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Abstract

In this paper, we consider the following nonlinear problem of Kirchhoff type:⎧⎨
⎩
− (

a+ λ
∫
Rn |∇u|2dx)Δu+ V (x)u = |u|p−1u, x ∈ R

n,

u ∈ H1(Rn), u > 0,

where n ≥ 3, a, λ are positive constants, 1 < p < max(3, n+2
n−2 ) and V (x) is a positive continuous

potential satisfying V0 ≤ V (x) ≤ lim inf |x|→∞ V (x) = V∞. Using variational methods and a cutoff
technique, we prove the existence of positive solution to the above equation for all λ > 0 small.
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1. Introduction

In this paper, we consider the following nonlinear problem of Kirchhoff type:⎧⎨
⎩
− (

a+ λ
∫
Rn |∇u|2dx)Δu+ V (x)u = |u|p−1u, x ∈ R

n,

u ∈ H1(Rn), u > 0,
(1.1)

where n ≥ 3, a, λ are positive constants, 1 < p < p∗ := max(3, n+2
n−2 ). Such problems are

often referred to as being nonlocal since (1.1) is no longer a pointwise identity due to the term
(
∫
Rn |∇u|2dx)Δu. Certainly, it has a variational structure, and we can define a functional Iλ(u)

on H1(Rn) by

Iλ(u) =
1

2

∫
Rn

(a|∇u|2 + V (x)u2)dx+
λ

4

(∫
Rn

|∇u|2dx
)2

− 1

p+ 1

∫
Rn

|u|p+1dx.

Problem (1.1) is a variant of the following Dirichlet problem of Kirchhoff type on bounded
domains ⎧⎨

⎩
− (

a+ λ
∫
Ω
|∇u|2dx)Δu+ V (x)u = f(x, u), x ∈ Ω,

u = 0 on ∂Ω,
(1.2)
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which is related to the stationary analogue of the equation⎧⎨
⎩

utt −
(
a+ λ

∫
Ω
|∇u|2dx)Δu+ V (x)u = f(x, u), x ∈ Ω,

u = 0 on ∂Ω.
(1.3)

proposed by Kirchhoff in [8] as an existence of the classical D’Alembert’s wave equations for free
vibration of elastic strings. Kirchhoff’s model takes into account the changes in length of the
string produced by transverse vibrations. After the pioneer work of Lions [14], problem (1.1)
gets much attention to mathematicians. In [1], Arosio and Panizzi studied the Cauchy-Dirichlet
type problem related to (1.3) in the Hadamard sense as a special case of an abstract second-order
Cauchy problem in a Hilbert space. In [3, 4], He and Zou obtained infinitely many solutions of
(1.2) by Fountain Theorem. Multiple solutions and concentration phenomena were also observed
in [6] for Kirchhoff type equation with critical growth by He and Zou. For more results , we refer
to [1, 5, 13, 17, 18, 22] and the references therein.

When a = 1 and λ = 0, problem (1.2) reduces to the well known Schrödinger equation

−Δu+ V (x) = f(u) in R
n,

for which, the existence of positive solutions have been extensively studied in recent years via
variational methods. When λ > 0, the competing effect of the nonlocal term (

∫
Rn |∇u|2dx)Δu

with the nonlinearity f(u) makes the problem more complicated. Generally, either 4-superlinear
condition at infinity or an Ambrosetti-Rabinowitz type condition is needed to ensure boundedness
of Palais-Smale sequences. This usually requires that f(u) has a growth bigger than up for some
p > 3 at infinity. See for example [5, 7]. When 1 < p < 3, it becomes much more difficult to get a
bounded Palais-Smale sequence. In [15], Li et al. studied the following Kirchhoff type problem(

a+ ε

∫
Rn

(|∇u|2 + b|u|2)dx
)
[−Δu+ bu] = f(u), in R

n,

where n ≥ 3, a, b are positive constants and f(u) is subcritical and only has superlinear growth
condition as origin and infinity. They showed that when ε ≥ 0 small, the above problem has at least
one positive solution by using a cut-off technique together with a monotonicity method introduced
by Jeanjean [10]. In the case n = 3 and 2 < p < 5, Li showed in [12] that problem (1.1) has a ground
state solution for all λ > 0 under some mild conditions on potential V (x) and ∇V (x). Their proof
depends on a global compactness lemma and on comparison among the energy of functionals Iλ, Jλ
and J∞λ (see the section 3 below for the definitions of those functionals). Generally, non-constant
potential function V (x) makes the problem more difficult to deal with.

