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In this paper we consider sequences of polynomials {Hm(z)}∞m=0 generated by a 

relation 
∞∑

m=0
Hm(z)tm =

1
P (t) + ztrQ(t)

, where P and Q are real polynomials and 

r ∈ N, r ≥ 2. In the main result of the paper (cf. Theorem 1) we give a necessary 
conditions on P and Q (and their zeros) to ensure that for all sufficiently large m, 
the zeros of the polynomials Hm(z) are real. We also show that the set of all zeros 
of the Hm(z)’s for m � 1 is dense in a real ray.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The problem of describing the zero distribution of a sequence of polynomials remains an active area of 
research. From the classical methods of orthogonality to the spectral theory of positive matrices and asymp-
totic descriptions (i.e. approximate locations) there is a plethora of approaches to the problem. Depending 
on the approach one takes, the methods employed to investigate the problem can be quite different. In this 
paper we follow the approach used in the works [4], [3], [10], [11], and [12] as we analyze the zero location 
of a sequence of polynomials {Hm(z)}∞m=0 generated by the relation

∞∑
m=0

Hm(z)tm = 1
P (t) + ztrQ(t) , (r ∈ N)

where P and Q are real stable polynomials with some restrictions on their zero locus. In two of the authors’ 
recent papers considering such problems the choice of the generating functions was largely motivated by the 
theory of multiplier sequences (and stability preserving linear operators in general). As such, we considered 
the (family of) generating functions

1
(1 − t)n + ztr

and 1
P (t) + ztr

, (r ∈ N) (1.1)
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where P (t) is a polynomial with only positive zeros, and showed that the sequence of polynomials gener-
ated by these functions is eventually hyperbolic (see [4, p. 632, Theorem 1] and [3, p. 619, Theorem 1]). 
Establishing that all polynomials generated by functions of the type in (1.1) have only real zeros, not just 
the ones far enough out in the sequence, remains an open problem. Its resolution (in the positive) is in 
fact quite desirable, as it would open up the avenue to extending the family of functions that generate 
hyperbolic polynomials using locally uniform approximation arguments. This paper generalizes the results 
in [4] and [3] by considering generating functions whose denominators are elements of R[t][z] with coefficient 
polynomials that are hyperbolic. The elements of R[t][z] we consider can be viewed as linear combinations of 
1 and z with coefficients that are hyperbolic polynomials. In this light, connections between the properties 
of the coefficient polynomials and the stability of the generated sequence emerge, very much in the flavor 
of classical stability theory à la Hermite-Biehler.

The Hermite-Biehler theorem (see for example [9, p. 197]) and the works of R. Ellard and H. Šmigoc, 
M-T, Ho and A. Datta, and V. Pivovarchik ([2], [6], [5], [8]), among others, address the connections between 
the stability of a polynomial f = p(x2) + xq(x2), and the interlacing of the zeros of its ‘constituents’ p and 
q. Some of the cited works study the extent to which one may still be able to draw conclusions about the 
location of the zeros of the constituents, even if the polynomial f is not Hurwitz-stable. In particular, if n−
(resp. n+) denote the number of zeros of a polynomial f in the left (resp. right) half plane, then the number 
of (interlacing) real zeros of its constituents is bounded below in terms of |n− − n+|.

If we regard P (t) and Q(t) as the ‘constituents’ of the polynomials Hm(z), it would be reasonable to 
expect, analogously to the Hermite–Biehler theory, that the interlacing of the zeros of P and Q would imply 
hyperbolicity (real stability) of the polynomials Hm(z). Alas, somewhat the contrary is true: the more 
separated the zeros of P and Q are, the ‘better’ in terms of the hyperbolicity of the generated sequence (cf.
Corollary 1 and Remark 1).

