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1. Introduction and main results

Let Ω ⊂ Rn be open and convex and consider a convex function ϕ ∈ C1(Ω). For x ∈ Ω and t > 0 the 
Monge-Ampère section Sϕ(x, t) associated to ϕ is defined as the open convex set

Sϕ(x, t) := {y ∈ Ω : δϕ(x, y) < t}

where

δϕ(x, y) := ϕ(y) − ϕ(x) − 〈∇ϕ(x), y − x〉 ∀x, y ∈ Ω. (1.1)

In all what follows the Monge-Ampère sections of a convex function ϕ will be assumed to be bounded sets, 
which amounts to saying that the graph of ϕ does not contain half lines.

The Monge-Ampère measure associated to ϕ, denoted as μϕ, is the locally-finite, Borel measure defined 
as

μϕ(F ) := |∇ϕ(F )| F ⊂ Ω, F Borel set, (1.2)
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where |E| denotes the Lebesgue measure of E ⊂ Rn.
Through its Monge-Ampère sections and measure the function ϕ models the geometry and measure theory 

in the analysis of regularity properties for solutions to the linearized Monge-Ampère equation Lϕ(v) = 0
where

Lϕ(v) := trace(AϕD
2v), (1.3)

with Aϕ(x) := detD2ϕ(x)D2ϕ(x)−1, as well as other singular/degenerate elliptic PDEs, see for instance 
[3,4,11–13,16,18,19,23].

If ϕ is three times differentiable at some x ∈ Ω with D2ϕ(x) > 0, the fact that the columns of Aϕ are 
divergence free implies that

trace(Aϕ(x)D2v(x)) = div(Aϕ∇v)(x), (1.4)

that is, Lϕ is a singular/degenerate elliptic operator that takes both the nondivergence and divergence forms. 
The divergence form of Lϕ has naturally led to the study of various properties for the Monge-Ampère sections 
and measure that guarantee the existence of Sobolev, Poincaré, or other first-order inequalities related to 
Aϕ. In turn, such first-order inequalities have been crucial to the regularity theory for solutions to the 
linearized Monge-Ampère equation in [16,19] as well as to its applications to semi-geostrophic equations 
and optimal transport in [13,14] and capacitary estimates [17].

Such first-order inequalities are modeled by the function ϕ through its associated Monge-Ampère gradient 
∇ϕ defined on a function u differentiable at a point x ∈ Ω with D2ϕ(x) > 0 as

∇ϕu(x) := D2ϕ(x)− 1
2∇u(x).

Always in the context of the linearized Monge-Ampère equation, the first authors to explore and develop 
a first-order calculus associated to ϕ (that is, the existence of Sobolev and/or Poincaré inequalities framed 
by the sections Sϕ(x, t), the measure μϕ, and the first-order operator ∇ϕ) were G. Tian and J.-X. Wang in 
[23] who proved

Theorem A (Theorem 3.1 in [23]). Fix n > 2 and ϕ ∈ C2(Ω) with D2ϕ > 0 in Ω such that

(a) there exist C0 > 0 and θ0 > 0 with

μϕ(E)
μϕ(S) ≤ C0

(
|E|
|S|

)θ0

(1.5)

for every section S := Sϕ(x, t) ⊂⊂ Ω and measurable E ⊂ S;
(b) there exist θ ≥ 0, σ > 0, C1, C2 > 0 such that

C1|S|1+θ ≤ μϕ(S) ≤ C2|S|
1

n−1+σ (1.6)

for every section S := Sϕ(x, t) ⊂⊂ Ω,

then the following Sobolev inequality holds true for every u ∈ C∞
c (Ω)

⎛
⎝ˆ

|u(x)|p dμϕ(x)

⎞
⎠

1
p

≤ C

⎛
⎝ˆ

|∇ϕu(x)|2 dμϕ(x)

⎞
⎠

1
2

(1.7)

Ω Ω
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where dμϕ(x) = detD2ϕ(x) dx, p := 2n(1+θ)
(n−1)(1+θ)−1 > 2, and the constant C > 0 depends on the constant 

from the conditions (1.5) and (1.6) as well as on the diameter of Ω.

In particular, if detD2ϕ ∼ 1, in the sense that there exist constants 0 < Λ1 ≤ Λ2 such that

Λ1 ≤ detD2ϕ(x) ≤ Λ2 ∀x ∈ Ω, (1.8)

it follows (see [23, Example 3]) that the Sobolev inequality (1.7) holds true with p = 2n/(n − 2), thus 
recovering (when n > 2) the classical Sobolev inequality in the Euclidean setting from the choice ϕ(x) =
1
2 |x|2.

The proof of Theorem A relies on a crucial lemma ([23, Lemma 2.1]) establishing a rate of decay for the 
distribution function of the Green’s function associated to the linearized Monge-Ampère operator (1.3) in 
Ω as a sufficient condition for the Sobolev inequality (1.7).

Notice how the condition (1.5) from Theorem A resembles the classical Coifman-Fefferman characteriza-
tion Muckenhoupt’s A∞ weights, with the role of the Euclidean balls now being played by the Monge-Ampère 
sections. It follows from [4, Sections 0 and 5] and [9, Section 3] that the condition (1.5) implies (and it is 
in general strictly stronger than) the so-called DC-doubling condition defined as follows: A Borel measure 
μ on Ω is said to satisfy the DC-doubling condition if there exists a constant CD ≥ 1 such that for every 
section S := Sϕ(x, t) ⊂⊂ Ω we have

μ(S) ≤ CDμ
( 1

2 � S
)
, (1.9)

where the open and convex subset 1
2 � S denotes the 1

2 -contraction of S with respect to its center of mass. 
We will denote (1.9) as μ ∈ DC(Ω, δϕ). Also, for a Borel measure μ on Ω a set E ⊂ Ω with 0 < μ(E) < ∞
and a μ-measurable function u defined on E, we write

 

E

u(x) dμ(x) := 1
μ(E)

ˆ

E

u(x) dμ(x).

Now, if instead of (1.5) and (1.6), the Monge-Ampère measure is only assumed to satisfy μϕ ∈ DC(Ω, δϕ), 
the first author of this article proved

Theorem B (Theorem 1 in [15]). Fix n > 1 and ϕ ∈ C2(Ω) with D2ϕ > 0 in Ω and μϕ ∈ DC(Ω, δϕ). 
Then the following Sobolev inequality holds true for every section S := Sϕ(x0, t) with S ⊂⊂ Ω and every 
u ∈ C1

c (S)

⎛
⎝ 

S

|u(x)| 2n
n−1 dμϕ(x)

⎞
⎠

n−1
2n

≤ Ct
1
2

⎛
⎝ 

S

|∇ϕu(x)|2 dμϕ(x)

⎞
⎠

1
2

, (1.10)

where the constant C > 0 depends only on the doubling constant from the condition μϕ ∈ DC(Ω, δϕ) and 
dimension n.

The Sobolev inequality (1.10) has played a key role in the implementation of Moser’s iterations in [19]
towards Harnack’s inequality for nonnegative solutions of certain singular/degenerate elliptic PDEs.

More recently, when proving Hölder regularity of solutions to the 2D dual semigeostrophic equation by 
means of the linearized Monge-Ampère equation under the assumption detD2ϕ ∼ 1 in the sense of (1.8)
(which, in particular, renders dμϕ ∼ dx), N.Q. Le proved



4 D. Maldonado, M. Ranabhat / J. Math. Anal. Appl. 487 (2020) 123969
Theorem C (Proposition 2.6 in [13]). Fix n = 2 and ϕ ∈ C2(Ω) with detD2ϕ ∼ 1 in the sense of (1.8). 
Then, given q ∈ (0, ∞) there exists a constant C > 0, depending only on q and Λ1, Λ2 from (1.8), such 
that the following Sobolev inequality holds true for every section S := Sϕ(x0, t) with S ⊂⊂ Ω and every 
u ∈ C1

c (S)

⎛
⎝ 

S

|u(x)|q dx

⎞
⎠

1
q

≤ Ct
1
2

⎛
⎝ 

S

|∇ϕu(x)|2 dx

⎞
⎠

1
2

. (1.11)

The proofs of both Theorems B and C rely variations of the aforementioned crucial lemma ([23, Lemma 
2.1]).

Regarding Poincaré inequalities, a combination of the Poincaré inequality with respect to Lebesgue 
measure in [16, Theorem 1.3] and the change of variables from [15, Section 4] yields the following weak 
(1,2)-Poincaré inequality, which has also been essential to the Harnack inequalities in [19].

Theorem D ([15,16]). Fix n ≥ 2 and ϕ ∈ C2(Ω) with D2ϕ > 0 in Ω and μϕ ∈ DC(Ω, δϕ). Then, there exist 
constants C1, C2 > 1, depending only on the doubling constant from the condition μϕ ∈ DC(Ω, δϕ) and di-
mension n, such that for every section S := Sϕ(x0, t) with Sϕ(x0, C1t) ⊂⊂ Ω and every u ∈ C1(Sϕ(x0, C1t))
the following Poincaré inequality holds true

 

S

|u(x) − u
μϕ

S | dμϕ(x) ≤ Ct
1
2

⎛
⎜⎝

 

Sϕ(x0,C1t)

|∇ϕu(x)|2 dμϕ(x)

⎞
⎟⎠

1
2

, (1.12)

where uμϕ

S :=
ffl
S
u dμϕ.

The purpose of this article is to improve upon all the mentioned Sobolev and Poincaré inequality in two 
ways. Firstly, by increasing the exponents on the left-hand side of the inequalities and by decreasing the 
ones on the right-hand side, under various assumptions on the Monge-Ampère measure μ. Secondly, by 
developing approximation arguments to have the condition ϕ ∈ C2(Ω) with D2ϕ > 0 in Ω replaced with 
ϕ ∈ W 2,n

loc (Ω, dx) with D2ϕ > 0 a.e. in Ω.
We remark that by [20, Theorem 1] the condition ϕ ∈ W 2,n

loc (Ω, dx) with ϕ convex implies that ϕ ∈ C1(Ω)
and that dμϕ(x) = detD2ϕ(x) dx, that is, detD2ϕ ∈ L1

loc(Ω, dx) and

μϕ(E) =
ˆ

E

detD2ϕ(x) dx ∀E ⊂ Ω, E Borel. (1.13)

Before stating our main results, let us introduce the four possible conditions on the Monge-Ampère weight 
detD2ϕ that will be involved in their statements.

Let w ≥ 0 be a weight in L1
loc(Ω, dx) and, for a Borel set E ⊂ Ω, define μw(E) = w(E) :=

´
E
w(x) dx.

(i) We write w ∈ DC(Ω, δϕ) if μw ∈ DC(Ω, δϕ), as defined in (1.9). If μϕ satisfies (1.13), we will write 
interchangeably μϕ ∈ DC(Ω, δϕ) and detD2ϕ ∈ DC(Ω, δϕ). In such case, all the constant depending 
on the doubling constant from μϕ ∈ DC(Ω, δϕ) and dimension n will be called geometric constants.

