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For an expanding real matrix M =
[
ρ−1 C
0 ρ−1

]
∈ M2(R) and a digit set 

D = {(0, 0)t, (1, 0)t, (0, 1)t}, let μM,D be the self-affine measure generated by M
and D. In this paper, we show that L2(μM,D) admits an infinite orthogonal set of 
exponential functions if and only if |ρ| = (q/p) 1

r and C = κρ−1 for some positive 
integers p, q, r with p ∈ 3Z, gcd(p, q) = 1 and κ ∈ Q. Moreover, if L2(μM,D)
does not admit any infinite orthogonal set of exponential functions, we estimate 
the number of orthogonal exponential functions in L2(μM,D) and give the exact 
maximal cardinality.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A Borel probability measure μ on Rn is called a spectral measure if we can find a countable set Λ ⊂ Rn

such that EΛ = {e2πi〈λ,x〉 : λ ∈ Λ} forms an orthonormal basis for L2(μ). If such Λ exists, then Λ is called 
a spectrum of μ, we also say that (μ, Λ) is a spectral pair. For the special case that the spectral measure 
is the restriction of the Lebesgue measure on a bounded Borel subset Ω, we call Ω a spectral set. The 
research of spectral measures was originated from Fuglede [17], whose famous conjecture asserted that Ω is 
a spectral set if and only if Ω is a translational tile, that is, there exists a discrete set Γ ⊂ Rn such that 
∪γ∈Γ(Ω + γ) covers Rn without overlaps and up to a zero set of Lebesgue measure. The conjecture was 
disproved eventually in both directions on Rn for n ≥ 3 [33,21,22], but it is still open in dimensions n = 1
and n = 2.
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Since then, the study of the spectrality of measures becomes an active research topic, especially for 
fractal measures, such as self-similar/self-affine measures. Let {φd(x)}d∈D be an iterated function system
(IFS) defined by

φd(x) = M−1(x + d), x ∈ Rn, d ∈ D,

where M ∈ Mn(R) is an n ×n expanding real matrix (that is, all the eigenvalues of M are greater than 1 in 
module), and D ⊂ Rn is a finite digit set. It is well known that there exists a unique nonempty compact set 
T := T (M, D) such that T =

⋃
d∈D φd(T ) [18]. Also, there exists a unique probability measure μ := μM,D

supported on T satisfying

μ = 1
#D

∑
d∈D

μ ◦ φ−1
d , (1.1)

where #D is the cardinality of D. The set T and the measure μM,D are called self-affine set (or attractor) 
and self-affine measure, respectively. In particular, if M is a multiple of an orthonormal matrix, then T and 
μM,D are called self-similar set and self-similar measure, respectively.

In 1998, Jorgensen and Pedersen [20] discovered that the standard middle-fourth Cantor measure is a 
spectral measure. It is the first spectral measure that is non-atomic and singular to the Lebesgue mea-
sure ever discovered. In the same paper, they also showed that the middle-third Cantor measure is not 
a spectral measure. Following this discovery, there has been more research on new spectral measures (see 
[1–4,6–8,11,9,10,12,14,15,13,16,19,23,26,28,30] and the references therein), as well as the convergence proper-
ties of the associated Fourier series [31,32]. Among these results, Hu and Lau [19] first studied the spectrality 
of Bernoulli convolutions μρ, and Dai [6] completely settled the problem that μ1/(2k) is the only spectral 
measure. The more general N -Bernoulli convolution was completely characterized in [7,8]. For higher di-
mensional cases, Dutkay, Haussermann and Lai [13], and Liu and Luo [30] studied the spectral problem for 
self-affine measures, which generated by an expanding integer matrix and an integer digit set. In particular, 
Deng and Lau [11] first considered the planar self-affine measure generated by an expanding real matrix, 
they proved the following theorem.