The rest of the paper is organized as follows. Section 2 contains the setup and statement of the main 
result. Section 3 is devoted to the development of two key functions τ(θ) and z(θ), which allow us to identify 
points in the interval (0, π/r) with the zeros of our generated polynomials Hm(z) in a one-to-one fashion. In 
Section 4 we establish the stability of the polynomials Hm(z) and complete the proof of Theorem 1 modulo 
three auxiliary lemmas. We prove these lemmas in the concluding section of the paper.

2. The setup and the main result

Let

P (t) =
∏

−p−<k≤p+

(t− τk), and Q(t) =
∏

−q−<k≤q+

(t− γk) (2.1)

be two hyperbolic polynomials with p+, q+ positive and p−, q− negative zeros respectively, and suppose 
that P (0), Q(0) �= 0. We arrange the zeros of P (t) and Q(t) in an increasing order according to their indices. 
In particular, τ0 (γ0 resp.) is the largest negative zero of P (t) (Q(t) resp.), while τ1 (γ1 resp.) is its smallest 
positive zero.

Definition 1. Given a polynomial P (z), we denote by Z(P (z)) the set of zeros of P (z).

Definition 2. Let P and Q be polynomials. For each x > 0, we let nP
+(x) and nQ

+(x) be the number of 
positive zeros of P (t) and Q(t) on (0, x] counting multiplicity. Similarly, for each x < 0, we let nP

−(x) and 
nQ
−(x) be the number of negative zeros of P (t) and Q(t) on [x, 0).

In light of our discussion in the preceding section, it is perhaps not surprising that the quantities nP
+−nQ

+
and nQ

−−nP
− appear in what follows, as those controlling the extent to which the zeros of the constituents of 
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the sequence Hm(z) are allowed to intermingle without destroying the hyperbolicity of Hm(z). We formalize 
this connection in the next Lemma, whose proof we defer momentarily for the sake of a smoother exposition.

Lemma 1. Let P, Q be as in (2.1), nP
+ and nQ

+ be as in Definition 2, and let

R(t) = r − tP ′(t)
P (t) + tQ′(t)

Q(t) , r ∈ N, r ≥ 2. (2.2)

Suppose that

(i) nP
+(x) − nQ

+(x) ≥ 2 ∀x ≥ τ2, and nQ
+(x) = 0, ∀x ∈ (0, τ2] and

(ii) ImR(t) > 0 on the sector {t 
∣∣ 0 < |t| < τ2, 0 < Arg t < π/r}.

If τ1 < τ2, then the lone zero ta of P (t)R(t) in (τ1, τ2) is its smallest positive zero, and its multiplicity is 
one. If τ1 = τ2, then ta = τ1 = τ2 is the smallest positive zero of P (t)R(t).

We are now ready to state our main result.

Theorem 1. Let P, Q be polynomials as in (2.1), and the functions nP
−, n

P
+, n

Q
−, n

Q
+ be as in Definition 2. 

Consider the sequence of polynomials {Hm(z)}∞m=0 generated by the relation

+∞∑
m=0

Hm(z)tm = 1
P (t) + ztrQ(t) = 1

D(t, z) , r ≥ 2. (2.3)

If

(1) nP
+(x) − nQ

+(x) ≥ 2, ∀x ≥ τ2, and nQ
+(x) = 0, ∀x ∈ (0, τ2],

(2) nQ
−(x) − nP

−(x) ≥ 0, ∀x < 0,
(3) ImR(t) > 0 on the sector {t|0 < |t| < τ2, 0 < Arg t < π/r},
(4) ImR(t) > 0 on the semi-disk {t|0 < |t| < ta, 0 < Arg t < π},

then the zeros of Hm(z) are real and of the same sign (−1)p+−q+ for all m � 1. Moreover, 
⋃

m�1
Z(Hm) is 

dense between

a = − P (ta)
traQ(ta)

(2.4)

and (−1)p+−q+∞.