(ii) We write w ∈ A∞(Ω, δϕ) if there exist constants C1, C2 > 0 and θ > 0 such that

w(E) ≤ C1

(
|E|

)θ

(1.14)

w(S) |S|
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for every section S := Sϕ(x, t) with Sϕ(x, C2t) ⊂⊂ Ω and every measurable E ⊂ S. As mentioned 
before, the condition w ∈ A∞(Ω, δϕ) implies w ∈ DC(Ω, δϕ), quantitatively (see [4, p. 426]). When 
detD2ϕ ∈ A∞(Ω, δϕ) all the constants depending only on the constants C1, C2 and θ from (1.14) and 
dimension n will be called structural constants.

(iii) We write w ∈ A1(Ω, δϕ) if there exist constants Θ1, H1 ≥ 1 such that

 

Sϕ(x0,t)

w(x) dx ≤ H1 ess inf
Sϕ(x0,t)

w, (1.15)

for every section Sϕ(x0, t) with Sϕ(x0, Θ1t) ⊂⊂ Ω.
(iv) We write w ∈ RH∞(Ω, δϕ) if there exist constants Θ∞, H∞ ≥ 1 such that

ess sup
Sϕ(x0,t)

w ≤ H∞

 

Sϕ(x0,t)

w(x) dx, (1.16)

for every section Sϕ(x0, t) with Sϕ(x0, Θ∞t) ⊂⊂ Ω.

It follows from [4, Section 5] that if w ∈ A1(Ω, δϕ) or w ∈ RH∞(Ω, δϕ), then w ∈ A∞(Ω, δϕ), quantita-
tively. Consequently, if detD2ϕ ∈ A1(Ω, δϕ) or detD2ϕ ∈ RH∞(Ω, δϕ) the constants depending only the 
corresponding pairs (Θ1, H1) or (Θ∞, H∞) and dimension n will also be called structural constants.

Finally, given an open set U ⊂ Rn we denote by Lip(U) the class of Lipschitz-continuous functions in U
with respect to the Euclidean distance.

We are now in position to state our main results regarding Poincaré inequalities in the Monge-Ampère 
quasi-metric structure (Ω, δϕ) with respect to the Monge-Ampère measure μϕ and to the Lebesgue measure 
dx, always based on the Monge-Ampère gradient ∇ϕ.

1.1. Poincaré inequalities when detD2ϕ ∈ DC(Ω, δϕ)

Theorem 1.1. Fix n ≥ 2 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function with D2ϕ > 0 a.e. in Ω and 

μϕ ∈ DC(Ω, δϕ). Then, there exist geometric constants K1, K2 > 1 and ε1 > 0 such that for every section 
S := Sϕ(x0, t) with Sϕ(x0, K1t) ⊂⊂ Ω and every u ∈ Lip(K1S) we have

⎛
⎝ 

S

|u(x) − u
μϕ

S |q1 dμϕ(x)

⎞
⎠

1
q1

≤ K2 t
1
2

⎛
⎝  

K1S

|∇ϕu(x)|2 dμϕ(x)

⎞
⎠

1
2

, (1.17)

where q1 := 2n
n−1 + ε1 and uμϕ

S :=
ffl
S
u(x) dμϕ(x).

Remark 1. The strict convexity of ϕ is not required in Theorem 1.1. However, keep in mind the underlying 
hypothesis that all the Monge-Ampère sections involved are bounded.

Remark 2. Theorem 1.1 improves upon Theorem D by weakening the hypotheses and by allowing for an 
exponent q > 2 on the left-hand side of (1.12).

Theorem 1.2. Fix n ≥ 2 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function such that D2ϕ > 0 a.e. in 

Ω, ‖(D2ϕ)−1‖ ∈ Ln
loc(Ω, dμϕ), and μϕ ∈ DC(Ω, δϕ). Then, there exist geometric constants K3, K4 > 1 and 

ε1 > 0 such that for every section S := Sϕ(x0, t) with Sϕ(x0, K3t) ⊂⊂ Ω and every h ∈ Lip(K3S) we have
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⎛
⎝ 

S

|h(x) − hS |q1 dx

⎞
⎠

1
q1

≤ K4 t
1
2

⎛
⎝  

K3S

|∇ϕh(x)|2 dx

⎞
⎠

1
2

, (1.18)

where q1 := 2n
n−1 + ε1 and hS :=

ffl
S
h(x) dx.

Remark 3. The hypothesis ‖(D2ϕ)−1‖ ∈ Ln
loc(Ω, dμϕ) will only be used to prove local Ln-integrability of 

D2ψ, where ψ is the convex conjugate of ϕ, and it will play no role in the behavior of the constants.

1.2. Poincaré inequalities when detD2ϕ ∈ A∞(Ω, δϕ)

If the assumption detD2ϕ ∈ DC(Ω, δϕ) is replaced with the (strictly) stronger detD2ϕ ∈ A∞(Ω, δϕ), 
then the exponent on the right-hand sides of the Poincaré inequalities (1.17) and (1.18) can be improved 
from 2 to 2 − ε for some structural 0 < ε < 1. More precisely, we have

Theorem 1.3. Fix n ≥ 2 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function with D2ϕ > 0 a.e. in Ω and 

detD2ϕ ∈ A∞(Ω, δϕ). Then, there exist structural constants K5, K6 > 0 and ε0 > 0 such that for every 
section S := Sϕ(x0, t) with Sϕ(x0, K5t) ⊂⊂ Ω and every u ∈ Lip(K5S) we have

⎛
⎝ 

S

|u(x) − u
μϕ

S |q0 dμϕ(x)

⎞
⎠

1
q0

≤ K6 t
1
2

⎛
⎝  

K5S

|∇ϕu(x)|2−ε0 dμϕ(x) dx

⎞
⎠

1
2−ε0

, (1.19)

with q0 := 2(n−ε0)(2−ε0)
2(n−ε0)−(2−ε0) > 2.

Theorem 1.4. Fix n ≥ 2 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function such that D2ϕ > 0 a.e. in 

Ω, ‖(D2ϕ)−1‖ ∈ Ln
loc(Ω, dμϕ) and detD2ϕ ∈ A∞(Ω, δϕ). Then, there exist structural constants K7, K8 ≥ 1

and 0 < ε0 < 1 such that for every section S := Sϕ(x0, t) with Sϕ(x0, K7t) ⊂⊂ Ω, and every u ∈ Lip(K7S)
we have

⎛
⎝ 

S

|u(x) − uS |q0 dx

⎞
⎠

1
q0

≤ K8 t
1
2

⎛
⎝  

K7S

|∇ϕu(x)|2−ε0 dx

⎞
⎠

1
2−ε0

, (1.20)

with q0 := 2(n−ε0)(2−ε0)
2(n−ε0)−(2−ε0) > 2.

1.3. Poincaré inequalities when detD2ϕ ∈ A1(Ω, δϕ)

Theorem 1.5. Fix n ≥ 3 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function with detD2ϕ ∈ A1(Ω, δϕ). 

Then, there exist structural constants K9, K10 ≥ 1 such that for every section S := Sϕ(x0, t) with 
Sϕ(x0, K9t) ⊂⊂ Ω and every u ∈ Lip(K9S) we have

⎛
⎝ 

S

|u(x) − u
μϕ

S | 2n
n−2 dμϕ(x)

⎞
⎠

n−2
2n

≤ K10 t
1
2

⎛
⎝  

K9S

|∇ϕu(x)|2 dμϕ(x)

⎞
⎠

1
2

. (1.21)

In addition, there exists a structural constant ε0 > 0 such that for every 0 < ε ≤ ε0 there is a constant 
Kε > 0, depending only on ε and structural constants, such that
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⎛
⎝ 

S

|u(x) − u
μϕ

S |qε dμϕ(x)

⎞
⎠

1
qε

≤ Kε t
1
2

⎛
⎝  

K9S

|∇ϕu(x)|2−ε dμϕ(x)

⎞
⎠

1
2−ε

, (1.22)

with qε := n(2−ε)
n−(2−ε) > 2.

Theorem 1.6. Assume n = 2 and let ϕ ∈ W 2,2
loc (Ω) be a strictly convex function with detD2ϕ ∈ A1(Ω, δϕ). 

Then, there exist structural constants K9 ≥ 1 and 0 < ε0 < 1, such that for every section S := Sϕ(x0, t)
with Sϕ(x0, K9t) ⊂⊂ Ω, every u ∈ Lip(K9S), and every 0 < ε ≤ ε0 we have

⎛
⎝ 

S

|u(x) − u
μϕ

S |qε dμϕ(x)

⎞
⎠

1
qε

≤ Kε t
1
2

⎛
⎝  

K9S

|∇ϕu(x)|2−ε dμϕ(x)

⎞
⎠

1
2−ε

, (1.23)

with qε := 2(2 − ε)/ε and Kε > 0 depends only on ε and structural constants.

1.4. Poincaré inequalities when detD2ϕ ∈ RH∞(Ω, δϕ)

Theorem 1.7. Fix n ≥ 3 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function with detD2ϕ ∈ RH∞(Ω, δϕ)

and ‖(D2ϕ)−1‖ ∈ L1
loc(Ω, dx). Then, there exist structural constants K11, K12 ≥ 1 such that for every 

section S := Sϕ(x0, t) with Sϕ(x0, K11t) ⊂⊂ Ω and every u ∈ Lip(K11S) we have

⎛
⎝ 

S

|u(x) − uS |
2n

n−2 dx

⎞
⎠

n−2
2n

≤ K12 t
1
2

⎛
⎝  

K11S

|∇ϕu(x)|2 dx

⎞
⎠

1
2

. (1.24)

In addition, there exists a structural constant ε0 > 0 such that for every 0 < ε ≤ ε0 there is a constant 
Kε > 0, depending only on ε and structural constants, such that

⎛
⎝ 

S

|u(x) − uS |qε dx

⎞
⎠

1
qε

≤ Kε t
1
2

⎛
⎝  

K9S

|∇ϕu(x)|2−ε dx

⎞
⎠

1
2−ε

, (1.25)

with qε := n(2−ε)
n−(2−ε) > 2.

Theorem 1.8. Assume n = 2 and let ϕ ∈ W 2,2
loc (Ω) be a strictly convex function with detD2ϕ ∈ RH∞(Ω, δϕ)

and ‖(D2ϕ)−1‖ ∈ L1
loc(Ω, dx). Then, there exist structural constants K11 ≥ 1 and 0 < ε0 < 1, such that for 

every section S := Sϕ(x0, t) with Sϕ(x0, K11t) ⊂⊂ Ω, every u ∈ Lip(K11S), and every 0 < ε ≤ ε0 we have

⎛
⎝ 

S

|u(x) − uS |qε dx

⎞
⎠

1
qε

≤ Kε t
1
2

⎛
⎝  

K11S

|∇ϕu(x)|2−ε dx

⎞
⎠

1
2−ε

, (1.26)

with qε := 2(2 − ε)/ε and Kε > 0 depends only on ε and structural constants.
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2. Preliminaries

2.1. Doubling measures

Given ϕ ∈ C1(Ω), a section S := Sϕ(x, t) and λ > 0 we will write λS to indicate the section Sϕ(x, λt). 
In particular, the contraction 1

2S has a different meaning than the contraction 1
2 � S defined in (1.9). Now, 

given a Borel measure μ on Ω we say that μ is doubling (in the Monge-Ampère quasi-metric structure 
(Ω, δϕ)) if there exists a constant Cμ ≥ 1 such that

μ(S) ≤ Cμμ
( 1

2S
)

(2.1)

for every section S := Sϕ(x, t) with Sϕ(x, t) ⊂⊂ Ω.
By [4, Lemma 5.2] the Lebesgue measure satisfies the doubling condition (2.1) with Cμ = 2n. By [11, 

Corollary 3.3.2], every Borel measure satisfying the DC-doubling condition (1.9) will also satisfy the doubling 
condition (2.1) with a geometric constant Cμ ≥ 1.