Theorem A. [11, Theorems 1.1 and 1.2] Let M =
[
ρ−1 0
0 ρ−1

]
∈ M2(R) be an expanding real matrix with 

0 < |ρ| < 1, the digit set D = {(0, 0)t, (1, 0)t, (0, 1)t}, and let μM,D be defined by (1.1). Then

(i) L2(μM,D) admits an infinite orthogonal set of exponential functions if and only if |ρ| = (q/p) 1
r for some 

positive integers p, q, r with p ∈ 3Z and gcd(p, q) = 1.
(ii) L2(μM,D) is a spectral measure if and only if |ρ| = 1/p for some p ∈ 3Z.

In the opposite direction, the study of the non-spectrality of self-affine measures μM,D has drawn consid-
erable attentions, and some interesting results have been obtained, see [5,14,24,25,27,29]) and the references 
therein. The non-spectral problem consists of the following two types of questions: (I) There are at most a 
finite number of orthogonal exponential functions in L2(μM,D). The main questions here are to estimate the 
number of orthogonal exponential functions in L2(μM,D) and to find them; (II) There are infinite families 
of orthogonal exponential functions, but none of them forms an orthogonal basis in L2(μM,D). Relating to 
question (I), there are many results about the self-affine measure μM,D, which generated by an expanding 
integer matrix M ∈ M2(Z) and the digit set D = {(0, 0)t, (1, 0)t, (0, 1)t}. For examples, Dutkay and Jor-

gensen [14] showed that if M =
[
p 0
0 p

]
with p ∈ Z \ 3Z and p ≥ 2, then there exist at most 3 mutually 

orthogonal exponential functions in L2(μM,D). Later on, Li [24] proved that if M =
[
a b
0 c

]
with ac /∈ 3Z, 
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then there exist at most 3 mutually orthogonal exponential functions in L2(μM,D), and the number 3 is 

the best. Recently, Liu, Dong and Li [29] considered the matrix M =
[
a b
d c

]
with ac − bd /∈ 3Z, they 

showed that there exist at most 9 mutually orthogonal exponential functions in L2(μM,D), and the number 
9 is the best. For the case that M is an expanding integer matrix with det(M) /∈ 3Z and an integer digit 
set D = {(0, 0)t, (α1, α2)t, (β1, β2)t} with α1β2 − α2β1 �= 0, the first author of this paper and Liu [5] also 
studied the non-spectral problem for the self-affine measure μM,D.

Motivated by the above results, we will study the spectrality and the non-spectrality of the planar self-
affine measure μM,D, which generated by an expanding real matrix M ∈ M2(R) and the digit set D ⊂ R2

with

M =
[
ρ−1 C
0 ρ−1

]
(0 < |ρ| < 1) and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
. (1.2)

Throughout the paper, we will use the following notations: β := ρ−1, Θ := Θ1 ∪Θ2 with Θ1 = 3Z2 + (1, 2)t

and Θ2 = 3Z2 + (2, 1)t, and N denotes the set of positive integers.
Our first main result is the following theorem.

Theorem 1.1. Let μM,D, (M, D) be defined by (1.1) and (1.2), respectively. Then L2(μM,D) admits an infinite 
orthogonal set of exponential functions if and only if |β| = (p/q) 1

r and C = κβ for some p, q, r ∈ N with 
p ∈ 3Z, gcd(p, q) = 1 and κ ∈ Q.

Obviously, Theorem 1.1 is an extension of Theorem A(i). The proof depends mainly on the characteri-
zation of the zero set of the Fourier transform of μM,D.

Furthermore, if L2(μM,D) does not admit infinite orthogonal set of exponential functions, we will estimate 
the number of orthogonal exponential functions in L2(μM,D) and give the exact maximal cardinality. In 
this paper, we mainly consider the case where β is the r-th root of a rational, that is, |β| = (p/q) 1

r for some 
p, q, r ∈ N with gcd(p, q) = 1. By Theorem 1.1, there exist two cases: (i) C �= κβ for any κ ∈ Q; (ii) C = κβ

for some κ ∈ Q and p /∈ 3Z. Now we state our second main theorem.

Theorem 1.2. Let μM,D, (M, D) be defined by (1.1) and (1.2), respectively. Suppose that |β| = (p/q) 1
r for 

some p, q, r ∈ N with gcd(p, q) = 1. Then the following statements hold.