Example 1. If P (t) = (t + 2)(t − 1)(t − 2)(t − 3)(t − 5), Q(t) = (t + 1)(t − 4)) and r = 3, then ta ≈ 1.23, 
and conditions (3) and (4) are satisfied, as illustrated in Fig. 2.1. We thus conclude that the polynomials 
generated by 

1
P (t) + zt3Q(t) are all hyperbolic for m � 1.

We now provide the proof of Lemma 1.

Proof (of Lemma 1). We note that for any t �= τk, γj , −q− < j ≤ q+, −p− < k ≤ p+, we have

ImR(t) = Im

⎛
⎝ ∑ t

t− γj
−

∑ t

t− τk

⎞
⎠

−q−<j≤q+ −p−<k≤p+
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Fig. 2.1. The relevant regions for the applicability of Theorem 1 for the choices P (t) = (t + 2)(t − 1)(t − 2)(t − 3)(t − 5) and 
Q(t) = (t + 1)(t − 4).

= Im

⎛
⎝−

∑
−q−<j≤q+

tγj
|t− γj |2

+
∑

−p−<k≤p+

tτk
|t− τk|2

⎞
⎠

=

⎛
⎝ ∑

−p−<k≤p+

τk
|t− τk|2

−
∑

−q−<j≤q+

γj
|t− γj |2

⎞
⎠ Im t. (2.5)

Thus condition (ii) implies that ∑
−p−<k≤p+

τk
|t− τk|2

−
∑

−q−<j≤q+

γj
|t− γj |2

> 0

for all t ∈ {t|0 < |t| < τ2, 0 < Arg t < π/r}. We let t approach the x-axis within this sector in order to 
conclude that

R′(t) =
∑

−p−<k≤p+

τk
(t− τk)2

−
∑

−q−<j≤q+

γj
(t− γj)2

≥ 0, ∀t ∈ [0, τ2)\{τ1}. (2.6)

Consider now the case when τ1 < τ2. Since r ∈ N, we see that R(0) = r > 0. In addition, by equation 
(2.6), R(t) is non-decreasing on (0, τ1) ∪ (τ1, τ2). We conclude that R has no zeros on [0, τ1). The conditions 
limt→τ+

1
R(t) = −∞ and limt→τ−

2
R(t) = +∞ now imply that R has a unique zero on (τ1, τ2) since it is a 

continuous rational function there. Finally, we argue that ta is in fact a simple zero of R(t). By condition 
(ii), ImR(t) ≥ 0 on the top half of a sufficiently small circle centered at ta, and ImR(t) ≤ 0 on the lower 
half of the same circle, since R(t) is a rational function with real coefficients. Consequently, the change in 
argument of R(t) on this circle (oriented counterclockwise) is at most 2π. Using the argument principle we 
conclude that R(t) has at most one zero (counting multiplicities) in the disk bounded by the circle.

If τ1 = τ2, then P (τ1) = P ′(τ1) = 0 and consequently

P (τ1)R(τ1) = rP (τ1) − τ1P
′(τ1) + τ1P (τ1)Q′(τ1)

Q(τ1)
= 0.

Since neither P nor R vanish on [0, τ1), we conclude that the smallest positive zero of P (t)R(t) is τ1. �
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Corollary 1 (to the proof of Lemma 1). Consider the generating relation (2.3). If, in addition to the assump-
tions of Theorem 1, the zeros of P (t) are positive and those of Q(t) are negative, then the zeros of Hm(z)
are real for all m � 1.

Proof. It is straightforward that under the assumption of the corollary, conditions (1) and (2) of Theorem 1
are satisfied. In addition, equation (2.5) guarantees that conditions (3) and (4) are also satisfied. The result 
follows. �
Remark 1. The following observations are immediate:

(i) Since τ0 < 0, as t → τ0 in the upper half plane, the right hand side of (2.5) eventually turns negative. 
It follows from condition (4) in Theorem 1 that |τ0| > ta.

(ii) The conclusion of Theorem 1 is false if we allow the zeros of P and Q to interlace. For example, with 
P (t) = (t − 1)(t − 3)(t − 5) and Q(t) = (t − 2)(t − 4) and r = 3 we see that H16(z) has a non-real root 
z = −0.58844... + i · 0.106817....