2.2. The engulfing property

By [11, Theorem 3.3.7] and [7, Theorem 8], the condition μϕ ∈ DC(Ω, δϕ) is quantitatively characterized 
by the so-called engulfing property of the sections of ϕ; meaning the existence of a geometric constant Θ > 1
such that whenever x0 ∈ Ω and τ > 0 satisfy Sϕ(x0, Θ2τ) ⊂⊂ Ω, then for every x ∈ Sϕ(x0, τ) following 
inclusions holds true:

Sϕ(x0, τ) ⊂ Sϕ(x,Θτ) ⊂ Sϕ(x0,Θ2τ). (2.2)

Let us briefly indicate how the inclusions (2.2) amount to a quasi-symmetry and a quasi-triangle in-
equality for δϕ. Indeed, given x, y ∈ Ω such that Sϕ(x, δϕ(x, y)) ⊂⊂ Ω and Sϕ(y, Θδϕ(x, y)) ⊂⊂ Ω, for 
ε > 0 sufficiently small we have y ∈ Sϕ(x, δϕ(x, y) + ε) ⊂⊂ Ω and the engulfing property then implies 
Sϕ(x, δϕ(x, y) + ε) ⊂ Sϕ(y, Θ(δϕ(x, y) + ε)); in particular, δϕ(y, x) < Θ(δϕ(x, y) + ε) so that by letting 
ε → 0, we get the inequality

δϕ(y, x) ≤ Θδϕ(x, y), (2.3)

which represents the Θ-quasi symmetry of δϕ. On the other hand, given x, y, z ∈ Ω such that

Sϕ(z, δ(z, y)), Sϕ(z, δ(y, z)), Sϕ(x,Θδϕ(z, x)) ⊂⊂ Ω, (2.4)

assume first that δϕ(z, x) ≤ δϕ(z, y) to write, for ε > 0 small enough,

x ∈ Sϕ(z, δϕ(z, x) + ε) ⊂ Sϕ(z, δϕ(z, y) + ε) ⊂⊂ Ω,

so that the engulfing property applied to x and Sϕ(z, δϕ(z, y) + ε) yields y ∈ Sϕ(z, δϕ(z, y) + ε) ⊂
Sϕ(x, Θ(δϕ(z, x) + ε)); in particular, δϕ(x, y) < Θ(δϕ(z, x) + ε) and by letting ε → ∞, we get

δϕ(x, y) ≤ Θδϕ(z, x) (2.5)

Next, if δϕ(z, x) > δϕ(z, y), we reverse the roles of x and y in the argument above, which requires the 
inclusions (2.4) with y replaced with x, to obtain

δϕ(y, x) ≤ Θδϕ(z, y). (2.6)
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If, in addition, it holds that Sϕ(y, δϕ(y, x)), Sϕ(x, Θδϕ(y, x)) ⊂⊂ Ω, the inequalities (2.3) (with x and y
interchanged) and (2.6) give

δϕ(x, y) ≤ Θ2δϕ(z, y). (2.7)

Since (2.5) or (2.7) will hold true, it follows that

δϕ(x, y) ≤ Θ(Θδϕ(z, y) + δϕ(z, x)) ≤ Θ2(δϕ(z, y) + δϕ(x, z)), (2.8)

which effectively represents a Θ2-quasi triangle inequality for δϕ.

2.3. Doubling implies reverse doubling in (Ω, δϕ)

Next, we recall the following result from [21] about reverse-doubling properties of doubling measures in 
the quasi-metric Monge-Ampère structure.

From now on Θ > 1 will always indicate the geometric constant from the engulfing property (2.2).

Lemma 2.1 (See [21], Section 2). Fix ϕ ∈ C1(Ω) with μϕ ∈ DC(Ω, δϕ) and let μ be a Borel measure on Ω
which is doubling with respect to the sections of ϕ. Then, for every α ∈ (0, 1) there exists ξ ∈ (0, 1), depending 
only on α, the doubling constant of μ, and geometric constants, such that for every section Sϕ(x0, t) with 
Sϕ(x0, Θ2t) ⊂⊂ Ω we have

μ(Sϕ(x0, αt)) ≤ ξμ(Sϕ(x0, t)). (2.9)

Using Lemma 2.1, it was proved in [21, Section 2], that if μϕ ∈ DC(Ω, δϕ) there exist geometric constants 
CD > 0 and ε ∈ (0, 1) such that

μϕ(Sϕ(x0, t))
μϕ(Sϕ(x0, t′))

≤ CD

(
t

t′

)n−ε

(2.10)

for every section Sϕ(x0, t) with Sϕ(x0, t) ⊂⊂ Ω and every t′ ∈ (0, t). Also, Lemma 2.1 will be useful in the 
proof of Theorem 3.2 and in the proof that every (q, p)-Poincaré inequality implies a corresponding Sobolev 
inequality in Section 9.

2.4. The convex conjugate

Given a strictly convex ϕ ∈ C1(Ω) let ψ ∈ C1(∇ϕ(Ω)) denote its convex conjugate, which satisfies

ψ(∇ϕ(x)) = 〈∇ϕ(x), x〉 − ϕ(x) ∀x ∈ Ω,

∇ϕ(∇ψ(y)) = y ∀y ∈ ∇ϕ(Ω), (2.11)

∇ψ(∇ϕ(x)) = x ∀x ∈ Ω, (2.12)

since the strict convexity of ϕ means that ∇ϕ is one-to-one. Also, by [8, Theorem 12] if μϕ ∈ DC(Ω, δϕ), then 
μψ ∈ DC(∇ϕ(Ω), δψ) with a constant depending only on the constant from μϕ ∈ DC(Ω, δϕ); in addition, 
there exists a geometric constant K∗ > 1 such that

Sϕ(z, τ/K∗) ⊂ ∇ψ(Sψ(∇ϕ(z), τ)) ⊂ Sϕ(z,K∗τ), (2.13)

for every section Sϕ(z, τ) with Sϕ(z, K∗τ) ⊂⊂ Ω.
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Let us now outline the proof of the fact, to be used in Section 6.1, that μϕ ∈ A∞(Ω, δϕ) implies that 
μψ ∈ A∞(∇ϕ(Ω), δψ). That is, the A∞-property is preserved, quantitatively, under conjugation. Fix ϕ ∈
C1(Ω) such that μϕ ∈ A∞(Ω, δϕ); in particular, μϕ ∈ DC(Ω, δϕ) and the sections of ϕ satisfy the engulfing 
property. Now, since a section Sϕ(x, t) coincides with the set {y ∈ Ω : δϕ(x, y) < t}, the quasi-symmetry and 
quasi-triangle inequality for δϕ, allows to think of the interior sections (meaning sections with Sϕ(x, t) ⊂⊂ Ω) 
as balls in a space of homogeneous type. Consequently, the usual characterizations of the Muckenhoupt class 
A∞ hold true, see for instance [4, Section 5] and [22, Corollary 14]. Thus, the fact that μψ ∈ A∞(∇ϕ(Ω), δψ)
will be a consequence, for instance, of the existence of structural constants α0, β0 ∈ (0, 1) and M0 ≥ 1 such 
that for every section Sψ(y, t) with Sψ(y, M0t) ⊂⊂ ∇ϕ(Ω) and every measurable set F ⊂ Sψ(y, t) the 
implication

μψ(F ) ≤ α0μψ(Sψ(y, t)) =⇒ |F | ≤ β0|Sψ(y, t)| (2.14)

holds true. Let us then assume that μϕ satisfies (1.14) with constants C1, C2 ≥ 1 and θ ∈ (0, 1) and fix a 
section Sψ := Sψ(y, t) and a measurable set F ⊂ Sψ. From the second inclusion in (2.13), setting x := ψ(y)
we get

∇ψ(F ) ⊂ ∇ψ(Sψ) ⊂ Sϕ(x,K∗t). (2.15)

Now, setting E := ∇ψ(F ), the fact that ∇ϕ and ∇ψ are inverses to each other gives

μϕ(E) = |∇ϕ(E)| = |F |

and the first inclusion in (2.13) and the doubling property (2.10) for μϕ imply

μϕ(Sϕ(x,K∗t)) ≤ CD(K∗)2(n−ε)μϕ(Sϕ(x, t/K∗))

≤ CD(K∗)2(n−ε)μϕ(∇ψ(Sψ)) = CD(K∗)2(n−ε)|Sψ|.

On the other hand, |E| = |∇ψ(F )| = μψ(F ) and, from (2.15), μψ(Sψ) = |∇ψ(Sψ)| ≤ |Sϕ(x, K∗t)|. Hence, 
by using (1.14) with E := ∇ψ(F ) and Sϕ(x, K∗t) (and this requires Sϕ(x, K∗C2t) ⊂⊂ Ω) it follows that

|F |
CD(K∗)2(n−ε)|Sψ|

≤ μϕ(E)
μϕ(Sϕ(x,K∗t))

≤ C1

(
|E|

|Sϕ(x,K∗t)|

)θ

≤ C1

(
μψ(F )
μψ(Sψ)

)θ

.

Consequently, by taking α0 ∈ (0, 1) so that β0 := CD(K∗)2(n−ε)C1α
θ
0 ∈ (0, 1), the implication (2.14) holds 

true with structural constants α0, β0 ∈ (0, 1).

3. Self-improving properties for Poincaré inequalities in the Monge-Ampère quasi-metric structure

Throughout this section μ will denote a Borel measure on Ω absolutely continuous with respect to 
Lebesgue measure (so that Lebesgue-a.e. implies μ-a.e.) which will later be chosen as dx or as detD2ϕ dx. 
Also, we assume that the convex function ϕ ∈ C1(Ω) under consideration satisfies D2ϕ > 0 a.e. in Ω and 
‖(D2ϕ)−1‖ ∈ L1

loc(Ω, dμ). This latter assumption will guarantee the finiteness of some integrals, but will 
not play into the actual value of the constants involved. Also, Θ > 1 will always indicate the geometric 
constant from the engulfing property (2.2).



D. Maldonado, M. Ranabhat / J. Math. Anal. Appl. 487 (2020) 123969 11
Lemma 3.1. Let ϕ ∈ C1(Ω) be a convex function with D2ϕ > 0 a.e. in Ω and let μ be a Borel measure on 
Ω absolutely continuous with respect to Lebesgue measure. Let S, S0 be sections of ϕ with S ⊂ S0 ⊂⊂ Ω and 
fix 0 < p ≤ q < ∞ with q > 1. If, for some constant C0 > 0, the inequality

τ qμ({x ∈ S : |u(x) − uμ
S | ≥ τ}) ≤ C0μ(S)

⎛
⎝ 

S0

|∇ϕu|p dμ

⎞
⎠

q
p

(3.1)

holds true for every τ > 0 and u ∈ Lip(S0), then

⎛
⎝ 

S

|u− uμ
S |q dμ

⎞
⎠

1/q

≤ C1

⎛
⎝ 

S0

|∇ϕu|p dμ

⎞
⎠

1
p

∀u ∈ Lip(S0), (3.2)

where C1 := 16 
(
1 +

(
q

q−1

)q) 1
q

C
1
q

0 .