(i) If C �= κβ for any κ ∈ Q, then there exist at most 3 mutually orthogonal exponential functions in 
L2(μM,D), and the number 3 is the best.

(ii) If C = κβ for some κ ∈ Q and p /∈ 3Z, then
(a) If q /∈ 3Z, then there exist at most 3 mutually orthogonal exponential functions in L2(μM,D), and 

the number 3 is the best.
(b) If q ∈ 3Z, then there are any number of orthogonal exponential functions in L2(μM,D).

We remark that if β is the r-th root of a rational, Theorem 1.2 completely answered the non-spectral 
problem of question (I) for the self-affine measure μM,D in (1.2). To some extent, Theorem 1.2 is an extension 
of the results in [14,24,29] for non-spectral self-affine measures. The proof of Theorem 1.2 is through some 
algebraic identities induced by the orthogonality, and the technique to prove the best number is to construct 
a suitable orthogonal set for each case. It should be noted that there does not exist any infinite orthogonal set 
of exponential functions in the case (b) of Theorem 1.2(ii), although it can admit any number of orthogonal 
exponential functions.
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Remark 1.3. For the case that β is not the r-th root of a rational, which is either transcendental or algebraic. 
In this case, Theorem 1.1 shows that L2(μM,D) cannot have any infinite orthogonal set of exponential 
functions.

(i) If β is a transcendental number, by using the similar method used in the proof of Theorem 1.2, we 
can show that there exist at most 3 mutually orthogonal exponential functions in L2(μM,D), and the 
number 3 is the best. We omit the proof here.

(ii) If β is an algebraic number, then the number 3 is not necessarily the best. For example, let β = (
√

5+1)/2
and C = 0, then for any α ∈ Θ/3,

EΛ =
{
e2πi〈λ,x〉 : λ ∈ Λ = {0,M∗2α,M∗3α,M∗4α,M∗5α}

}

is an orthogonal set in L2(μM,D). In fact, by observing that M∗�α = β�α ∈ Z(μ̂M,D) (see (2.4)), we 
have

M∗(�+1)α−M∗�α = β�−1(β2 − β)α = β�−1α = M∗(�−1)α ∈ Z(μ̂M,D),

M∗4α−M∗2α = β2(β2 − 1)α = β3α = M∗3α ∈ Z(μ̂M,D),

M∗5α−M∗2α = β3(β2 − β−1)α = β3(2α) = M∗3(2α) ∈ Z(μ̂M,D).

By (2.2), the assertion follows. Unfortunately, it is difficult to give the exact maximal cardinality.

The paper is organized as follows. In Section 2, we introduce some basic definitions and results that will 
be needed in the proof of our main results. In Section 3, we prove Theorem 1.1 and Theorem 1.2. Finally, 
we give some remarks and open questions in Section 4.

2. Preliminaries

Let μ be a probability measure with compact support on Rn, its Fourier transform is defined as usual,

μ̂(ξ) =
∫

e2πi〈x,ξ〉dμ(x), ξ ∈ Rn.

Let μM,D, (M, D) be defined by (1.1) and (1.2), respectively. It follows from [14] that

μ̂M,D(ξ) =
∞∏
j=1

mD(M∗−jξ), ξ ∈ R2, (2.1)

where M∗ denotes the transpose of M , and

mD(x) = 1
#D

∑
d∈D

e2πi〈d,x〉 = 1
3(1 + e2πix1 + e2πix2), x = (x1, x2)t ∈ R2.

Let Z(f) denote the zeros of a function f . It is known that

Z(mD) = 1
3(Θ1 ∪ Θ2).