(iii) degHm(z) ≤ �m/r
 for all m ≥ 0. This is most readily deduced from induction and the identity

(P (t) + ztrQ(t))
∞∑

m=0
Hm(z)tm = 1,

which is equivalent to

(P (Δ) + zΔrQ(Δ)) [Hm(z)] =
{

1 m = 0
0 m ≥ 1

,

where Δ[Hm(z)] = Hm−1(z), and H−k(z) ≡ 0 for k ∈ N.
(iv) With the substitution t by −t in Corollary 1, we see that the zeros of Hm(z) are still real if the zeros 

of P (t) are negative and Q(t) are positive.

In the remainder of the paper, which is dedicated to the proof of the main result, the notations introduced 
in this section (in particular in Theorem 1) are in effect even if we do not explicitly repeat them in the 
statement of a result.

3. The functions τ (θ) and z(θ)

In this section we develop two key functions τ(θ) and z(θ), which allow us to identify points in the interval 
(0, π/r) with the zeros of our generated polynomials Hm(z) in a one-to-one fashion.

For each t = τeiθ, 0 < θ < π, we define the angles 0 < θk(t), ηj(t) < π implicitly by

θk(t) = Arg
(
τeiθ − τk

)
(−p− < k ≤ p+),

ηj(t) = Arg
(
τeiθ − γj

)
(−q− < j ≤ q+),

or equivalently

τeiθ − τk
τe−iθ − τk

= e2iθk(t) (−p− < k ≤ p+), (3.1)

τeiθ − γj
−iθ

= e2iηj(t) (−q− < j ≤ q+). (3.2)

τe − γj
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From these equations we obtain

τ = τk
sin θk(t)

sin(θk(t) − θ) = γj
sin ηj(t)

sin(ηj(t) − θ) (−p− < k ≤ p+, −q− < j ≤ q+). (3.3)

Let Log(t) denote the principal branch of the logarithm. Then the function

f(t) = r Log t +
∑

−q−<j≤q+

Log(t− γj) −
∑

−p−<k≤p+

Log(t− τk) (3.4)

is analytic on the region Im t > 0, and hence f satisfies the Cauchy-Riemann equations there:

τ
∂ Re f
∂τ

= ∂ Im f

∂θ
= ReR(t),

∂ Re f
∂θ

= −τ
∂ Im f

∂τ
= − ImR(t). (3.5)

On the other hand,
∑

−p−<k≤p+

θk(t) −
∑

−q−<k≤q+

ηk(t) − rθ = − Im f, and (3.6)

ln
∣∣∣∣ trQ(t)
P (t)

∣∣∣∣ = Re f. (3.7)

We thus arrive at the following lemmas.

Lemma 2. Suppose t = τeiθ, 0 < θ < π. The following statements are equivalent

(1) ImR(t) > 0.
(2) For any fixed θ, the function

∑
−p−<k≤p+

θk(t) −
∑

−q−<j≤q+

ηj(t)

is strictly decreasing in τ .
(3) For any fixed τ , the function

∣∣∣∣ trQ(t)
P (t)

∣∣∣∣
is strictly decreasing in θ ∈ (0, π).

Lemma 3. Suppose t = τeiθ, 0 < θ < π. The following statements are equivalent

(1) ReR(t) > 0.
(2) For any fixed τ , the function

∑
−p−<k≤p+

θk(t) −
∑

−q−<j≤q+

ηj(t) − rθ

is strictly decreasing in θ.
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(3) For any fixed θ, the function

∣∣∣∣ trQ(t)
P (t)

∣∣∣∣
is strictly increasing in τ .

The next result will allow us to define the function τ(θ), which will play a key role in the proof of the 
main result.