Proof. Given u ∈ Lip(S0), without loss of generality we may assume uμ
S = 0 (otherwise consider u − uμ

S). 
Let k0 ∈ Z such that

2k0−1 ≤
 

S

u+ dμ < 2k0 (3.3)

and for k > k0 set

uk :=

⎧⎪⎨
⎪⎩

0, u ≤ 2k,
2k, u ≥ 2k+1,

u− 2k, 2k < u < 2k+1,

(3.4)

so that ∇uk = ∇u χ{2k<u<2k+1} (Lebesgue) a.e. in S0 (see, for instance [10, Theorem 7.8]) and consequently 
∇ϕuk = ∇ϕu χ{2k<u<2k+1} (Lebesgue) a.e. in S0. In particular, uk ∈ Lip(S0) and, in view of (3.3),

(uk)μS :=
 

S

uk dμ ≤
 

S

u+ dμ < 2k0 ≤ 2k−1 ∀k > k0. (3.5)

From the definition of uk and the estimate (3.5) we get

{x ∈ S : u(x) ≥ 2k+1} ⊂ {x ∈ S : uk(x) = 2k}
= {x ∈ S : uk(x) − (uk)μS = 2k − (uk)μS ≥ 2k−1},

which, along with (3.1) applied to uk and τ = 2k−1, yields

I :=
ˆ

{x∈S:u(x)≥2k0+2}

uq
+ dμ ≤

∞∑
k=k0+1

2(k+2)qμ({x ∈ S : 2k+1 ≤ u(x) < 2k+2})

≤ 23q
∞∑

k=k0+1

2(k−1)qμ({x ∈ S : |uk(x) − (uk)μS | ≥ 2k−1})

≤ 23qC0μ(S)
∞∑

k=k0+1

⎛
⎝  

S0

|∇ϕuk|p dμ

⎞
⎠

q
p

≤ 23qC0μ(S)

⎛
⎝ 

S0

|∇ϕu|p dμ

⎞
⎠

q
p

,
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where the last inequality uses the facts that ∇ϕuk = ∇ϕu χ{2k<u<2k+1} (Lebesgue) a.e. in S0 for every 
k > k0 and that q ≥ p. On the other hand, given ζ > 0, the inequality (3.1) applied to u gives

 

S

u+ dμ ≤ ζ + 1
μ(S)

∞̂

ζ

μ({x ∈ S : |u(x) − uμ
S | ≥ τ}) dτ

≤ ζ + C0

⎛
⎝ 

S0

|∇ϕu|p dμ

⎞
⎠

q
p ∞̂

ζ

dτ

τ q
= ζ

⎛
⎜⎝1 + C0

⎛
⎝  

S0

|∇ϕu|p dμ

⎞
⎠

q
p

ζ−q

⎞
⎟⎠ .

Therefore, by choosing ζ := C
1/q
0

(ffl
S0

|∇ϕu|p dμ
) 1

p (see Remark 4) we get

 

S

u+ dμ ≤ qC
1/q
0

q − 1

⎛
⎝  

S0

|∇ϕu|p dμ

⎞
⎠

1
p

. (3.6)

Notice that (3.6) holds true also in the case ζ = 0. Now, the definition of k0 ∈ Z from (3.3) and (3.6) imply

II :=
ˆ

{x∈S:u(x)<2k0+2}

uq
+ dμ < 2(k0+2)qμ(S) ≤ 23qμ(S)

⎛
⎝ 

S

u+ dμ

⎞
⎠

q

≤ 23qC0

(
q

q − 1

)q

μ(S)

⎛
⎝ 

S0

|∇ϕu|p dμ

⎞
⎠

q
p

.

Finally,

ˆ

S

uq
+dμ = I + II ≤ Cq

1μ(S)

⎛
⎝ 

S0

|∇ϕu|p dμ

⎞
⎠

q
p

,

with Cq
1 := 23qC0

(
1 +

(
q

q−1

)q)
. Reasoning analogously with u− finishes the proof. �

Remark 4. When 0 < p ≤ 2 (which is the case we will be using), the condition ‖(D2ϕ)−1‖ ∈ L1
loc(Ω, dμ)

guarantees that ζ := C
1/q
0

(ffl
S0

|∇ϕu|p dμ
) 1

p in the proof of Lemma 3.1 is finite. Indeed,

⎛
⎝ 

S0

|∇ϕu|p dμ

⎞
⎠

1
p

≤

⎛
⎝  

S0

|∇ϕu|2 dμ

⎞
⎠

1
2

=

⎛
⎝  

S0

〈(D2ϕ)−1∇u,∇u〉 dμ

⎞
⎠

1
2

≤ ess sup
S0

|∇u|

⎛
⎝  

S0

||(D2ϕ)−1|| dμ

⎞
⎠

1
2

< ∞.

Theorem 3.2. Fix ϕ ∈ C1(Ω) with D2ϕ > 0 a.e. in Ω and μϕ ∈ DC(Ω, δϕ) and let μ be a Borel doubling 
measure on Ω absolutely continuous with respect to Lebesgue measure satisfying the following conditions:
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(a) for some CP > 0, λ ≥ 1, and p > 0, the Poincaré inequality

 

S

|u− uμ
S | dμ ≤ CP t

1
2

⎛
⎝  

λS

|∇ϕu|p dμ

⎞
⎠

1
p

, (3.7)

with uμ
S :=

ffl
S
u dμ, holds true for every section S := Sϕ(x0, t) with λS ⊂⊂ Ω and every u ∈ Lip(λS);

(b) for some CD > 0 and s > p/2 it satisfies the growth condition

μ(Sϕ(z, r)) ≤ CD

( r

r′

)s

μ(Sϕ(z, r′)), (3.8)

for all 0 < r′ ≤ r and all sections Sϕ(z, r) with Sϕ(z, r) ⊂⊂ Ω.

Then,

⎛
⎝ 

S

|u− uμ
S |

2sp
2s−p dμ

⎞
⎠

2s−p
2sp

≤ CP,st
1
2

⎛
⎝  

λΘ2S

|∇ϕu|p dμ

⎞
⎠

1
p

, (3.9)

for every section S := Sϕ(x0, t) with λΘ2S ⊂⊂ Ω and every u ∈ Lip(λΘ2S), where CP,s > 0 depends only 
on s, λ, Θ, CP , and CD.

Proof. Fix S := Sϕ(x0, t) such that Sϕ(x0, λΘ2t) ⊂⊂ Ω, x ∈ S, and u ∈ Lip(λΘ2S). For j ∈ N set 
tj := 2−jt and Sj := Sϕ(x, tj), for j = 0 set S0 := Sϕ(x0, Θ2t) and t0 := Θ2t. Notice that these choices 
imply Sj+1 ⊂ Sj for every j ∈ N0 and, for λ ≥ 1, λSj+1 ⊂ λSj for every j ∈ N0. To check this last inclusion 
when j = 0, we use that x ∈ S = Sϕ(x0, t) ⊂ Sϕ(x0, λt) and the second inclusion from (2.2) with “τ = λt” 
to obtain λS1 ⊂ λS0.

Since u is continuous, x ∈ S is a Lebesgue point of u, then

x ∈ Sϕ(x0, t) ⊂⊂ Sϕ(x0,Θ2t) ⊂ Sϕ(x0, λΘ2t) ⊂⊂ Ω,

we can use (3.8) with S = Sϕ(x0, t) and Sj = Sϕ(x, tj) to obtain

tj ≤ C
1/s
D Θt

(
μ(Sϕ(x, tj))
μ(Sϕ(x0, t))

)1/s

∀j ∈ N, (3.10)

with μ(S0) = μ(Sϕ(x0, Θ2t)) ≤ CDΘ2sμ(Sϕ(x0, t)) from (3.8). Hence,

tj ≤ C
2/s
D Θ3t

(
μ(Sj)
μ(S0)

)1/s

∀j ∈ N. (3.11)

Notice that (3.11) is obviously true for j = 0 because CD > 1 and Θ > 1. In addition, μ(Sj) ≤ CDμ(Sj+1)
for every j ∈ N and, when j = 0, the doubling condition (3.8) and the fact that Sϕ(x0, t) ⊂ Sϕ(x, Θt) give

μ(S0) ≤ CDΘ2sμ(Sϕ(x0, t)) ≤ CDΘ2sμ(Sϕ(x,Θt))

≤ 2sC2
DΘ3sμ(Sϕ(x, t/2)) = 2sC2

DΘ3sμ(S1). (3.12)

Consequently, by using the estimates above for μ(Sj)/μ(Sj+1) with j ∈ N0, the Poincaré inequality, and 
(3.11),
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|u(x) − uμ
S0
| = lim

j→∞
|uμ

Sj
− uμ

S0
| ≤

∞∑
j=0

 

Sj+1

|u− uμ
Sj
| dμ

≤ 2sC2
DΘ3s

∞∑
j=0

 

Sj

|u− uμ
Sj
| dμ ≤ 2sC2

DΘ3sCP

∞∑
j=0

t
1
2
j

⎛
⎜⎝
 

λSj

|∇ϕu|p dμ

⎞
⎟⎠

1
p

≤ C3t
1
2

μ(S0)
1
2s

∞∑
j=0

μ(Sj)
1
2s

⎛
⎜⎝
 

λSj

|∇ϕu|p dμ

⎞
⎟⎠

1
p

,

with C3 := 2sC3/2
D Θ3s+3/2CP . On the other hand, recalling that t0 := Θ2t,

|uμ
S − uμ

S0
| ≤

 

S

|u− uμ
S0
| dμ ≤ CDΘ2s

 

S0

|u− uμ
S0
| dμ

≤ CDΘ2sCP t
1
2

⎛
⎝  

λS0

|∇ϕu|p dμ

⎞
⎠

1
p

.

Therefore, for every x ∈ S we have

|u(x) − uμ
S | ≤

2C3t
1
2

μ(S0)
1
2s

∞∑
j=0

μ(Sj)
1
2s

⎛
⎜⎝
 

λSj

|∇ϕu|p dμ

⎞
⎟⎠

1
p

(3.13)

Next, introduce

M(x) := sup
S′

 

S′

|∇ϕu|p dμ > 0

where the supremum is taken over all the sections S′ ⊂ λΘ2S0 with x ∈ S′. From [3, Section 5] it follows that 
M(x) is finite for a.e. x ∈ S and then 1

M(x)
´
λS0

|∇ϕu|p dμ > 0 a.e. x ∈ S. Now, the fact that μ(λSj) → 0
as j → ∞ (which follows from Lemma 2.1) implies that, for a.e. x ∈ S, there is a smallest j ∈ N0 such that 
the inequality

μ(λSj) ≤
1

M(x)

ˆ

λS0

|∇ϕu|p dμ (3.14)

holds true. Let j0 ∈ N0 denote such integer (which depends on x). Notice that if j0 = 0 then equality occurs 
in (3.15). In particular, we have

μ(λSj0) ≤
1

M(x)

ˆ

λS0

|∇ϕu|p dμ < μ(λSj0−1) ≤ CDλsμ(Sj0−1),

with μ(Sj0−1) ≤ CDμ(Sj0) if j0 > 1 and, if j0 = 1, we use (3.12) to obtain μ(Sj0−1) = μ(S0) ≤ C2
DΘ3sμ(S1). 