In this paper, we assume that V (x) satisfies the following condition:

(V) V (x) is a continuous non-constant function in R
n, such that

0 < V0 := inf
x∈Rn

V (x) ≤ V (x) ≤ lim inf
|x|→∞

V (x) = V∞ <∞.

Our main theorem is as follows:

Theorem 1.1. Assume that n ≥ 3, a is a positive constant, 1 < p < p∗ and λ ≥ 0 is a

parameter. If the function V (x) satisfies the condition (V), then there exists λ0 > 0 small such

that for any λ ∈ [0, λ0), equation (1.1) has at least one positive solution.

To prove Theorem 1.1, there are two difficulties that we need to overcome. First, we need to
show the existence of bounded Palais-Smale(PS for short) sequence. We use the cut-off technique
in [15] to get a uniform boundedness of PS sequence for Iλ independent of λ for all small λ.
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Second, we need to show the sequential convergence of the bounded PS sequence. Since V (x) is
not a constant, we can not work in the space of radial functions. To show the convergence of PS
sequence, we compare the mountain pass critical level cλ of Iλ with the mountain pass critical level
c∞λ of the energy of the limit equation at infinity I∞λ as in [12]. In order to do this, it is important
to show that cλ < c∞λ . We can show this fact only when λ is small. The smallness of λ would be
understood since it can be viewed as the perturbation away from λ = 0. In [12], cλ < c∞λ can be
proved easily when n = 3 and 2 < p < 5. But the method doesn’t work for all of the cases here.

Remark 1.1. The solution of the limit equation (2.1) is related to the solution of −Δu+u = up.

In Lemma 2.3, we give the solution of (2.1) and the exact value of c∞λ explicitly. This fact will be

used to show the sequential convergence of PS sequence for (1.1). Since V (x) is not a constant,

our method only works for f(u) = up. However, when V (x) is a positive constant, f(u) allows

to be more general, such as f(u) is superlinear at 0 and subcritical at ∞ due to the fact that

H1
r (R

n)→ Lp(Rn) for 2 < p < 2n
n−2 is compact.

Remark 1.2. When n > 4, for λ small, (2.1) has two radial solutions. One corresponds to

mountain pass critical value and the other corresponds to the global minimum (which tends to −∞
as λ → 0) of I∞λ . The solution we get in Theorem 1.1 for small λ actually is the mountain pass

critical point of Iλ. For the following nonlinear Schrödinger-Poisson system{
−Δu+ u+ λφu = |u|p−1u, x ∈ R

3,

−Δφ = u2, x ∈ R
3,

Ruiz proved in [19] that when 1 < p ≤ 2, the above system has at least two nontrivial solutions when

λ > 0 small. Similar multiple solutions for Kirchhoff type equation can be found in [11, 16, 20].

It should be interesting to see whether (1.1) has two nontrivial solutions when n > 4 and λ > 0 is

sufficiently small.

Remark 1.3. In [12], some additional conditions are assumed for ∇V (x) to prove the existence

of nontrivial solution of (1.1) for 2 < p < 5 and λ > 0 in dimension three. Here, we don’t need

any condition for ∇V (x) due to λ small.

Remark 1.4. When n = 3 and 3 ≤ p < 5, it is easy to show that any (PS)c sequence is

bounded, so we only consider the case 1 < p < p∗.

Next, we give a nonexistence result for λ large in the case n > 3:

Theorem 1.2. Under the same conditions as in Theorem 1.1 and n > 3. There exists λ1 > 0,

such that equation (1.1) has no nontrivial solution when λ ≥ λ1.

The paper is organized as follows. In Section 2, we present some preliminary results. In Section
3, we prove Theorem 1.1. In Section 4, we give the proof of Theorem 1.2.

2. Preliminary results

Let H1(Rn) be the usual Sobolev space equipped with the following inner product and norm

〈u, v〉 =
∫
Rn

(a∇u · ∇v + V (x)uv)dx, ‖u‖ = 〈u, u〉 1
2 .
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By the condition (V), ‖ · ‖ is equivalent to the standard norm on H1(Rn). We know that the
functional Iλ(u) given in section 1 is well defined on H1(Rn) and is of C1 for all λ ≥ 0, and

〈I ′λ(u), v〉 = (a+ λ

∫
Rn

|∇u|2dx)
∫
Rn

∇u · ∇v +

∫
Rn

V (x)uv −
∫
Rn

|u|p−1uv,

for all u ,v ∈ H1(Rn). It is standard to verify that the critical points of the functional Iλ are the
weak solutions of (1.1).