Proposition 1. Let n and s denote the total number of zeros of P and Q respectively. For each θ ∈ (0, π/r), 
there exists a unique t = τeiθ for which

∑
−p−<k≤p+

θk(t) −
∑

−q−<j≤q+

ηj(t) − rθ = (p+ − q+ − 1)π. (3.8)

Proof. We first have the inequalities

p+ − q+ − 1 = nP
+(∞) − nQ

+(∞) − 1 > 0

and

p+ − q+ − 1 ≥ n− s

2

since the second inequality is equivalent to

p+ − q+ − 2 ≥ p− − q−.

Next, we observe that

∑
−p−<k≤p+

θk(t) −
∑

−q−<k≤q+

ηk(t) − rθ

approaches (p+ − q+)π − rθ as |t| → 0, and (n − s − r)θ as |t| → ∞ where

(n− s− r)θ <
(n− s− r)π

r
< (p+ − q+ − 1)π < (p+ − q+)π − rθ.

By the intermediate value theorem, there is a τ ∈ (0, ∞) so that (3.8) holds.
To prove the uniqueness of τ , we will show that

∑
−p−<k≤p+

θk(t) −
∑

−q−<k≤q+

ηk(t) − rθ

is monotone in τ . Indeed, since nQ
−(x) ≤ nP

−(x), ∀x < 0, we deduce that

∑
−p−<k≤0

θk −
∑

−q−<j≤0
ηj ≤ 0,

from which (3.8) implies
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Fig. 3.1. The angles θk(t) and ηj(t).

(p+ − q+ − 1)π ≤
p+∑
k=1

θk −
q+∑
j=1

ηj − rθ. (3.9)

The inequality nP
+(x) − nQ

+(x) ≥ 2 implies the existence of angles θk�
with the following properties:

(i) k� ∈ {1, 2, 3, . . . , p+} for all 1 ≤ � ≤ p+ − q+,
(ii) θ < θk�

< π, 1 ≤ � ≤ p+ − q+,
(iii) θ1, θ2 ∈ {θk�

|1 ≤ � ≤ p+ − q+},
(iv)

∑p+−q+
�=1 θk�

≤
∑p+

k=1 θk −
∑q+

j=1 ηj .

We thus see that

(θ1 − θ) + (θ2 − θ) ≥ (p+ − q+ − 1)π + (r − 2)θ − (p+ − q+ − 2)π ≥ π.

Since θ2 − θ ≥ θ1 − θ, we have θ2 − θ ≥ π/2. The inequality

τ2 > τ (3.10)

follows by noting that in the triangle �Oτ2τe
iθ in Fig. 3.1 the angle at τeiθ (namely θ2 − θ) is the largest, 

and hence the side opposite this vertex is the longest. Condition (3) of Theorem 1 implies that ImR(t) > 0, 
and consequently

∑
−p−<k≤p+

θk(t) −
∑

−q−<k≤q+

ηk(t)

is monotone in τ by Lemma 2. �
Thus for each θ ∈ (0, π/r), we can define the functions τ(θ), θk(θ), −p− < k ≤ p+, and ηj(θ), −q− < j ≤

q+, according to (3.1), (3.2), (3.3), and (3.8). To ensure these functions are analytic, we need to make use 
of the complex version of the Implicit Function Theorem.

Theorem 2 (Theorem 2.1.2, p. 24 [7]). Let fj(w, z), j = 1, . . . , m, be analytic functions of (w, z) =
(w1, . . . , wm, z1, . . . , zn) in a neighborhood of a point (w∗, z∗) in Cm ×Cn, and assume that fj(w∗, z∗) = 0, 
j = 1, . . . , m, and that

det
(

∂fj
∂wk

)m

j,k=1
�= 0 at (w∗, z∗).

Then the equations fj(w, z) = 0, j = 1, . . . , m have a uniquely determined analytic solution w(z) in a 
neighborhood of z∗, such that w(z∗) = w∗.

We are now in position to state and prove the following lemma.
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Lemma 4. The functions τ(θ), θk(θ), −p− < k ≤ p+, and ηj(θ), −q− < j ≤ q+ defined by equations (3.1), 
(3.2), (3.3), and (3.8) are analytic in a neighborhood of (0, π/r).