Hence,
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μ(λSj0) ≤
1

M(x)

ˆ

λS0

|∇ϕu|p dμ ≤ C3
D(λΘ3)sμ(Sj0). (3.15)

Let us now split the sum from (3.13) into

∞∑
j=0

μ(Sj)
1
2s

⎛
⎜⎝
 

λSj

|∇ϕu|p dμ

⎞
⎟⎠

1
p

=
j0−1∑
j=0

· · · +
∞∑

j=j0

· · · =: Σ′ + Σ′′.

Let us first consider Σ′. Notice that we can assume j0 ∈ N (that is, j0 ≥ 1, because Σ′ = 0 if j0 = 0). Now, 
for j0 > 1, Lemma 2.1 with α = 1/2 implies

μ(Sj0) ≤ ξj0−jμ(Sj) ∀j < j0, (3.16)

where ξ ∈ (0, 1) depends only on CD and Θ. Now, if j0 = 1 and j = 0, from the inclusion S1 = Sϕ(x, t/2) ⊂
Sϕ(x0, Θ2t) = S0, we get

μ(S1) ≤ μ(S0) = 1
ξ
ξj0−jμ(S0). (3.17)

Hence, for each j0 ∈ N, we have that μ(Sj0) ≤ 1
ξ ξ

j0−jμ(Sj) for every j < j0, which, in turn, implies (recall 
that 2s > p)

Σ′ :=
j0−1∑
j=0

μ(Sj)
1
2s

μ(λSj)
1
p

⎛
⎜⎝
ˆ

λSj

|∇ϕu|p dμ

⎞
⎟⎠

1
p

≤
j0−1∑
j=0

μ(Sj)
1
2s− 1

p

⎛
⎜⎝
ˆ

λSj

|∇ϕu|p dμ

⎞
⎟⎠

1
p

≤ ξ
1
2s− 1

pμ(Sj0)
1
2s− 1

p

j0−1∑
j=0

ξ( 1
2s− 1

p )(j−j0)

⎛
⎜⎝
ˆ

λSj

|∇ϕu|p dμ

⎞
⎟⎠

1
p

≤ C4μ(Sj0)
1
2s− 1

p

⎛
⎝ ˆ

λS0

|∇ϕu|p dμ

⎞
⎠

1
p

≤ C5M(x)
1
p− 1

2s

⎛
⎝ ˆ

λS0

|∇ϕu|p dμ

⎞
⎠

1
2s

,

where C4 := ξ
1
2s− 1

p

∞∑
k=1

ξ( 1
p− 1

2s )k and C5 := C4[C3
D(λΘ3)s]

1
p− 1

2s and we used the second inequality from 

(3.15).
We now turn to Σ′′. We first use Lemma 2.1 again with α = 1/2 to write

μ(Sj) ≤ ξj−j0μ(Sj0) ∀j ≥ j0,

at least if j0 ∈ N. If j0 = 0 the inclusion S1 ⊂ S0 and Lemma 2.1 give μ(Sj) ≤ ξj−1μ(S1) ≤ 1
ξ ξ

j−j0μ(S0) =
1
ξ ξ

j−j0μ(Sj0). Hence,

μ(Sj) ≤
1
ξ
ξj−j0μ(Sj0) ∀j ≥ j0 ≥ 0. (3.18)

Consequently, from (3.18) and (3.15),
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Σ′′ :=
∞∑

j=j0

μ(Sj)
1
2s

⎛
⎜⎝
 

λSj

|∇ϕu|p dμ

⎞
⎟⎠

1
p

≤ ξ−
1
2sμ(Sj0)

1
2sM(x)

1
p

∞∑
j=j0

ξ
j−j0
2s

≤ C6M(x)
1
p− 1

2s

⎛
⎝ ˆ

λS0

|∇ϕu|p dμ

⎞
⎠

1
2s

,

with C6 := ξ−
1
2s

∞∑
k=0

ξ
k
2s . Coming back (3.13), we now have

|u(x) − uμ
S | ≤

2C3(C5 + C6)t
1
2

μ(S0)
1
2s

M(x)
1
p− 1

2s

⎛
⎝ ˆ

λS0

|∇ϕu|p dμ

⎞
⎠

1
2s

≤ C7t
1
2M(x)

2s−p
2sp

⎛
⎝  

λS0

|∇ϕu|p dμ

⎞
⎠

1
2s

, (3.19)

with C7 := 2λ 1
2C

1
2s
D C3(C5 + C6). Setting qs := 2sp

2s−p > p and given τ > 0, the inequality |u(x) − uμ
S | ≥ τ , 

the weak (1,1)-type of M with a constant C1,1 > 0 depending only on CD and Θ (see [3, Section 5] or [1, 
Lemma 3.12] along with [18, Lemma 15]), and (3.19) then yield

μ({x ∈ S : |u(x) − uμ
S | ≥ τ})

≤ μ

⎛
⎜⎝
⎧⎪⎨
⎪⎩x ∈ S : M(x) ≥ C−qs

7 τ qst−qs/2

⎛
⎝  

λS0

|∇ϕu|p dμ

⎞
⎠

− qs
2s
⎫⎪⎬
⎪⎭

⎞
⎟⎠

≤ C1,1C
qs
7 τ−qstqs/2

⎛
⎝  

λS0

|∇ϕu|p dμ

⎞
⎠

qs
2s ˆ

S

|∇ϕu|p dμ

≤ C0τ
−qsμ(S)

⎛
⎝  

λS0

|∇ϕu|p dμ

⎞
⎠

qs
2s +1

= C0τ
−qsμ(S)

⎛
⎝  

λΘ2S

|∇ϕu|p dμ

⎞
⎠

qs
p

,

with C0 := C1,1C
qs
7 CDλstqs/2. Hence, Lemma 3.1 applied with q = qs and S0 = λΘ2S imply (3.9). �

4. Proof of Theorem 1.1

Let us start by recalling the following fact from [16].

Theorem E (Theorem 1.3 in [16]). Given an open convex set U ⊂ Rn and φ ∈ C2(U) with D2φ > 0 in U
and μφ ∈ DC(U, δφ) there exists a geometric constant C∗

1 > 0 such that for every section S := Sφ(x0, t)
with Sφ(x0, t) ⊂⊂ U and every h ∈ C1(S) the following (1, 2)-Poincaré holds true in the Monge-Ampère 
quasi-metric structure with respect to the Lebesgue measure

 

S

|h(x) − hS | dx ≤ C∗
1 t

1
2

⎛
⎝ 

S

|∇φh(x)|2 dx

⎞
⎠

1
2

, (4.1)

where hS :=
ffl

h(x) dx.

S
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Theorem 4.1. Fix an open convex set Ω ⊂ Rn with n ≥ 2 and ϕ ∈ W 2,n
loc (Ω) such that D2ϕ > 0 a.e. in Ω

and μϕ ∈ DC(Ω, δϕ). Then, there exist geometric constants C∗
3 > 0 and K∗ ≥ 1 such that for every section 

S := Sϕ(x0, t) with Sϕ(x0, K∗t) ⊂⊂ Ω and every h ∈ C1(Sϕ(x0, 2K∗t)) the following Poincaré inequality 
holds true with respect to the Monge-Ampère measure μϕ

 

S

|h(x) − h
μϕ

S | dμϕ(x) ≤ C∗
3 t

1
2

⎛
⎜⎝

 

Sϕ(x0,2K∗t)

|∇ϕh(x)|2 dμϕ(x)

⎞
⎟⎠

1
2

. (4.2)

Proof. Let ϕ ∈ W 2,n
loc (Ω, dx) with D2ϕ > 0 a.e. in Ω and μϕ ∈ DC(Ω, δϕ). Given a section S := Sϕ(x0, t) ⊂⊂

Ω let ΩS ⊂ Rn be an open convex set such that S ⊂⊂ ΩS ⊂⊂ Ω set ε0 := dist(ΩS , ∂Ω) and for 0 < ε < ε0
and x ∈ ΩS define

ϕε(x) := ϕ ∗ ηε(x) =
ˆ

Rn

ϕ(x− y)ηε(y) dy (4.3)

where η ∈ C∞
c (Rn), η ≥ 0, supp(η) ⊂ B(0, 1) and ‖η‖L1(Rn) = 1 with ηε(y) := ε−nη(ε−1y). Then, for each 

ε > 0, we have that ϕε ∈ C∞(ΩS) with D2ϕε > 0 in ΩS . Indeed, since D2ϕε(x) =
´
Rn D2ϕ(x −y)ηε(y) dy, if 

we had 〈D2ϕε(y0)v, v〉 = 0 for some point y0 ∈ Ω and non-zero vector v ∈ Rn\{0}, then it would follow that 
〈D2ϕ(y0 − y)v, v〉 = 0 for almost every |y| < ε, contradicting D2ϕ > 0 a.e. in Ω. Also, ϕε and ∇ϕε converge 
to ϕ and ∇ϕ, respectively, uniformly over compact subsets of ΩS. Moreover, from the characterization of 
μϕ ∈ DC(Ω, δϕ) in terms of the engulfing property in [8, Theorems 1 and 4] we have that μϕε

∈ DC(Ω, δϕ)
for every ε ∈ (0, ε0) with constants depending only on the constant from μϕ ∈ DC(Ω, δϕ) (and, in particular, 
independent of ε).

Next, for each 0 < ε < ε0 let ψε : ∇ϕε(Ω) → R denote the convex conjugate to ϕε, which is smooth, 
strictly convex, and satisfies

∇ϕε(∇ψε(y)) = y ∀y ∈ ∇ϕε(Ω), (4.4)
∇ψε(∇ϕε(x)) = x ∀x ∈ Ω. (4.5)

Moreover, by [8, Theorem 12] we have μψε
∈ DC(δψε

, ∇ϕε(Ω)) with a constant depending only on the 
constant from μϕ ∈ DC(Ω, δϕ). In addition, there exists a constant K∗ > 1, also depending only on the 
constant from μϕ ∈ DC(Ω, δϕ), such that

Sϕε
(z, τ/K∗) ⊂ ∇ψε(Sψε

(∇ϕε(z), τ)) ⊂ Sϕε
(z,K∗τ), (4.6)

for every section Sϕε
(z, τ) with Sϕε

(z, K∗τ) ⊂⊂ Ω. At this point, given a section Sϕε
(x0, t) with 

Sϕε
(x0, 2K∗t) ⊂⊂ Ω, the second inclusion in (4.6) and (4.4) give

S∗
ε := Sψε

(∇ϕε(x0), t) ⊂ ∇ϕε(Sϕε
(x0,K

∗t)) ⊂⊂ ∇ϕε(Ω). (4.7)

Notice that from the fact that ϕε and ∇ϕε converge to ϕ and ∇ϕ, respectively, uniformly over compact 
subsets of Ω we can assume that ε > 0 is small enough so that

∇ϕε(Sϕε
(x0,K

∗t)) ⊂ ∇ϕ(Sϕ(x0, 2K∗t)) ⊂⊂ ∇ϕ(ΩS). (4.8)

The next step is to apply (4.1) with ψε in the section S∗
ε . Given a function h ∈ C1(Sϕ(x0, 2K∗t)) define 

u ∈ C1(∇ϕ(Sϕ(x0, 2K∗t))) as u(y) := h(∇ψε(y)). In particular, the inclusions (4.7) and (4.8) imply u ∈
C1(S∗

ε ), so that the Poincaré inequality (4.1) applied with ψε in the section S∗
ε to u reads as
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S∗
ε

|u(y) − uS∗
ε
| dy ≤ C∗

2 t
1
2

⎛
⎜⎝
 

S∗
ε

|∇ψεu(y)|2 dy

⎞
⎟⎠

1
2

. (4.9)

By setting y := ∇ϕε(x) for x ∈ Sϕ(x0, 2K∗t)), and recalling (4.5), we get

∇h(x) = D2ϕε(x)∇u(∇ϕε(x)) = D2ψε(y)−1∇u(y)

and then

|∇ψεu(y)|2 = 〈D2ψε(y)−1∇u(y),∇u(y)〉 (4.10)

= 〈∇h(x), D2ϕε(x)−1∇h(x)〉 = |∇ϕεh(x)|2.