We first show that Iλ satisfies the mountain path geometry when λ is small.

Lemma 2.1. For λ ≥ 0 small, the functional Iλ satisfies the following conditions.

(i) There exists α > 0, ρ > 0 such that Iλ(u) ≥ α for ‖u‖ = ρ.

(ii) There exists an e ∈ Bc
ρ(0) such that Iλ(e) < 0.

Proof. (i) By the Sobolev embedding H1(Rn) ↪→ Lq(Rn) for 2 ≤ q ≤ 2n
n−2 , we have

Iλ(u) ≥ I0(u) ≥ 1

2
‖u‖2 − C‖u‖p+1.

Therefore, we can take some α > 0, ρ > 0 such that Iλ(u) ≥ α for ‖u‖ = ρ.

(ii) Take e ∈ H1(Rn) such that I0(e) < 0, clearly e ∈ Bc
ρ(0). Then for 0 ≤ λ ≤ −2I0(e)

(
∫
Rn
|∇e|2dx)2 ,

Iλ(e) = I0(e) +
λ

4
(

∫
Rn

|∇e|2dx)2 ≤ 1

2
I0(e) < 0.

Remark 2.1. In [12], when V (x) is a constant, λ ≥ 0 and 2 < p < 5, the authors show that

for any u �= 0 in H1(R3), Iλ(tu(t
−1x)) first increases then decreases for t > 0 and tends to −∞

as t→∞. Thus Iλ processes a mountain pass geometry for all λ ≥ 0. The method fails for n ≥ 4.

Actually, when n = 4 with λ large or when n ≥ 5, Iλ has a lower bound.

Lemma 2.2. When n = 4 with λ large or when n ≥ 5 with λ > 0, Iλ is bounded from below in

H1(Rn).

Proof. By Hölder’s inequality, we have

‖u‖Lp+1 ≤ ‖u‖rL2‖u‖1−r

L
2n

n−2
, for u ∈ L2(Rn) ∩ L

2n
n−2 (Rn),

where 1
p+1 = r

2 + (n−2)(1−r)
2n . By Sobolev imbedding,

‖u‖
L

2n
n−2

≤ C‖∇u‖L2 , for u ∈ H1(Rn).

From above two inequalities, we can get∫
Rn

|u|p+1dx ≤ C‖u‖
n+2−(n−2)p

2

L2 ‖∇u‖
n(p−1)

2

L2 , for u ∈ H1(Rn).

Since n+2−(n−2)p
2 < 2 when p > 1, by Young’s Inequality, for any ε > 0, there exists a constant

C(ε) > 0, such that ∫
Rn

|u|p+1dx ≤ ε

∫
Rn

u2dx+ C(ε)

(∫
Rn

|∇u|2dx
) n

n−2

.
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If we choose ε = V0

4 , then

Iλ(u) ≥ a
2‖∇u‖2L2 +

1
2

∫
Rn V (x)u2dx+ λ

4 ‖∇u‖4L2 − V0

4 ‖u‖2L2 − C‖∇u‖
2n

n−2

L2

≥ a
2‖∇u‖2L2 +

V0

4 ‖u‖2L2 +
λ
4 ‖∇u‖4L2 − C‖∇u‖

2n
n−2

L2 .

When n = 4, if λ
4 ≥ C, then Iλ(u) ≥ 0 for all u ∈ H1(Rn). When n ≥ 5, since 2n

n−2 < 4, Iλ(u) ≥ 0

when ‖∇u‖L2 ≥ (
4C
λ

) n−2
2(n−4) . Therefore, it is easy to get that Iλ(u) is bounded from below when

n ≥ 5 for all λ > 0.

For λ > 0 small, define the mountain path critical value cλ of Iλ by

cλ = inf
g∈Γ

sup
t∈[0,1]

Iλ(g(t)) > 0,

where
Γ := {g ∈ C([0, 1], H1(Rn))|g(0) = 0, Iλ(g(1)) < 0}.

Clearly, cλ is non-decreasing in λ.