Proof. Let 
−→
θ =

(
θ−p−+1, θ−p−+2, . . . , θp+−1, θp+

)
and −→η =

(
η−q−+1, η−q−+2, . . . , ηq+−1, ηq+

)
. We define 

the functions fk, gj : Cn+s+1 ×C → C by

fk(
−→
θ ,−→η , τ, θ) = τk

sin θk
sin(θk − θ) − τ, (−p− < k ≤ p+)

gj(
−→
θ ,−→η , τ, θ) = γj

sin ηj
sin(ηj − θ) − τ, (−q− ≤ j ≤ q+)

and

h(
−→
θ ,−→η , τ, θ) =

∑
−p−<k≤p+

θk −
∑

−q−<j≤q+

ηj − rθ − (p+ − q+ − 1)π.

Note that for each θ ∈ (0, π/r), there exist θk, ηk, and τ so that

fk(
−→
θ ,−→η , τ, θ) = 0, (−p− < k ≤ p+)

gj(
−→
θ ,−→η , τ, θ) = 0, (−q− < j ≤ q+)

h(
−→
θ ,−→η , τ, θ) = 0,

and that there exists a neighborhood W of (
−→
θ , −→η τ, θ) ∈ Cn+s+1×C where each of these function is analytic. 

We calculate

∂fk
∂θk

= −τk sin θ

sin2(θk − θ)
=: ck,

∂gj
∂ηj

= −γj sin θ

sin2(ηj − θ)
=: dj ,

and write the Jacobian matrix at (
−→
θ , −→η , τ, θ) as

⎡
⎢⎣C 0 −1

0 D −1
1 −1 0

⎤
⎥⎦ ,

where C and D are two n × n and s × s diagonal matrices whose diagonal entries are ck, −p− < k ≤ p+, 
and dj , −q− < j ≤ q+. By expanding along the first row, we find the determinant of this matrix to be

±
∏

−p−<k≤p+

ck
∏

−q−<j≤q+

dj

⎛
⎝ ∑

−p−<k≤p+

1
ck

−
∑

−q−<j≤q+

1
dj

⎞
⎠ .

We now show that this expression is nonzero. To this end note that since t = τeiθ, equation (3.3) implies

t− τk = τeiθ − τk

(3.3)= τk
sin θk

eiθ − τk
sin(θk − θ)
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Fig. 3.2. The τ(θ)eiθ curve and the set R (cf. Lemma 7) for P (t) = (t − 1)(t − 2)(t − 3), Q(t) = (t + 3)(t − 4) and r = 3.

= τk
cos θk sin θ + i sin θk sin θ

sin(θk − θ)

= τk
sin θ

sin(θk − θ)e
iθk

= τ sin θ

sin θk
eiθk (3.11)

for −p− < k ≤ p+, and similarly

t− γj = γk
sin θ

sin(ηj − θ)e
iηj = τ sin θ

sin ηj
eiηj (3.12)

for −q− < j ≤ q+. Together with (2.5) these identities yield

ImR(t)
Im t

=
∑

−p−<k≤p+

sin2(θk − θ)
τk sin2 θ

−
∑

−q−<j≤q+

sin2(ηj − η)
γj sin2 θ

= − 1
sin θ

⎛
⎝ ∑

−p−<k≤p+

1
ck

−
∑

−q−<j≤q+

1
dj

⎞
⎠ .

From (3) in Theorem 1 and (3.10), we conclude that the last expression is nonzero, which in turn implies 
that the functions τ(θ), θk(θ), −p− < k ≤ p+, and ηj(θ), −q− < j ≤ q+, are analytic in a neighborhood of 
(0, π/r) by the Implicit Function Theorem. �

We now turn our attention to the function z(θ). Heuristically, we expect from the generating relation 
(2.3) that the zeros (in z) of the denominator are fundamentally connected to the polynomials Hm(z). This 
observation motivates the following definition.