Hence, by changing variables y = ∇ϕε(x) in (4.9) we get

1
|S∗

ε |

ˆ

∇ψε(S∗
ε )

|h(x) − hSε
|detD2ϕε(x) dx

≤ C∗
2 t

1
2

|S∗
ε |

1
2

⎛
⎜⎝

ˆ

∇ψε(S∗
ε )

|∇ϕεh(x)|2 detD2ϕε(x) dx

⎞
⎟⎠

1
2

(4.11)

where

hSε
:= 1

|S∗
ε |

ˆ

∇ψε(S∗
ε )

h(x) detD2ϕε(x) dx.

Notice that from the inclusions (4.6), (4.7), and (4.8) it follows that

Sϕ(x0, t) ⊂ ∇ψε(S∗
ε ) ⊂ Sϕ(x0, 2K∗t), (4.12)

so that the integral on the left-hand side of (4.11) can be replaced with the integral over Sϕ(x0, t) and the 
one on its right-hand side by the integral over Sϕ(x0, 2K∗t). In addition, the inclusions (4.12), along with 
the fact that ∇ϕε and ∇ψε are the inverse of each other, imply

μϕε
(Sϕ(x0, t)) = |∇ϕε(Sϕ(x0, t))| ≤ |S∗

ε | (4.13)

≤ |∇ϕε(Sϕ(x0, 2K∗t))| = μϕε
(Sϕ(x0, 2K∗t)).

We are now in position to start taking limits as ε → 0. From the definition of ϕε in (4.3) we get that D2ϕε(x)
(or a subsequence) converges to D2ϕ(x) for a.e. x ∈ Ω. In particular, detD2ϕε(x) converges to detD2ϕ(x)
for a.e. x ∈ Ω. Let us first show that μϕε

(F ) converges to μϕ(F ) for every Borel set F ⊂ Sϕ(x0, 2K∗t). 
Indeed, since Sϕ(x0, 2K∗t) ⊂⊂ Ω let S′ denote a compact set such that Sϕ(x0, 2K∗t) ⊂⊂ S′ ⊂⊂ Ω and 
introduce H(x) := Δϕ(x) χS′(x). Let us also assume that ε < ε1 := dist(Sϕ(x0, 2K∗t), ∂S′) so that, for 
x ∈ Sϕ(x0, 2K∗t), we get (Δϕ ∗ ηε)(x) = (H ∗ ηε)(x). Then, for every x ∈ Sϕ(x0, 2K∗t), the arithmetic-
geometric inequality implies

0 < detD2ϕε(x) ≤ Δϕε(x)n = (Δϕ ∗ ηε)(x)n = (H ∗ ηε)(x)n ≤ M(H)(x)n,
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where M denotes the Hardy-Littlewood maximal function whose (n, n)-strong type (here is when we use 
n ≥ 2) gives

ˆ

Sϕ(x0,2K∗t)

M(H)(x)n dx ≤ ‖M(H)‖nLn(Rn, dx) ≤ Cn‖H‖nLn(Rn, dx)

= Cn

ˆ

S′

Δϕ(x)n dx < ∞,

where the hypothesis ϕ ∈ W 2,n
loc (Ω) guarantees the finiteness of the last integral. (Recall that for a convex 

function φ we always have 1
nΔφ ≤ ‖D2φ‖ ≤ Δφ almost everywhere.) Therefore, Lebesgue’s dominated 

convergence theorem implies that μϕε
(F ) converges to μϕ(F ) for every Borel set F ⊂ Sϕ(x0, 2K∗t) as 

claimed. Next, we will use Lebesgue’s dominated convergence theorem on the integral
ˆ

Sϕ(x0,2K∗t)

|∇ϕεh(x)|2 detD2ϕε(x) dx.

Given x ∈ Sϕ(x0, 2K∗t) let 0 < λ1,ε(x) ≤ · · · ≤ λn,ε(x) denote the eigenvalues of D2ϕε(x) and using that 
|∇ϕεh(x)|2 = 〈D2ϕε(x)−1∇h(x), ∇h(x)〉 we get

|∇ϕεh(x)|2 detD2ϕε(x) ≤
(

sup
Sϕ(x0,2K∗t)

|∇h|
)2

‖D2ϕε(x)−1‖ detD2ϕε(x)

with

‖D2ϕε(x)−1‖ detD2ϕε(x) = 1
λ1,ε(x)

n∏
j=1

λj,ε(x) ≤
( n∑

j=2
λj,ε(x)

)n−1

<
( n∑

j=1
λj,ε(x)

)n−1
= Δϕε(x)n−1 = Δϕ ∗ ηε(x)n−1 ≤ M(H)(x)n−1

and, by reasoning as above, in the case n > 2 we obtain that M(H)n−1 ∈ L1(Sϕ(x0, 2K∗t), dx). In the case 
n = 2 we just do

ˆ

Sϕ(x0,2K∗t)

M(H)(x) dx ≤

⎛
⎝ ˆ

R2

M(H)(x)2 dx

⎞
⎠

1
2

|Sϕ(x0, 2K∗t)| 12 < ∞.

Finally, by taking limits as ε → 0 in (4.11) (and we can just use Fatou’s lemma on its left-hand side) and 
by recalling the inequalities (4.13) and the doubling property of μϕ, the Poincaré inequality (4.2) follows 
with K1 := 2K∗. �
4.1. Proof of Theorem 1.1

The idea is to use Theorem 3.2 to improve the Poincaré inequality (4.2) from Theorem 4.1. Let us first 
remark that the condition ϕ ∈ W 2,n

loc (Ω, dx) with D2ϕ > 0 a.e. in Ω implies that ‖(D2ϕ)−1‖ ∈ L1
loc(Ω, dμϕ). 

In fact, even ϕ ∈ W 2,n−1
loc (Ω, dx) with D2ϕ > 0 a.e. in Ω will do so. Indeed, since D2ϕ(x) > 0 for a.e. x ∈ Ω, 

let 0 < λ1(x) ≤ · · · ≤ λn(x) < ∞ denote the eigenvalues of D2ϕ(x). Then,
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‖D2ϕ(x)−1‖ detD2ϕ(x) = 1
λ1(x)

n∏
j=1

λj(x) ≤

⎛
⎝ 1
n− 1

n∑
j=2

λj(x)

⎞
⎠

n−1

≤ Δϕ(x)n−1 ∈ L1
loc(Ω, dx).

Let us now recall the growth condition (2.10) for μϕ, so that (3.8) from Theorem 3.2 holds true with 
s = n − ε. Therefore, by using Theorem 3.2 with p = 2 and s = n − ε (notice that s > p/2 iff n − ε > 1 iff 
n ≥ 2) the Poincaré inequality (4.2) self-improves to (1.17) since from our choices of p and s we get

2sp
2s− p

= 4(n− ε)
2(n− ε) − 2 = 2(n− ε)

(n− ε) − 1 = 2n
n− 1 + ε1,

where ε1 := 2(n−ε)
(n−ε)−1 − 2n

n−1 > 0 is a geometric constant. �
5. Proof of Theorem 1.2

The idea of the proof is to apply Theorem 1.1 to ψ, the convex conjugate of ϕ, and then do a change of 
variables. In order to see that ψ ∈ W 2,n

loc (∇ϕ(Ω), dy), we first notice that (2.12), along with the hypothesis 
D2ϕ > 0 a.e. in Ω, implies D2ψ(∇ϕ(x)) = D2ϕ(x)−1 > 0 for a.e. x ∈ Ω; therefore, given a compact set 
F ⊂ Ω and changing variables y := ∇ϕ(x),

ˆ

∇ϕ(F )

‖D2ψ(y)‖n dy =
ˆ

F

‖D2ϕ(x)−1‖n detD2ϕ(x) dx < ∞,

where the finiteness of the last integral above follows from the hypothesis ‖(D2ϕ)−1‖ ∈ Ln
loc(Ω, dμϕ). Notice 

that y = ∇ϕ(x) is a valid change of variables because ∇ϕ is one-to-one and ϕ ∈ W 2,n
loc (Ω) (see [20, Section 

3]).
Now, given a section S := Sϕ(x0, t) with Sϕ(x0, K1K

∗t) ⊂⊂ Ω and h ∈ C1(Sϕ(x0, K1K
∗t)) (where 

K1 > 1 is the geometric constant from the Poincaré inequality (1.17) in Theorem 1.1 and K∗ > 1 is the 
geometric constant from 2.13), by applying (1.17) to the section S∗ := Sψ(∇ϕ(x0), t) and the function 
u(y) := h(∇ψ(y)) we get

⎛
⎝ 

S∗

|u(y) − u
μψ

S∗ |q dμψ(y)

⎞
⎠

1
q

≤ K2 t
1
2

⎛
⎝  

K1S∗

|∇ψu(y)|2 dμψ(y)

⎞
⎠

1
2

, (5.1)

where q = 2n
n−1 + ε1 and uμψ

S∗ :=
ffl
S∗ u(y) dμψ(y). Now, by changing variables y = ∇ϕ(x), using the second 

inclusion in (2.13), reasoning as in (4.10), and noticing that detD2ψ(y) detD2ϕ(x) = 1 for a.e. x ∈ Ω, the 
integral on the right-hand side of (5.1) can be controlled by

ˆ

K1S∗

|∇ψu(y)|2 dμψ(y) ≤
ˆ

Sϕ(x0,K1K∗t)

|∇ϕh(x)|2 dx, (5.2)

while, due to the first inclusion in (2.13), the integral on the left-hand side of (5.1) can be bound from below 
by the integral over ∇ϕ(Sϕ(x0, t/K∗)).

On the other hand, the inclusions in (2.13) and the doubling property of the Lebesgue measure give

μψ(S∗) = |∇ψ(S∗)| ∼ |Sϕ(x0, t)|, (5.3)
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where the implicit constants are geometric constants. Thus, the Poincaré inequality (1.18) follows, with 
K3 := K1(K∗)2 > 1, from (5.1), (5.2), and (5.3). �
6. Proofs of Theorems 1.3 and 1.4

Let us start by proving the following improvement on Theorem E from Section 4.