For any λ1 �= λ2 ∈ R2, the orthogonality condition
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0 = 〈e2πi〈λ1,x〉, e2πi〈λ2,x〉〉L2(μM,D) =
∫

e2πi〈λ1−λ2,x〉dμM,D(x) = μ̂M,D(λ1 − λ2)

relates to the zero set Z(μ̂M,D) directly. It is easy to show that for a countable set Λ ⊂ R2, EΛ = {e2πi〈λ,x〉 :
λ ∈ Λ} is an orthogonal set of L2(μM,D) if and only if

(Λ − Λ) \ {0} ⊂ Z(μ̂M,D). (2.2)

In this case, Λ is called a bi-zero set of μM,D.
For the matrix M given by (1.2), it is easy to check that

M∗j =
[

βj 0
Cjβj−1 βj

]
. (2.3)

It follows from (2.1) that

Z(μ̂M,D) =
∞⋃
j=1

M∗j(Z(mD)) =
∞⋃
j=1

1
3M

∗j(Θ1 ∪ Θ2) := ZΘ1 ∪ ZΘ2 , (2.4)

where

ZΘ1 =
∞⋃
j=1

M∗j Θ1

3 =

⎧⎨
⎩

∞⋃
j=1

βj

(
α1
3

Cjβ−1α1+α2
3

)
: (α1, α2)t ∈ Θ1

⎫⎬
⎭ ,

ZΘ2 =
∞⋃
j=1

M∗j Θ2

3 =

⎧⎨
⎩

∞⋃
j=1

βj

(
α3
3

Cjβ−1α3+α4
3

)
: (α3, α4)t ∈ Θ2

⎫⎬
⎭ .

(2.5)

Throughout the paper, we shall denote the number (p/q) 1
r by the reduced representation. For example, if 

(p/q) 1
2 = (18/8) 1

2 = (9/4) 1
2 = 3/2, we take (p/q) 1

2 = 3/2. It is well known that β ∈ {±(p/q) 1
r : p, q, r ∈ N}

if and only if |β| is an algebraic rational with a minimal polynomial qxr − p for some p, q, r ∈ N. The 
following lemma is useful for proving our main results.

Lemma 2.1. Suppose that β ∈ {±(p/q) 1
r : p, q, r ∈ N} satisfies a1β

i + a2β
j = a3β

k, where i, j, k are 
nonnegative integers. Then the following statements hold.

(i) If a1, a2, a3 ∈ Z \ {0}, then i ≡ j ≡ k (mod r).
(ii) If a1, a2, a3 ∈ Z \ 3Z, and p ∈ 3Z or q ∈ 3Z, then at least two of the i, j, k are equal.

Proof. We only prove the case β = (p/q) 1
r , because the other case β = −(p/q) 1

r can be proved similarly.
The proof of (i) is essentially identical to that of [9, Lemma 2.5], we write it down for completeness. Let 

i = i1r + s1, j = j1r + s2, k = k1r + s3 with 0 ≤ s1, s2, s3 ≤ r − 1. Note that qβr − p = 0, so there exist 
some integers b1, b2, b3 �= 0 such that b1βs1 + b2β

s2 = b3β
s3 . As qxr − p is the minimal integer polynomial 

of β, it follows from 0 ≤ s1, s2, s3 ≤ r − 1 that s1 = s2 = s3. Therefore, we have i ≡ j ≡ k (mod r).
For (ii), suppose on the contrary that i, j, k are different nonnegative integers. Without loss of generality, 

we assume that i > j > k. According to (i), we can let i = i1r + s, j = j1r + s and k = k1r + s, where 
i1 > j1 > k1 and 0 ≤ s ≤ r − 1. Multiplying a1β

i + a2β
j = a3β

k by qi1−k1β−k, we get that

pj1−k1 [a1p
i1−j1 + a2q

i1−j1 ] = a3q
i1−k1 ,

qi1−j1 [a3q
j1−k1 − a2p

j1−k1 ] = a1p
i1−k1 .
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Note that gcd(p, q) = 1, if p ∈ 3Z, the first equation implies that a3 ∈ 3Z; if q ∈ 3Z, the second equation 
implies that a1 ∈ 3Z. They contradict the conditions a1, a3 /∈ 3Z, and hence the assertion follows. �

For the one dimensional self-similar measure

μρ,m(·) = 1
m

m−1∑
j=0

μρ,m(ρ−1(·) − j), (2.6)

where 0 < |ρ| < 1 and m ∈ N \ {1}. Deng [9] studied the existence of infinite orthogonal set of exponential 
functions in L2(μρ,m) and obtained the following result, which will be used to prove Theorem 1.1.