As we will see, it is important to compare cλ with the mountain path critical level of the
autonomous problem⎧⎨

⎩
− (

a+ λ
∫
Rn |∇u|2dx)Δu+ V∞u = |u|p−1u, in R

n,

u ∈ H1(Rn), u(x) > 0, ∀x ∈ R
n.

(2.1)

The solutions to problem (2.1) are precisely the critical points of the functional defined by

I∞λ (u) =
1

2

∫
Rn

(a|∇u|2 + V∞u2)dx+
1

4

(∫
Rn

|∇u|2dx
)2

− 1

p+ 1

∫
Rn

|u|p+1dx

The solution of (2.1) is related to the following well known Schrödinger equation

−Δu+ u = up, u > 0 in R
n. (2.2)

Let w be the unique radial solution of equation (2.2)(see [9]). By simple dilation and scaling
argument, we can get the radial solutions to (2.1).

Lemma 2.3. Let wλ be the nontrivial radial solution of (2.1). Let A2(λ) =
∫
Rn |∇wλ|2dx,

S = V
2

p−1−n−2
2∞

∫
Rn |∇w|2dx. Then we have

wλ(x) = V
1

p−1∞ w

(√
V∞

a+ λA2
x

)
, (2.3)

with A2 determined by the following nonlinear equality:

A2 = (a+ λA2)
n−2
2 S, (2.4)

which can be divided to the following three cases according to n:

(1) When n = 3, there is a unique nontrivial radial solution of (2.1) for all λ ≥ 0 with

A2(λ) =
λS2 +

√
λ2S4 + 4aS2

2
.

5



(2) When n = 4, if λ ≥ 1
S , (2.1) has no nontrivial solution, if λ < 1

S , there is a unique nontrivial

radial solution, in this case

A2(λ) =
aS

1− λS
.

(3) When n ≥ 5, if λ > λ̄ = 2
(n−2)S

(
n−4

(n−2)a

)n−4
2

, (2.1) has no nontrivial solution; if λ = λ̄,

(2.1) has a unique nontrivial radial solution and when 0 < λ < λ̄, it has two nontrivial

radial solutions. Moreover, if we denote the two A values by A1(λ) < A2(λ), then we have

0 < A1(λ) < A(λ̄) < A2(λ) and

lim
λ→0+

A2
1(λ) = a

n−2
2 S and lim

λ→0+
λA2

2(λ) = +∞. (2.5)

Proof. The solutions of (2.1) have to be the solutions of the following equation

−(a+ λA2)Δu+ V∞u = up, u > 0.

Therefore (2.3) and (2.4) are from simple scaling argument and calculations from the unique radial

solution w of (2.2). The results can be derived easily from (2.4) for n = 3, 4. When n ≥ 5, if we

let t = a+ λA2, then (2.4) can be written as

t− a = λSt
n−2
2 .

The solution to the above equation is just the intersection points of the line y = t − a and the

curve y = λSt
n−2
2 . When λ is large, the two curves don’t intersect; If the curves intersect only at

one point, they are tangent to each other at the intersection point, from which we get⎧⎪⎪⎨
⎪⎪⎩

t− a = λSt
n−2
2 ,

(n−2)λS
2 t

n−4
2 = 1.

We get t = (n−2)a
n−4 and λ = λ̄ = 2

(n−2)S

(
n−4

(n−2)a

)n−4
2

. In this case, (2.1) only has one unique

nontrivial radial solution with A2(λ̄) = t−a
λ̄

= S
(

(n−2)a
n−4

)n−2
2

. If λ > λ̄, the two curves don’t

intersect, so (2.1) has no nontrivial solution.

Now when 0 < λ < λ̄, the two curves intersect at two points. If we denote the two A values by

A1(λ) and A2(λ) with 0 < A1 < A2, then from the graph of the two curves, it is easy to see that

for all 0 < λ < λ̄,

λA2
1(λ) < λ̄A2(λ̄) =

2a

n− 4
< λA2

2(λ),

together with (2.4),

lim
λ→0+

λA2
1(λ) = lim

λ→0+
λ(a+ λA2

1)
n−2
2 S = 0,

therefore

lim
λ→0+

A2
1(λ) = lim

λ→0+
(a+ λA2

1)
n−2
2 S = a

n−2
2 S.
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If λA2
2(λ) <∞ as λ→ 0+, then by (2.4),

lim
λ→0+

λA2
2(λ) = lim

λ→0+
λ(a+ λA2

2)
n−2
2 S = 0,

which contradicts the fact λA2
2(λ) >

2a
n−4 . Therefore

lim
λ→0+

λA2
2(λ)→ +∞.