Theorem 6.1. Fix an open convex set U ⊂ Rn and φ ∈ C2(U) with D2φ > 0 in U and μφ ∈ A∞(U, δφ). 
Then, there exist constants N1, ε > 0, depending only on the constants from μφ ∈ A∞(U, δφ) and dimension 
n, such that for every section S := Sφ(x0, t) with Sφ(x0, t) ⊂⊂ U and every h ∈ C1(S) the following 
(1, 2 − ε)-Poincaré holds true in the Monge-Ampère quasi-metric structure with respect to the Lebesgue 
measure

 

S

|h(x) − hS | dx ≤ N1 t
1
2

⎛
⎝ 

S

|∇φh(x)|2−ε dx

⎞
⎠

1
2−ε

, (6.1)

where hS :=
ffl
S
h(x) dx.

Proof. The proof of Theorem 6.1 goes along the lines of the proof of [16, Theorem 1.3]. We will follow the 
notation in [4, Section 1] regarding the normalization technique of a given section S := Sϕ(x0, t). Thus, 
let T : Rn → Rn be an affine transformation such that B(0, n−3/2) ⊂ T (S) ⊂ B(0, 1). In particular, 
αn ≤ |S|| detT | ≤ βn for some positive dimensional constants αn, βn. Always as in [4, Section 1], let λ > 0
and φ∗ be defined by

λn := μφ(S)
|detT | and φ∗(y) := 1

λ
φ(T−1y) − l̄(y) − t

λ
,

where l̄ is a linear function, so that μ(y) = detD2φ∗(y) with μ(T (S)) = 1. We will also use the fact that

C3t ≤ λ ≤ C4t, (6.2)

where C3, C4 > 0 depend on the doubling constant from μφ ∈ DC(U, δφ) and the dimension n (see Theorem 
8 in [7]). From the definition of φ∗ we get

T tD2φ∗(y)T = 1
λ
D2φ(T−1y) (6.3)

and from the first few lines of the proof of Theorem 2 in [4] or Lemma 3.2.1 in [11] or Lemma 3.2 in [5], 
there exists a constant C5 > 0, also depending only on the doubling constants from μφ ∈ DC(U, δφ) and 
dimension n, such that

 

T (S)

Δφ∗(y) dy ≤ C5. (6.4)

Now, by W 2,1+ε0 -estimates in [6, Theorem 2] and [16, Lemma 3.1] when μφ ∈ A∞(U, δφ), there exist 
constants C6 > 1 and 0 < ε0 < 1, depending only on the constants from μφ ∈ A∞(U, δφ) and dimension n, 
such that
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⎛
⎜⎝

 

T (S)

Δφ∗(y)1+ε0 dy

⎞
⎟⎠

1
1+ε0

≤ C6

 

T (S)

Δφ∗(y) dy (6.5)

Then, given h ∈ C1(S) let ū ∈ C1(T (S)) be defined as ū(y) = h(T−1y). Thus, the usual (1, 1)-Poincaré 
inequality applied to ū on the convex set T (S) (recall that B(0, n−3/2) ⊂ T (S) ⊂ B(0, 1)) yields

 

T (S)

|ū(y) − ūT (S)| dy ≤ Cn

 

T (S)

|∇ū(y)| dy, (6.6)

where Cn > 0 is a dimensional constant, and by changing variables y = Tx in (6.6) we obtain

 

S

|h(x) − hS | dx ≤ Cn

 

S

|(T−1)t∇h(x)| dx. (6.7)

Next, notice that from the identity (6.3) and the fact that ‖D2φ‖ ≤ Δφ we get

‖(T−1)tD2φ(x)T−1‖ ≤ λΔφ∗(Tx),

which followed by the simple matrix identity

‖(T−1)tD2φ(x) 1
2 ‖2 = ‖(T−1)tD2φ(x)T−1‖,

gives ‖(T−1)tD2φ(x) 1
2 ‖2 ≤ λΔφ∗(Tx). Consequently,

( 

S

‖(T−1)tD2φ(x) 1
2 ‖2(1+ε0) dx

) 1
1+ε0

≤ λ

(  

T (S)

Δφ∗(y)1+ε0 dy

) 1
1+ε0

≤ C5C6λ,

where the last inequality follows from (6.5) and (6.4). Finally, by setting p := 2(1 + ε0) and recalling that 
∇φh = D2φ− 1

2∇h,

 

S

|(T−1)t∇h(x)| dx =
 

S

|(T−1)tD2φ(x) 1
2D2φ(x)− 1

2∇h(x)| dx

≤
 

S

‖(T−1)tD2φ(x) 1
2 ‖|D2φ(x)− 1

2∇h(x)| dx

≤

⎛
⎝ 

S

‖(T−1)tD2φ(x) 1
2 ‖p dx

⎞
⎠

1
p
⎛
⎝ 

S

|∇φh(x)|p′
dx

⎞
⎠

1
p′

≤ (C5C6λ) 1
2

⎛
⎝ 

S

|∇φh(x)|p′
dx

⎞
⎠

1
p′

≤ (C4C5C6t)
1
2

⎛
⎝ 

S

|∇φh(x)|p′
dx

⎞
⎠

1
p′

,

where p′ = 2 − ε with ε := 2ε0/(1 + 2ε0) ∈ (0, 1), which combined with (6.7) proves (6.1). �
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6.1. Proof of Theorem 1.3

The proof of Theorem 1.3 now follows along the lines of the proof of Theorem 1.1. First, Theorem 6.1
(used in lieu of Theorem E from Section 4) implies a version of Theorem 4.1 where the exponent 2 on the 
right-hand side of (4.2) can be replaced by 2 −ε. Recall that the A∞ property is qualitatively preserved under 
convex conjugation (see Section 2.4). It is also quantitatively preserved by the approximations ϕε due to 
the fact that ϕε and ∇ϕε converge uniformly on compact sets. Set ε0 := min{ε, ε} with ε > 0 the geometric 
constant from (2.10). Then, just as in Section 4.1, Theorem 3.2 applied with μ as the Monge-Ampère 
measure, p = 2 − ε0, and s = n − ε0, yields with

q0 := 2(n− ε0)(2 − ε0)
2(n− ε0) − (2 − ε0)

,

and (1.19) follows. �
6.2. Proof of Theorem 1.4

The proof of Theorem 1.4 goes just like the one of Theorem 1.2, where (instead of using Theorem 1.1) 
we use Theorem 1.3 with ψ, the convex conjugate of ϕ, and then change variables y = ∇ϕ(x). �
7. Proofs of Theorems 1.5 and 1.6

Since ϕ ∈ W 2,n
loc (Ω, dx) is a strictly convex function with detD2ϕ ∈ A1(Ω, δϕ), from [21, Section 4] we 

have that there exists a structural constant M1 > 0 such that the Monge-Ampère measure satisfies the 
growth condition

μϕ(Sϕ(x0, t))
μϕ(Sϕ(x0, t′))

≤ M1

(
t

t′

)n
2

, (7.1)

for every section Sϕ(x0, t) with Sϕ(x0, Θ1t) ⊂ Ω and every 0 < t′ < t. Therefore, Theorem 3.2 applied with 
μ = μϕ, p = 2 (the right-hand side exponent from the Poincaré inequality from Theorem 4.1), and s = n/2
(the growth exponent from (7.1)), yields

q = 2sp
2s− p

= 2n
n− 2 ,

which is finite in the case n ≥ 3, and (1.21) follows.
On the other hand, let ε0 > 0 be the structural constant from Theorem 1.3 so that for every 0 < ε ≤ ε0, 

the inequality (1.19) implies (since q > 2)

 

S

|u(x) − u
μϕ

S | dμϕ(x) ≤ K6 t
1
2

⎛
⎝  

K5S

|∇ϕu(x)|2−ε dμϕ(x) dx

⎞
⎠

1
2−ε

. (7.2)

Now we use Theorem 3.2 applied with μ = μϕ, p = 2 − ε (the right-hand side exponent from (7.2)), and 
s = n/2 (the growth exponent from (7.1)) to obtain the inequality (1.22) with

q = 2sp
2s− p

= n(2 − ε)
n− (2 − ε) . (7.3)

Notice that in the case n = 2, the expression for q in (7.3) reduces to q = 2(2 − ε)/ε and (1.23) follows. �



24 D. Maldonado, M. Ranabhat / J. Math. Anal. Appl. 487 (2020) 123969
8. Proofs of Theorems 1.7 and 1.8

Since ϕ ∈ W 2,n
loc (Ω, dx) is a strictly convex function with detD2ϕ ∈ RH∞(Ω, δϕ), from [21, Section 3]

we now have that there exists a structural constant M∞ > 0 such that the Lebesgue measure satisfies the 
growth condition

|Sϕ(x0, t)|
|Sϕ(x0, t′)|

≤ M∞

(
t

t′

)n
2

, (8.1)

for every section Sϕ(x0, t) with Sϕ(x0, Θ∞t) ⊂ Ω and every 0 < t′ < t.
Hence, the proofs of Theorems 1.7 and 1.8 follow as the ones of Theorems 1.5 and 1.6. Indeed, the same 

reasoning from Section 7 but now using Theorem 1.2 instead of Theorem 4.1, and Theorem 1.4 instead 
of Theorem 1.3, as well as using Theorem 3.2 with the Lebesgue measure instead of μϕ (but always with 
s = n/2 as in (8.1)) yields (1.24), (1.25), and (1.26). �
9. Sobolev inequalities

In this section we point out that from each one of the Poincaré inequalities in Sections 1.1–1.4 a corre-
sponding Sobolev inequality can be obtained. Indeed, it is a well-known fact (see for instance [1, Theorem 
5.51]) that weak (q, p)-Poincaré inequalities with respect to a reverse-doubling measure imply (q, p)-Sobolev 
ones. For the sake of completeness, we briefly sketch the proof. Given a section S := Sϕ(x, t) ⊂⊂ Ω, 
u ∈ Lipc(S), that is, u ∈ Lip(S) with compact support within S, and q ≥ 1, we have

|uμ
2S | ≤

 

2S

|u|χS dμ ≤

⎛
⎝ 

2S

|u|q dμ

⎞
⎠

1
q (

μ(S)
μ(2S)

)1−1/q

≤

⎛
⎝ 

2S

|u|q dμ

⎞
⎠

1
q

ξ1−1/q,

where ξ ∈ (0, 1) is the constant from the reverse-doubling property in Lemma 2.1 corresponding to α = 1/2. 
On the other hand, since

⎛
⎝  

2S

|u|q dμ

⎞
⎠

1
q

≤

⎛
⎝ 

2S

|u− uμ
2S |q dμ

⎞
⎠

1
q

+ |uμ
2S |,

it then follows that

⎛
⎝  

2S

|u|q dμ

⎞
⎠

1
q

≤ 1
1 − ξ1−1/q

⎛
⎝ 

2S

|u− uμ
2S |q dμ

⎞
⎠

1
q

,

which combined with an arbitrary weak (q, p)-Poincaré inequality

⎛
⎝  

|u− uμ
2S |q dμ

⎞
⎠

1
q

≤ CP t
1
2

⎛
⎝  

|∇ϕu|p dμ

⎞
⎠

1
p

,

2S 2λS
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for some λ ≥ 1, and recalling that u is supported in S, yields the Sobolev inequality

⎛
⎝ 

S

|u|q dμ

⎞
⎠

1
q

≤ CP t
1
2

1 − ξ1−1/q

⎛
⎝ 

S

|∇ϕu|p dμ

⎞
⎠

1
p

. (9.1)

As an illustration and for future reference, we state the Sobolev inequalities that follow from the Poincaré 
inequalities in Theorems 1.5 and 1.6 of Section 1.3.