Theorem 2.2. [9, Theorem 1.2] Let μρ,m be defined by (2.6). If m is a prime, then L2(μρ,m) admits an 
infinite orthogonal set of exponential functions if and only if |ρ| = (q/p) 1

r for some p, q, r ∈ N with p ∈ mZ

and gcd(p, q) = 1.

3. Proof of the main results

This section is devoted to proving our main theorems. We first prove Theorem 1.1 by using Lemma 2.1
and Theorem 2.2, and then complete the proof of Theorem 1.2. Let Λ be a bi-zero set of μM,D, and let 
EΛ = {e2πi〈λ,x〉 : λ ∈ Λ}. Without loss of generality, we may assume that 0 ∈ Λ.

Proof of Theorem 1.1. First, we prove the necessity. Assume that L2(μM,D) admits an infinite orthogonal 
set EΛ. By (2.2) and (2.4), we have Λ \ {0}, (Λ − Λ) \ {0} ⊂ ZΘ1 ∪ ZΘ2 , where ZΘ1 , ZΘ2 are defined in 
(2.5). For s = 1 or 2, define Λs = {λis : λi = (λi1.λi2)t ∈ Λ}. We first claim that Λ1 is infinite. Suppose 
otherwise, Λ1 is finite, then Λ2 must be infinite. By the pigeonhole principle, there exist λ1 �= λ2 ∈ Λ \ {0}
such that λ11 = λ21, where λi = (λi1, λi2)t for i = 1, 2, and hence

λ1 − λ2 =
( 0
λ12 − λ22

)
/∈ ZΘ1 ∪ ZΘ2 = Z(μ̂M,D),

which is a contradiction. Thus Λ1 is an infinite set satisfying

Λ1 \ {0}, (Λ1 − Λ1) \ {0} ⊂
∞⋃
j=1

βj(Z± 1/3) = Z(μ̂ρ,3),

where μρ,3 is defined by (2.6). It follows from (2.2) that EΛ1 = {e2πiλx : λ ∈ Λ1} is an infinite orthogonal 
set of L2(μρ,3). According to Theorem 2.2, we have |β| = (p/q) 1

r for some p, q, r ∈ N with p ∈ 3Z and 
gcd(p, q) = 1.

We now prove that C = κβ with κ ∈ Q. Since #Λ = ∞, without loss of generality, there must exist 
λ1 �= λ2 ∈ Λ \ {0} such that λ1, λ2 ∈ ZΘ1 . From the definition of ZΘ1 and the orthogonality of Λ, we can 
write

λ1 = βn

(
α11
3

Cnβ−1α11+α12
3

)
, λ2 = βm

(
α21
3

Cmβ−1α21+α22
3

)
and λ1 − λ2 = βw

(
α31
3

Cwβ−1α31+α32
3

)
, (3.1)

where n, m, w ∈ N, (α11, α12)t, (α21, α22)t ∈ Θ1 and (α31, α32)t ∈ Θ. Consequently,

α11β
n − α21β

m = α31β
w (3.2)
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and

Cβ−1(nα11β
n −mα21β

m − wα31β
w) = −α12β

n + α22β
m + α32β

w. (3.3)

Note that |β| = (p/q) 1
r and p ∈ 3Z, by Lemma 2.1, we get that n ≡ m ≡ w (mod r) and at least two of 

the n, m, w are equal. As α11 − α21 ∈ 3Z and α31 /∈ 3Z, it follows from (3.2) that n, m, w are not all equal. 
Without loss of generality, we assume that n �= m = w. By (3.2), we have nα11β

n −mα21β
m − wα31β

w =
(n −m)α11β

n. Therefore, (3.3) implies that

C = α22 + α32 − α12β
n−m

(n−m)α11βn−m
β := κβ.