Definition 3. We define the function z(θ) for θ ∈ (0, π/r) by

z(θ) = − P (t)
trQ(t) , (3.13)

where t = τ(θ)eiθ.

We recall from the definition of τ(θ) that equation (3.8) holds for t = τ(θ)eiθ.
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Lemma 5. Let z(θ) be as in Definition 3. Under the hypotheses of Theorem 1 the function (−1)p+−q+z(θ)
is real valued, strictly increasing and positive on (0, π/r).

Proof. We write equation (3.13) as

z(θ) = −
∏

−p−<k≤p+

(
τeiθ − τk

)
τ reirθ

∏
−q−<j≤q+

(τeiθ − γj)
.

With (3.11), (3.12) and (3.8), this equation becomes

z(θ) = (−1)p+−q+(τ sin θ)n−s ·
∏

−q−<j≤q+
sin ηj

τ r
∏

−p−<k≤p+
sin θk

, (3.14)

from which we deduce that (−1)p+−q+z(θ) is a positive real-valued function on (0, π/r). We continue by 
showing that ln |z| (and hence |z|) is strictly increasing on this interval. Let f be defined as in (3.4). 
Equations (3.6) and (3.8) imply that Im f is constant on the τ -curve defined by τ(θ)eiθ, 0 < θ < π/r. By 
computing the derivative of Im f with respect to θ on the τ -curve we obtain

0 = ∂ Im f

∂τ

dτ

dθ
+ ∂ Im f

∂θ
. (3.15)

Using equations (3.7) and (3.13), we see that ln |z(θ)| = − Re f(t) for t = τ(θ)eiθ and hence

d ln |z(θ)|
dθ

= −∂ Re f
∂τ

dτ

dθ
− ∂ Re f

∂θ
.

With (3.15), we recall from (3.5) that

ImR(τeiθ) = τ
∂ Im f

∂τ
= −∂ Re f

∂θ

and

ReR(τeiθ) = τ
∂ Re f
∂τ

= ∂ Im f

∂θ
= −∂ Im f

∂τ

dτ

dθ
.

Thus

∣∣R(τeiθ)
∣∣2 =

(
ReR(τeiθ)

)2 +
(
ImR(τeiθ)

)2
= τ

∂ Re f
∂τ

(
−∂ Im f

∂τ

dτ

dθ

)
+ τ

∂ Im f

∂τ

(
−∂ Re f

∂θ

)

= τ
∂ Im f

∂τ

(
−∂ Re f

∂τ

dτ

dθ
− ∂ Re f

∂θ

)

= ImR(τeiθ)d ln |z(θ)|
dθ

.

By assumption (3) in Theorem 1 and equation (3.10), ImR > 0 on the τ -curve, which in turn implies that 
the right hand side of the above equation is strictly positive there. The result now follows. �
Remark 2. From the definition of z(θ) in equation (3.13) and the reality of this function given in Lemma 5, 
we conclude that for each θ ∈ (0, π/r),
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t0,1 := τ(θ)e±iθ (3.16)

are two zeros in t of P (t) + z(θ)trQ(t).

Lemma 6. Let τ(θ) and z(θ) be defined as in (3.3) and (3.13) respectively for θ ∈ (0, π/r). Then with ta as 
defined in Lemma 1, the following equations hold:

(i) limθ→0 τ(θ) = ta,
(ii) limθ→0 z(θ) = −P (ta)/traQ(ta),
(iii) limθ→π/r τ(θ) = 0, and
(iv) limθ→π/r z(θ) = (−1)p+−q+∞.

Proof. Combining the Cauchy-Riemman equations (3.5) with equation (3.15) we find that along the τ -curve

dτ

dθ
= −τ

ReR(t)
ImR(t) .