Theorem 9.1. Fix n ≥ 3 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function with detD2ϕ ∈ A1(Ω, δϕ). 

Then, there exist structural constants K9, K10 ≥ 1 such that for every section S := Sϕ(x0, t) with 
Sϕ(x0, K9t) ⊂⊂ Ω and every u ∈ Lipc(S) we have

⎛
⎝ 

S

|u(x)| 2n
n−2 dμϕ(x)

⎞
⎠

n−2
2n

≤ K10 t
1
2

⎛
⎝ 

S

|∇ϕu(x)|2 dμϕ(x)

⎞
⎠

1
2

. (9.2)

In addition, there exists a structural constant ε0 > 0 such that for every 0 < ε ≤ ε0 there is a constant 
Kε > 0, depending only on ε and structural constants, such that

⎛
⎝ 

S

|u(x)|qε dμϕ(x)

⎞
⎠

1
qε

≤ Kε t
1
2

⎛
⎝ 

S

|∇ϕu(x)|2−ε dμϕ(x)

⎞
⎠

1
2−ε

, (9.3)

with qε := n(2−ε)
n−(2−ε) > 2.

Theorem 9.2. Assume n = 2 and let ϕ ∈ W 2,2
loc (Ω) be a strictly convex function with detD2ϕ ∈ A1(Ω, δϕ). 

Then, there exist structural constants K9 ≥ 1 and 0 < ε0 < 1, such that for every section S := Sϕ(x0, t)
with Sϕ(x0, K9t) ⊂⊂ Ω, every u ∈ Lipc(S), and every 0 < ε ≤ ε0 we have

⎛
⎝ 

S

|u(x)|qε dμϕ(x)

⎞
⎠

1
qε

≤ Kε t
1
2

⎛
⎝ 

S

|∇ϕu(x)|2−ε dμϕ(x)

⎞
⎠

1
2−ε

, (9.4)

with qε := 2(2 − ε)/ε and Kε > 0 depends only on ε and structural constants.

Remark 5. Notice that Theorem 9.2 extends Proposition 2.6 in [13], that is, Theorem C from the Introduc-
tion, by weakening the assumption detD2ϕ ∼ 1, in the sense of (1.8), to detD2ϕ ∈ A1(Ω, δϕ).

Remark 6. Poincaré and Sobolev inequalities such as the ones in Theorems 1.5, 1.6, and Theorems 9.1, 9.2, 
respectively, play a central role in the implementation of Moser’s iterations for solutions to the linearized 
Monge-Ampère equation, as described in [19, Section 2.4].

10. Examples and applications

We close this article by recording a list of examples from [21] of convex functions ϕ with detD2ϕ ∈
A1(Ω, δϕ) or detD2ϕ ∈ RH∞(Ω, δϕ) and by discussing further applications and connections of Theo-
rems 1.1–1.8 (as well as their corresponding Sobolev inequalities) with related inequalities in the existing 
literature.
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Let us start by listing the following examples from [21].

Examples of detD2ϕ ∈ A1(Ω, δϕ).

(A1) The case detD2ϕ ∼ 1 in Ω in the sense of (1.8). Here Θ1 = 1 and H1 = Λ2/Λ1.
(A2) The case detD2ϕ ∼ |q|−a in Ω with q = q(x) polynomial and 0 < a < 1/deg(q). Here Θ1 = 1 and 

H1 ≥ 1 depends only on a, dimension n, and deg(q), the degree of q (and not on its coefficients).
(A3) The case ϕp(x) := 1

p |x|p, x ∈ Rn and 2 − 1/n < p ≤ 2. Here Θ1 = 1 and H1 ≥ 1 depends only on p
and n.

(A4) The case ϕP (x) :=
n∑

j=1

1
pj(pj−1) |xj |pj with x = (x1, . . . , xn) ∈ Rn and P := (p1, . . . , pn) ∈ (1, 2]n. Here 

Θ1 = 1 and H1 ≥ 1 depends only on p1, . . . , pn, and n.

Examples of detD2ϕ ∈ RH∞(Ω, δϕ).

(RH1) The case detD2ϕ ∼ 1 in Ω. As before, here Θ∞ = 1 and H∞ = Λ2/Λ1.
(RH2) The case detD2ϕ ∼ |q|a with q = q(x) polynomial and a > 0. Here Θ∞ = 1 and H∞ ≥ 1 depends 

only on a, n, and the degree of q (and not on its coefficients).
(RH3) The case when ϕ is a convex polynomial in Rn. Here Θ∞ = 1 and H∞ ≥ 1 depends only on n and 

the degree of ϕ (and not on its coefficients).
(RH4) The case ϕp(x) := 1

p |x|p with 2 ≤ p < ∞. Here Θ∞ = 1 and H∞ ≥ 1 depends only on p and n.

(RH5) The case ϕP (x) :=
n∑

j=1

1
pj(pj−1) |xj |pj with x = (x1, . . . , xn) ∈ Rn and P := (p1, . . . , pn) ∈ [2, ∞)n. 

Here Θ∞ = 1 and H∞ ≥ 1 depends only on p1, . . . , pn, and n.

As mentioned in Remark 6, Theorems 1.1–1.8 will find applications in the implementation of Moser’s 
iterations for certain degenerate/singular PDEs. Also, Remarks 2 and 5 point out how they improve upon 
a few previously known results. In addition, in view of the examples above, Theorems 1.1–1.8 give rise to 
a large variety of new or improved Poincaré and Sobolev inequalities some of which complement or extend 
inequalities from the existing literature. As an illustration, in this section we take a look at just a couple of 
such inequalities. We start by mentioning the following Sobolev inequality by Tian and Wang in [23] when 
ϕ is a strictly convex polynomial in Rn.

Theorem F (Theorem 1.1 in [23]). Let ϕ be a strictly convex polynomial in Rn, n ≥ 3. Then, for any 
bounded domain Ω ⊂ BR(0) and any function u ∈ C∞

0 (Ω),

⎛
⎝ˆ

Ω

|u(x)|p dμϕ(x)

⎞
⎠

1
p

≤ C

⎛
⎝ˆ

Ω

|∇ϕu(x)|2 dμϕ(x)

⎞
⎠

1
2

, (10.1)

where p > 2 depends on n and ϕ and C also depends on R.

Now, Theorem 1.7 and Example (RH3) provide a Poincaré inequality with respect to the Lebesgue 
measure which, in turn, yields a related Sobolev inequality (as described in Section 9) that complements 
Theorem F where the Monge-Ampère measure is replaced with Lebegue measure and with a finer tuning 
on the constants.

Theorem 10.1. Fix n ≥ 3 and let ϕ be a strictly convex polynomial with ‖(D2ϕ)−1‖ ∈ L1
loc(Rn, dx). Then, 

there exist constants K11, K12 ≥ 1, depending only on the degree of ϕ and dimension n, such that for every 
section S := Sϕ(x0, t) we have
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⎛
⎝ 

S

|u(x) − uS |
2n

n−2 dx

⎞
⎠

n−2
2n

≤ K12 t
1
2

⎛
⎝  

K11S

|∇ϕu(x)|2 dx

⎞
⎠

1
2

for every u ∈ Lip(K11S), as well as

⎛
⎝ 

S

|u(x)| 2n
n−2 dx

⎞
⎠

n−2
2n

≤ K12 t
1
2

⎛
⎝ 

S

|∇ϕu(x)|2 dx

⎞
⎠

1
2

for every u ∈ Lipc(S).

On the other hand, given a vector A = (a1, . . . , an) ∈ Rn, with aj ≥ 0 for every j = 1, . . . , n, Cabré and 
Ros-Oton in [2] proved the following Sobolev inequality.

Theorem G (Theorem 1.3(a) in [2]). Given 1 ≤ p < D := n + a1 + · · · + an, there exists Cp > 0 such that 
for every u ∈ C1

c (Rn)

⎛
⎜⎝
ˆ

Rn
∗

|u(x)|p∗xA dx

⎞
⎟⎠

1
p∗

≤ Cp

⎛
⎜⎝
ˆ

Rn
∗

|∇u(x)|pxA dx

⎞
⎟⎠

1
p

, (10.2)

where p∗ := pD
D−p , x

A :=
n∏

j=1
|xj |aj , and

Rn
∗ := {(x1, . . . , xn) : with xj > 0 whenever aj > 0}.

By means of the Poincaré inequalities from Section 1.3 and Example (A4) we will next obtain Poincaré 
and Sobolev inequalities related to the weight xA as in (10.2) but now in the case −1/n < aj ≤ 0 for every 
j = 1, . . . , n. Indeed, for −1/n < aj ≤ 0 set pj := 2 + aj ∈ (1, 2] and

ϕP (x) :=
n∑

j=1

1
pj(pj−1) |xj |pj , x = (x1, . . . , xn) ∈ Rn, (10.3)

as in Example (A4). Then

D2ϕP (x) =

⎡
⎢⎢⎣
|x1|a1 0 · · · 0

0 |x2|a2 · · · 0
...

...
. . . 0

0 0 0 |xn|an

⎤
⎥⎥⎦ ,

so that detD2ϕP (x) =
n∏

j=1
|xj |aj = xA. Notice that the condition −1/n < aj ≤ 0 for every j = 1, . . . , n

guarantees that ϕP ∈ W 2,n
loc (Rn, dx). Also, for a.e. x = (x1, . . . , xn) ∈ Rn and u ∈ C1(Rn),

∇ϕP u(x) = D2ϕP (x)− 1
2∇u(x)

= (|x1|−
a1
2 u1(x), · · · , |xn|−

an
2 un(x))

and consequently
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|∇ϕP u(x)| =

⎛
⎝ n∑

j=1
|xj |−aj |uj(x)|2

⎞
⎠

1
2

.

Moreover, by [9, Lemma 6] the Monge-Ampère sections of ϕP are related to the ones of ϕpj
(x) := 1

pj
|x|pj , 

x ∈ R, by means of the inclusions

SϕP
(y, t) ⊂ Sϕp1

(y1, t) × · · · × Sϕpn
(yn, t) ⊂ SϕP

(y, nt),

for every y = (y1, . . . , yn) ∈ Rn, yj ∈ R, j = 1, . . . , n, and t > 0.
Therefore, by using, for instance, Theorem 1.5 from Section 1.3, we obtain

Theorem 10.2. Fix n ≥ 3 and let ϕP be the strictly convex function defined in (10.3). Then, there exist 
constants K9, K10 ≥ 1, depending only on a1, . . . , an ∈ (−1/n, 0] and dimension n, such that for every 
section S := SϕP

(x0, t) we have

⎛
⎝ 

S

|u(x) − u
μϕP

S | 2n
n−2 dμϕP

(x)

⎞
⎠

n−2
2n

≤ K10 t
1
2

⎛
⎝  

K9S

|∇ϕP u(x)|2 dμϕP
(x)

⎞
⎠

1
2

for every u ∈ Lip(K9S), as well as

⎛
⎝ 

S

|u(x)| 2n
n−2 dμϕP

(x)

⎞
⎠

n−2
2n

≤ K10 t
1
2

⎛
⎝ 

S

|∇ϕP u(x)|2 dμϕP
(x)

⎞
⎠

1
2

for every u ∈ Lipc(S), where dμϕP
(x) = xA dx.
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