It follows from n ≡ m (mod r), n �= m and |β| = (p/q) 1
r that κ ∈ Q. The necessity follows.

Second, we prove the sufficiency. Suppose that |β| = (p/q) 1
r and C = κβ for some p, q, r ∈ N with p ∈ 3Z, 

gcd(p, q) = 1 and κ ∈ Q, it is clear that gcd(q, 3) = 1. Write κ = v/u for some u ∈ N, v ∈ Z with 
gcd(u, v) = 1, and let

Λ =
{(

p3u�

3
2p3u�

3

)
: � ∈ N

}
.

We will show that Λ \ {0}, (Λ − Λ) \ {0} ⊂ Z(μ̂M,D). Note that p = q|β|r, we have

(
p3u�

3
2p3u�

3

)
= |β|3ur�

(
q3u�

3
2q3u�

3

)
= |β|3ur�

(
q3u�

3
3κur�q3u�+(2−3κur�)q3u�

3

)
= M∗3ur�

( α1
3
α2
3

)
, (3.4)

where α1 = q3u� and α2 = (2 − 3κur�)q3u� if |β|3ur� = β3ur�, or α1 = −q3u� and α2 = (3κur� − 2)q3u�

if |β|3ur� = −β3ur�. It follows from κ = v/u and gcd(q, 3) = 1 that (α1, α2)t ∈ Θ. This proves Λ \ {0} ⊂
Z(μ̂M,D).

Next, we prove that (Λ −Λ) \{0} ⊂ Z(μ̂M,D). For any λ1 �= λ2 ∈ Λ \{0}, we can write λ1 = p3u�1(1, 2)t/3
and λ2 = p3u�2(1, 2)t/3 for two positive integers �1 > �2. Similar to (3.4), there exists (α1, α2)t ∈ Θ such 
that

λ1 − λ2 = |β|3ur�2
⎛
⎝ (p3u(�1−�2)−1)q3u�2

3
2·(p3u(�1−�2)−1)q3u�2

3

⎞
⎠ = (p3u(�1−�2) − 1)M∗3ur�2

( α1
3
α2
3

)
.

It is easy to see that (p3u(�1−�2) − 1)(α1, α2)t also belongs to Θ, then λ1 − λ2 ∈ M∗3ur�2 Θ
3 ⊂ Z(μ̂M,D), 

which implies that (Λ − Λ) \ {0} ⊂ Z(μ̂M,D). By (2.2), EΛ is an infinite orthogonal set in L2(μM,D).
The proof of Theorem 1.1 is complete. �
Now we are ready to prove Theorem 1.2. Under the assumptions of Theorem 1.2, without loss of generality, 

we assume that β = (p/q) 1
r for some p, q, r ∈ N with gcd(p, q) = 1. Observe that C �= κβ for any κ ∈ Q is 

equivalent to C = κβ for some κ /∈ Q, we always assume that C = κβ for κ ∈ R in Theorem 1.2.

Proof of Theorem 1.2. (i) We prove the conclusion by contradiction. Suppose there exists an orthogonal set 
EΛ such that #Λ ≥ 4. Without loss of generality, we assume that #Λ = 4, and let Λ = {0, λ1, λ2, λ3}. For 
different subscripts i, j ∈ {1, 2, 3}, it follows from (2.2) that λ1, λ2, λ3, λi − λj ∈ Z(μ̂M,D) = ZΘ1 ∪ ZΘ2 . 
Let C = κβ for κ /∈ Q, and by (2.5), we can write
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λi = βji

(
αi1
3

κjiαi1+αi2
3

)
(i = 1, 2, 3)

for some positive integers j1 ≥ j2 ≥ j3 and (αi1, αi2)t ∈ Θ. According to the orthogonality of Λ and 
Lemma 2.1, we have j1 ≡ j2 ≡ j3 (mod r), which means that there exists 0 ≤ s ≤ r − 1 such that 
ji = �ir + s (i = 1, 2, 3). Obviously, �1 ≥ �2 ≥ �3 ≥ 0. We will divide our proof into the following two cases.