Remark 2.2. When n ≥ 5 and 0 < λ ≤ λ̄, by the above argument, it is easy to see that λA2
1(λ)

increases in λ and λA2
2(λ) decreases in λ. Then (2.4) shows that A1(λ) increases in λ and A2(λ)

decreases in λ for 0 < λ ≤ λ̄.

For λ ≥ 0 small, let c∞λ be the mountain path critical value of I∞λ . Since the solution of (2.1)
satisfies the Pohoẑaev identity

(n− 2)

2

(
a+ λ

∫
Rn

|∇u|2dx
)∫

Rn

|∇u|2dx+
n

2

∫
Rn

V∞u2dx− n

p+ 1

∫
Rn

|u|p+1dx = 0.

We can get that, for λ small,

c∞λ =
a

n
A2

0(λ) +
(4− n)λ

4n
A4

0(λ), (2.6)

where

A2
0(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λS2+
√
λ2S4+4aS2

2 for n = 3,

aS
1−λS for n = 4,

A2
1(λ) for n ≥ 5.

Remark 2.3. According to [12], for n = 3 and 2 < p < 5, the solution wλ is the solution

corresponding to the mountain pass critical value of I∞λ for all λ > 0. When n = 3, 1 < p ≤ 2

or n = 4, if λ is small, the solution wλ is the solution corresponding to c∞λ . When n ≥ 5 with λ

small, (2.1) has two radial solutions: one corresponds to the mountain path critical value c∞λ and

the other corresponds to the minimum of Iλ given by a
nA

2
2(λ)+

(4−n)λ
4n A4

2(λ) (this value is negative

when λ is small and approaches −∞ when λ→ 0 due to the estimates on λA2
2(λ) in (2.5)).

When λ = 0, by condition (V), it is clearly that

0 < c0 < c∞0 .

Due to competing effect of the term (
∫
Rn |∇u|2dx)2 with

∫
Rn |u|p+1 when 1 < p < 3, it is not clear

whether cλ < c∞λ for all possible λ where Iλ(u) and I∞λ (u) both have a mountain pass geometry.
However for λ small enough, we can show that cλ < c∞λ .
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Lemma 2.4. Suppose a(λ), b(λ) and c(λ) are positive continuous increase functions defined

in λ ∈ [0, ε]. For p ∈ (1, 3), let

f(t) =
a(λ)t2

2
+

λb(λ)t4

4
− c(λ)tp+1

p+ 1
, t ≥ 0.

Assume for some M > 0 such that f(M) < 0 for all λ ∈ [0, ε] and f ′(1) = a(λ)+λb(λ)− c(λ) = 0.

Then there exists a 0 < λ1 ≤ ε, such that f(t) gets its maximum value in [0,M ] at t = 1.

Proof. This is a simple calculus lemma. By direct calculation,

f ′(t) = a(λ)t+ λb(λ)t3 − c(λ)tp

f ′′(t) = a(λ) + 3λb(λ)t2 − pc(λ)tp−1

f ′′′(t) = tp−2(6λb(λ)t3−p − c(λ)p(p− 1)).

Therefore for all λ sufficiently small, we get f ′′′(t) < 0 for all t ∈ (0,M). Since f ′(t) changes

sign in [0,M ], then we can see that f ′′(t) changes sign exactly once in [0,M ] and we can see that

f ′(t) ≥ 0 in [0, 1] and f ′(t) < 0 in (1,M ]. So f(t) gets its maximum in [0,M ] at t = 1.

Now for λ > 0 small, we let

wλ(x) = V
1

p−1∞ w

(√
V∞

a+ λA0(λ)2
x

)
.

Take ε0 > 0 sufficiently small, we can choose a large M > 1, such that I∞λ (Mwλ) < 0 for all
λ ∈ [0, ε0]. Let

f(t) = I∞λ (twλ), t ∈ [0,M ] and λ ∈ [0, ε0].

Then all the conditions of Lemma 2.4 is satisfied. We conclude that there exists a λ1 ∈ (0, ε0),
such that for all λ ∈ [0, λ1), we get that

c∞λ = I∞λ (wλ) = max
t∈[0,M ]

I∞λ (twλ).

