies (6). �

In view of the characterization of the equilibrium as a solution to Problem (1), it is possible to study 
the equilibrium problem by means of the variational theory. In particular, we show the existence of the 
equilibrium. Let us observe that in (1) the map K(·) has not bounded values and, it is difficult to obtain 
the upper semicontinuity of the operator N (since it is unbounded). The latter facts represent the difficulty 
to achieve the existence of the solution. We overcame such difficulties by introducing a compact set and the 
normalized normal operator.

Theorem 3.2. Let Assumptions 3.1, 3.2, 3.3, and 3.4 be satisfied for the economy Σ. Then, there exists an 
Arrow Debreu equilibrium for the economy Σ.

Proof. Thanks to Theorem 3.1, it is sufficient to prove that there exists a solution to QV I(N, K) (1). To 
this aim we consider the variational problem (1), where we replace to N and K by suitable set-valued maps. 
Since Y is a compact set, there exists M1 > 0 such that Y ⊂ B(0, M1); set M := M1 +

∑
i∈I ωi and 

K̃(y, p) :=
∏

i∈I

(
Ki(y, p) ∩B(0, M)

)
× Y × P . We define the set-valued map Ñi : (x) = conv (Ni(x) ∩ S), 

where S is the boundary of the unit ball of RLS
+ . Now, we consider the variational problem QV I(Ñ , K̃) (1).

� There exists the solution of the QV I(Ñ , K̃).
With similar techniques used in Theorem 9 of [6] and Theorem 4.2 of [12], also in the contingent com-

modities case one has that the set-valued map K̃(·) is closed, lower semicontinuous and with nonempty, 
convex, compact values. Clearly, Ñ is nonempty, convex and compact values and, compact graph since 

Ñi(Xi) is compact. Moreover, Ni(·) being a closed map (from Proposition 2.3), it follows that Ñi is closed. 
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Hence, since Ñi is closed and compact graph, it is upper semicontinuous (see [7]). From existence Theorem 
in [18], we can conclude that QV I(Ñ , K̃) admits at least a solution.

� Any solution of the QV I(Ñ , K̃) is a solution of QV I(N, K).
First, let us prove that hi �= 0. Indeed, from hi ∈ Ñi(x̃i) = conv (Ni(x̃i) ∩S) there exist vki ∈ (Ni(x̃i) ∩S)

and λk ∈ [0, 1], with k = 1, . . . , LS + 1, such that 
LS+1∑
i=1

λk = 1 and hi =
LS+1∑
k=1

λkvki . If hi = 0, since vki �= 0, 

for all k, and there exists λk �= 0, one has:

−vki =
LS+1∑

k=1,k �=k

λk

λk
vki .

Since Ni(x̃) a convex cone, it follows −vki ∈ Ni(x̃). Hence, from Proposition 2.3, from vki , −vki ∈ Ni(x̃) \{0}, 
it follows 〈vki , z − x〉 < 0 and 〈−vki , z − x〉 < 0 for all z ∈ Us(x), which is a contradiction.

Hence hi ∈ Ni(x̃i) \{0}. It remains to prove that (x̃, ̃y, ̃p) is a solution in K. We suppose that there exists 
(x, y, p) ∈ K(p̃, ̃y) × Y × P such that∑

i∈I
〈hi, xi − x̃i〉 −

∑
j∈J

〈p̃, yj − ỹj〉 − 〈
∑
i∈I

x̃i −
∑
j∈J

ỹj −
∑
i∈I

ωi, p− p̃〉 < 0 .

Let (x, y, p) := λ(x, y, p) + (1 − λ)(x̃, ̃y, ̃p) with 0 < λ <
M − ‖x̃‖
‖x− x̃‖ . Since K(p̃, ̃y) is a convex set and from 

‖x̃‖ < M , one has (x, y, p) ∈ K̃(x̃, ̃y, ̃p) and∑
i∈I

〈hi, xi − x̃i〉 −
∑
j∈J

〈p̃, yj − ỹj〉 − 〈
∑
i∈I

x̃i −
∑
j∈J

ỹj −
∑
i∈I

ωi, p− p̃〉 < 0 .

This contradicts the fact that (x̃, ̃y, ̃p) is a solution to QV I(Ñ , K̃) (1). �
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