Case I. p, q /∈ 3Z. By the pigeonhole principle and p, q, αi1 /∈ 3Z (i = 1, 2, 3), it is obvious that at least two of 
the α11p

�1 , α21p
�2q�1−�2 , α31p

�3q�1−�3 are in the set 3Z + 1 or 3Z + 2. Without loss of generality, we assume 
that α11p

�1 , α21p
�2q�1−�2 ∈ 3Z + 1. Since λ1 −λ2 ∈ ZΘ1 ∪ZΘ2 , there exist j4 ∈ N and (α41, α42)t ∈ Θ such 

that

λ1 − λ2 = βj4

(
α41
3

κj4α41+α42
3

)
.

Using Lemma 2.1, we have j1 ≡ j2 ≡ j4 (mod r). Let j4 = �4r+s, then the equation α11β
j1−α21β

j2 = α41β
j4

implies that

α11

(
p

q

)�1

− α21

(
p

q

)�2

= α41

(
p

q

)�4

.

Multiplying q�1+�4 on both sides of the above equation, one can easily get that

q�4(α11p
�1 − α21p

�2q�1−�2) = α41p
�4q�1 .

This together with p, q /∈ 3Z and α11p
�1 , α21p

�2q�1−�2 ∈ 3Z +1 yields that α41 ∈ 3Z, which is a contradiction.

Case II. p ∈ 3Z, q /∈ 3Z or p /∈ 3Z, q ∈ 3Z. By the pigeonhole principle, at least two of the λ1, λ2, λ3 are in 
the set ZΘ1 or ZΘ2 . Without loss of generality, we assume that λ1, λ2 ∈ ZΘ1 , then α11, α21 ∈ 3Z + 1. In 
view of λ1 − λ2 ∈ ZΘ1 ∪ ZΘ2 , there exist j5 ∈ N and (α51, α52)t ∈ Θ such that

λ1 − λ2 = βj5

(
α51
3

κj5α51+α52
3

)
.

Therefore, we have

α11β
j1 − α21β

j2 = α51β
j5 (3.5)

and

(κj1α11 + α12)βj1 − (κj2α21 + α22)βj2 = (κj5α51 + α52)βj5 . (3.6)

Since one of the p, q is in the set 3Z, Lemma 2.1 implies that j1 ≡ j2 ≡ j5 (mod r) and at least two of the 
j1, j2, j5 are equal. Note that α11 − α21 ∈ 3Z and α51 /∈ 3Z, it follows from (3.5) that j1, j2, j5 are not all 
equal. If j1 = j2, we have j1 �= j5. As j1 ≡ j5 (mod r), there exists � ∈ Z \ {0} such that j1 − j5 = �r. 
Combining with β = (p/q) 1

r , (3.5) and (3.6), we conclude that

κ = (α22 − α12)p� + α52q
�

�
∈ Q.
�rα51q
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This yields a contradiction by κ /∈ Q. Similarly, if j1 = j5 or j2 = j5, we can derive the same contradiction.
Hence there exist at most 3 mutually orthogonal exponential functions in L2(μM,D).
We now show that the number 3 is the best. Fix � ∈ N, let

Λ =
{(

0

0

)
,M∗�

( 1
3
2
3

)
,M∗�

( 2
3
1
3

)}
.

It is easy to check that (Λ −Λ) \ {0} ⊂ Z(μ̂M,D). By (2.2), EΛ is an orthogonal set in L2(μM,D), and hence 
the result follows.

(ii) From the proof of Case I in (i), we see that the condition κ /∈ Q is not used. Hence (a) holds by (i), 
and we only need to prove (b).

Since κ ∈ Q and q ∈ 3Z, we write κ = v/u for some u ∈ N, v ∈ Z with gcd(u, v) = 1, and let q = 3sq′
with gcd(q′, 3) = 1. For any positive integers N and n ≤ N , let

Λ(n,N) =
{

N⋃
n=1

M∗3urn

(
p3u(N−n)q′ 3u(n−1)

3
2p3u(N−n)q′ 3u(n−1)

3

)}
.