By condition (V ), Iλ(Mwλ) < I∞λ (Mwλ) < 0, therefore for all λ ∈ [0, λ1),

cλ ≤ max
t∈[0,M ]

Iλ(twλ) = Iλ(t0wλ) for some t0 ∈ (0,M)

<I∞λ (t0wλ) ≤ I∞λ (wλ) = c∞λ .

Therefore, we get
cλ < c∞λ , for all λ ∈ [0, λ1). (2.7)

To overcome the difficulty of finding the bounded (PS) sequences for the functional Iλ, we
follow the idea of [10, 15] and use a cut-off function Φ ∈ C∞(R+,R) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(t) = 1, t ∈ [0, 1],

0 ≤ Φ(t) ≤ 1, t ∈ (1, 2),

Φ(t) = 0, t ∈ [2,∞),

0 ≤ Φ′(t) ≤ 2.
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For any T > 0, we modify the original functional and define a new functional ITλ by:

ITλ (u) =
1

2
‖u‖2 + 1

4
λΦ(

∫
Rn |∇u|2dx

T 2
)

(∫
Rn

|∇u|2dx
)2

− 1

p+ 1

∫
Rn

|u|p+1dx.

Since the term Φ(
∫
Rn
|∇u|2dx
T 2 )

(∫
Rn |∇u|2dx)2 ≤ 4T 4, it is clear that for any fixed T > 0, the

functional ITλ has a mountain path critical level. For this penalization, for T > 0 large and for λ
small, we are able to find a bounded (PS) sequence {ui} of ITλ , which is also a (PS) sequence for
Iλ, i. e.,

∫
Rn |∇ui|2 ≤ T 2 for all i large.

For any T > 0, denote cTλ be the mountain path critical level for ITλ , recall the notation cλ, c
∞
λ

defined earlier, clearly we have

c0 ≤ cTλ ≤ c0 + λT 4 ≤ c∞0 + λT 4.

Lemma 2.5. Let {ui} be a (PS)cTλ sequence of ITλ . Then for T > 0 sufficiently large, there

exists a λ2 = λ2(T ) = (p−1)a
16T 4 , such that for any λ ∈ [0, λ2),

∫
Rn |∇ui|2dx ≤ T 2 for all i large.

Consequently, subject a subsequence, {ui} is a bounded (PS)cTλ sequence for both Iλ and ITλ .

Proof. Since {ui} is a (PS)cTλ sequence of ITλ . For i large,

cTλ + 1 + ‖ui‖ ≥ ITλ (ui)− 1
p+1 〈(ITλ )′(ui), ui〉

= p−1
2(p+1)‖ui‖2 + λ(p−3)

4(p+1)Φ(
∫
Rn
|∇ui|2dx
T 2 )

(∫
Rn |∇ui|2dx

)2

− λ
2(p+1)T 2Φ

′(
∫
Rn
|∇ui|2dx
T 2 )(

∫
Rn |∇ui|2dx)3

≥ p−1
2(p+1)‖ui‖2 − T 4λ(3−p)

p+1 .

(2.8)

Therefore, we get
p−1

2(p+1)‖ui‖2 ≤ cTλ + 1 + ‖ui‖+ T 4λ(3−p)
p+1

≤ c∞0 + 1 + ‖ui‖+ 4λT 4

p+1 .

If
∫
Rn |∇ui|2dx > T 2, since a

∫
Rn |∇ui|2dx ≤ ‖ui‖2, we get aT 2 ≤ ‖ui‖2. If we choose T ≥

4(p+1)√
a(p−1)

, then

p− 1

2(p+ 1)
‖ui‖2 − ‖ui‖ ≥ p− 1

4(p+ 1)
‖ui‖2.

Thus we have
a(p− 1)T 2

4(p+ 1)
≤ p− 1

4(p+ 1)
‖ui‖2 ≤ c∞0 + 1 +

4λT 4

p+ 1
,

we get

T 2 ≤
(
4(p+ 1)(c∞0 + 1)

(p− 1)a
+

16λT 4

(p− 1)a

)
. (2.9)

Now if we choose T 2 ≥ max
( 4(p+1)(c∞0 +1)

(p−1)a + 1, 16(p+1)2

a(p−1)2

)
and then for any 0 < λ < λ2(T ) =

(p−1)a
16T 4 , we get a contradiction with (2.9). Therefore

∫
Rn |∇u|2dx ≤ T 2 for all i large. From (2.8),

we can see that {ui} is bounded in H1(Rn). Therefore subject to a subsequence if necessary, {ui}
is a bounded (PS)cTλ sequence for both Iλ and ITλ .
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3. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. We first give the following version of a
global compactness lemma given in [12].

Lemma 3.1 (Lemma 3.4 of [12]). Assume that (V) holds and 1 < p < p∗. For c > 0, let

{ui} ⊂ H1(Rn) be a bounded (PS)c sequence for Iλ, then there exists a u ∈ H1(Rn) and A ∈ R

such that J ′λ(u) = 0, where

Jλ(u) =
a+ λA2

2

∫
Rn

|∇u|2dx+
1

2

∫
Rn

V (x)u2dx− 1

p+ 1

∫
Rn

|u|p+1dx, (3.1)

and either

(i) ui → u in H1(Rn), or

(ii) there exists an positive integer l ∈ N and {yki } ∈ R
n with |yki | → ∞ for each 1 ≤ k ≤ l,

nontrivial solutions w1, ..., wl of the following problem

−(a+ λA2)Δu+ V∞u = |u|p−1u, (3.2)

such that

c+
λA4

4
= Jλ(u) +

l∑
k=1

J∞λ (wk),

where

J∞λ (u) =
a+ λA2

2

∫
Rn

|∇u|2dx+
V∞
2

∫
Rn

u2dx− 1

p+ 1

∫
Rn

|u|p+1dx, (3.3)

moreover

‖ui − u−
l∑

k=1

wk(· − yki )‖ → 0,

A2 = ‖∇u‖2L2 +

l∑
k=1

‖∇wk‖2L2 .

Proof. The proof is standard, we omit it (see [2, 12] for detail).

Proof of Theorem 1.1. From Lemma 2.5, if we choose

T 2
0 = max

(4(p+ 1)(c∞0 + 1)

(p− 1)a
+ 1,

16(p+ 1)2

a(p− 1)2
)
,

then for all λ < (p−1)a
16T 4

0
, Iλ has bounded (PS)

c
T0
λ

sequence {ui} with ‖∇ui‖L2 ≤ T 2
0 . We may

assume that lim
i→∞

‖∇ui‖L2 = A2 ≤ T 2
0 . Applying Lemma 3.1, there exists a uλ ∈ H1(Rn), such

that

ui ⇀ uλ in H1(Rn), J ′λ(uλ) = 0,

10



and either (i) or (ii) occurs.

If (ii) occurs, i. e., there exists an positive integer l ∈ N and {yki } ∈ R
n with |yki | → ∞ for each

1 ≤ k ≤ l, nontrivial solutions w1, ..., wl of (3.2) such that

‖ui − uλ −
l∑

k=1

wk(· − yki )‖ → 0,

A2 = ‖∇uλ‖2L2 +

l∑
k=1

‖∇wk‖2L2 .

and
cT0

λ = Jλ(uλ) +
∑l

k=1 J
∞
λ (wk)− λA4

4 ,

=
(
Jλ(uλ)− λA2

4 ‖∇uλ‖2L2

)
+

∑l
k=1

(
J∞λ (wk)− λA2

4 ‖∇wk‖2L2

)
.

Next we will show that for λ small,

Jλ(uλ)− λA2

4
‖∇uλ‖2L2 ≥ 0,

and

J∞λ (wk)− λA2

4
‖∇wk‖2L2 ≥ c∞λ for all 1 ≤ k ≤ l.

This will lead to a contradiction when l ≥ 1.

Since wk satisfies (3.2), then similar to the proof of Lemma 2.3,

wk(x) = V
1

p−1∞ w(

√
V∞

a+ λA2
x).

Since A2 ≥ ∫
Rn |∇wk|2dx and

∫
Rn |∇wk|2dx = (a + λA2)

n−2
2 S (S is given in Lemma 2.3), we

get

A2 ≥ (a+ λA2)
n−2
2 S.

When n = 3, 4, it is easy to see that A2 ≥ A2
0 given in (2.6). In the case n ≥ 5 , by the

argument of Lemma 2.3, we can see that A2
0 = A2

1(λ) ≤ A2 ≤ A2
2(λ).