We will show that EΛ(n,N) = {e2πi〈λ,x〉 : λ ∈ Λ(n,N)} is an orthogonal set in L2(μM,D). In view of p, q′ /∈ 3Z, 
it is easy to obtain that

Λ(n,N) \ {0} ⊂
∞⋃

n=1
M∗3urnΘ

3 ⊂ Z(μ̂M,D).

For any λ1 �= λ2 ∈ Λ(n,N), we can let

λ1 = M∗3urn

(
p3u(N−n)q′ 3u(n−1)

3
2p3u(N−n)q′ 3u(n−1)

3

)
and λ2 = M∗3urm

(
p3u(N−m)q′ 3u(m−1)

3
2p3u(N−m)q′ 3u(m−1)

3

)
,

where n > m. It follows from (2.3), q = 3sq′ and p, q′ /∈ 3Z that

λ1 − λ2 = M∗3urn

(
p3u(N−n)q′ 3u(n−1)

3
2p3u(N−n)q′ 3u(n−1)

3

)
−M∗3urn p

3u(N−n)q′ 3u(n−1)

3

(
33u(n−m)s

(3v(m− n)r + 2) · 33u(n−m)s

)

= M∗3urn p
3u(N−n)q′ 3u(n−1)

3

(
1 − 33u(n−m)s

2 − (3v(m− n)r + 2) · 33u(n−m)s

)

∈ M∗3urn Θ
3

⊂ Z(μ̂M,D).

This implies that (Λ(n,N) − Λ(n,N)) \ {0} ⊂ Z(μ̂M,D). According to (2.2), EΛ(n,N) is an orthogonal set in 
L2(μM,D). By the arbitrary of N , the assertion follows.

This completes the proof of Theorem 1.2. �
4. Concluding remarks

In the present section, we will give some remarks and open questions related to our main results. We use 
the following example to illustrate Theorems 1.1 and 1.2.
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Example 4.1. Let μM,D, (M, D) be defined by (1.1) and (1.2) respectively, and let

M1 =
[√

3
√

3
2

0
√

3

]
, M2 =

[
2
√

3
3

√
3

0 2
√

3
3

]
, M3 =

[
2
√

3
3 2
0 2

√
3

3

]
and M4 =

[√
5

√
5

2
0

√
5

]
.

Then L2(μM1,D) admits an infinite orthogonal set of exponential functions, and there are any number 
of orthogonal exponential functions in L2(μM2,D). Moreover, there exist at most 3 mutually orthogonal 
exponential functions in L2(μM3,D) and L2(μM4,D), and the number 3 is the best.

For the affine pair (M, D) given by (1.2), by Remark 1.3, it is of interest to consider the following question.

(Q1): If β is not the r-th root of a rational, but it is an algebraic number, what is the maximal cardinality 
of the orthogonal exponential functions in L2(μM,D)?

Another interesting problem is the completeness of infinite orthogonal exponential functions in L2(μM,D). 
The following question is now naturally raised.

(Q2): For the self-affine measure μM,D corresponding to (1.2), what is the sufficient and necessary condition 
for μM,D to be a spectral measure?

It is worth noting that the special case C = 0 in (1.2) has been studied by Deng and Lau in [11], they 
showed that μM,D is a spectral measure if and only if |β| = 3p for some p ∈ N. In fact, if |β| = 3p and 
C = κβ for some p ∈ N with pκ ∈ Z, it is easy to prove that μM,D is a spectral measure, which is inspired 
by [13, Theorem 1.3]. On the other hand, if μM,D is a spectral measure, by using the similar method used in 
the proof of [8, Proposition 3.1], we can obtain that β is a rational. Based on these analyses, the following 
conjecture may be a reasonable conjecture to this end.

Conjecture 4.2. Let μM,D, (M, D) be defined by (1.1) and (1.2), respectively. Then μM,D is a spectral measure 
if and only if |β| = 3p and C = κβ for some p ∈ N with pκ ∈ Z.
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