Using the Pohoẑaev identity for the equation (3.2):

n− 2

2
(a+ λA2)

∫
Rn

|∇u|2dx+
nV∞
2

∫
Rn

u2dx− n

p+ 1

∫
Rn

|u|p+1dx = 0,

we derive that

J∞λ (wk)− λA2

4 ‖∇wk‖2L2 = a+λA2

n |∇wk‖2L2 − λA2

4 ‖∇wk‖2L2

= 4a+(4−n)λA2

4n (a+ λA2)
n−2
2 S.
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Consider the function f(t) = 4a+(4−n)t
4n (a+ t)

n−2
2 S. When n = 3, 4, f(t) is an increase function

for t ≥ 0. As A2 ≥ A2
0(λ), we get

J∞λ (wk)− λA2

4 ‖∇wk‖2L2 = f(λA2) ≥ f(λA2
0)

=
4a+(4−n)λA2

0

4n (a+ λA2
0)

n−2
2 S

=
4a+(4−n)λA2

0

4n A2
0 by (2.4),

= c∞λ .

When n ≥ 5, since

f ′(t) =
(
a

4
+

(4− n)t

8

)
(a+ t)

n−4
2 S.

f(t) increases in the interval [0, 2a
n−4 ]. Therefore, if λT

2
0 ≤ 2a

n−4 , λA
2 ≤ 2a

n−4 . Similarly, we get

J∞λ (wk)− λA2

4
‖∇wk‖2L2 = f(λA2) ≥ f(λA2

1(λ)) = c∞λ .

Next, since uλ satisfies the equation (3.1), we get

Jλ(uλ) =
p− 1

2(p+ 1)

(
(a+ λA2)

∫
Rn

|∇uλ|2dx+

∫
Rn

V (x)u2
λdx

)
.

So
Jλ(uλ)− λA2

4 ‖∇uλ‖2L2 ≥ p−1
2(p+1) (a+ λA2)‖∇uλ‖2L2 − λA2

4 ‖∇uλ‖2L2

= 2a(p−1)+(p−3)λA2

4(p+1) ‖∇uλ‖2L2 ≥ 0,

if λT 2
0 ≤ 2a(p−1)

3−p .

If we take

λ0 =

⎧⎪⎪⎨
⎪⎪⎩

min
{ (p−1)a

16T 4
0
, 2a(p−1)
(3−p)T 2

0
, λ1

}
, n = 3, 4

min
{ (p−1)a

16T 4
0
, 2a(p−1)
(3−p)T 2

0
, 2a
(n−4)T 2

0
, λ1

}
, n ≥ 5.

(3.4)

Then for all λ ∈ [0, λ0),

cλ ≥ cT0

λ = Jλ(uλ) +
∑l

k=1 J
∞
λ (wk)− λA4

4 ,

≥ lc∞λ ≥ c∞λ .

This contradicts with (2.7) when l ≥ 1. Therefore, (ii) doesn’t occur and ui → uλ in H1(Rn).

So uλ is a nontrivial critical point of Iλ with Iλ(uλ) = cT0

λ ≥ c0 for λ ≥ 0 small enough. By

standard regularity argument, we see that uλ is positive, therefore uλ is a positive solution to

(1.1).
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4. Proof of Theorem 1.2

Proof of Theorem 1.2. Assume that n ≥ 4 and u ∈ H1(Rn) is a nontrivial solution to (1.1), then

multiply (1.1) by u and integrate by parts, we get

a‖∇u‖2L2 +

∫
Rn

V (x)u2dx+ λ‖∇u‖4L2 − ‖u‖p+1
Lp+1 = 0.

As in the proof of Lemma 2.2, if we choose ε = V0

2 , there exists a C > 0, such that

∫
Rn

|u|p+1dx ≤ V0

2

∫
Rn

u2dx+ C

(∫
Rn

|∇u|2dx
) n

n−2

.

We get that

a‖∇u‖2L2 +

∫
Rn

V (x)u2dx+ λ‖∇u‖4L2 ≤ V0

2

∫
Rn

u2dx+ C‖∇u‖
2n

n−2

L2 . (4.1)

Since 2 < 2n
n−2 ≤ 4 for n ≥ 4, by Young’s inequality, it is easy to see that

C‖∇u‖
2n

n−2

L2 ≤ a‖∇u‖2L2 + C1‖∇u‖4L2 .

Therefore by (4.1), we have∫
Rn

V (x)u2dx+ λ‖∇u‖4L2 ≤ V0

2

∫
Rn

u2dx+ C1‖∇u‖4L2 .

If we take λ ≥ C1, we get

‖∇u‖L2 = ‖u‖L2 = 0.

So (1.1) has no nontrivial solution when n ≥ 4 and λ chosen large.
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