Recall that R(t) is a rational function, and hence the number of critical points of τ(θ) on (0, π/r) is finite. 
Since 0 ≤ τ(θ) ≤ τ2, τ(θ) is bounded, and consequently the limits limθ→0 τ(θ) and limθ→π/r τ(θ) exist. 
Consider now the two solutions t0,1 = τ(θ)e±iθ to the equation z(θ) + P (t)

trQ(t) = 0. Lemma 5 implies that 
limθ→0 z(θ) =: z(0) exists, therefore limθ→0 τ(θ) is a double root of z(0) +P (t)/trQ(t). As such, it is also a 
root of

d

dt

(
z(0) + P (t)

trQ(t)

)
= −P (t)R(t)/tr+1Q(t).

Having established these facts,

(i) is now a straightforward consequence of Lemma 1 and equation (3.10) and
(ii) follows from (i) and the definition of z(θ).

From the definitions of θk(t), −p− < k ≤ p+, and ηj(t), −q− < j ≤ q+, in (3.1) and (3.2), we obtain

lim
τ→0

∑
−p−<k≤p+

θk(τeiπ/r) −
∑

−q−<j≤0
ηj(τeiπ/r) = (p+ − q+)π.

Also, if τ(π/r) := limθ→π/r τ(θ) �= 0, then the limit of (3.8) as θ → π/r gives

∑
−p−<k≤p+

θk(τ(π/r)eiπ/r) −
∑

−q−<j≤0
ηj(τ(π/r)eiπ/r) = (p+ − q+)π,

which contradicts to Lemma 2 for θ = π/r. We conclude τ(π/r) = 0 and (iii) follows. Finally, (iv) is easily 
seen using (iii) and the definition of z(θ) to establish that limθ→π/r |z(θ)| = +∞, and noting that the sign 
of z(θ) is (−1)p+−q+ by (3.14). �

In light of Lemma 6, we will henceforth understand τ(θ) to be a continuous function on [0, π/r]. Similarly, 
we define z(0) = −P (ta)/traQ(ta). The next lemma establishes that the function P (t)/trQ(t) is real valued 
on the boundary of the set shown in Fig. 3.2, but nowhere in its interior.
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Lemma 7. If

R =
{
t = |t|eiθ ∈ C | 0 < θ < π/r and 0 < |t| ≤ τ(θ)

}
(3.17)

and t = |t|eiθ ∈ R, then

Im P (t)
trQ(t) = 0

if and only if t = τ(θ)eiθ.

Proof. If t = τ(θ)eiθ, then by the reality of z(θ) (cf. Lemma 5)

Im P (t)
trQ(t) = Im (−z(θ)) = 0.

If t = |t|eiθ ∈ R and

Im P (t)
trQ(t) = 0,

then

P (t)Q(t)
P (t)Q(t)

= e2riθ. (3.18)

For −p− < k ≤ p+ and −q− < j ≤ q+ we define the angles θk(t) and ηj(t) via the equations

|t|eiθ − τk
|t|e−iθ − τk

= e2iθk(t), and

|t|eiθ − γj
|t|e−iθ − γj

= e2iηj(t).

Substituting these expressions in equations (3.18) and equating exponents yields
∑

−p−<k≤p+

θk(t) −
∑

q−<j≤q+

ηj(t) = rθ + lπ, for some l ∈ Z.

Recall that for each θ ∈ (0, π/r), the difference of angle sums is decreasing in |t| by Lemma 2 (2). Thus

(p+ − q+)π >
∑

−p−<k≤p+

θk(t) −
∑

−q−<j≤q+

ηj(t) − rθ

≥
∑

−p−<k≤p+

θk(τeiθ) −
∑

−q−<j≤q+

ηj(τeiθ) − rθ

= (p+ − q+ − 1)π.

Since l ∈ Z, we must have l = p+ − q+ − 1. By Proposition 1 we conclude that |t| = τ , and the result 
follows. �
Lemma 8. Let θ ∈ [0, π/r) be a fixed angle with z := z(θ) and τ := τ(θ). The only zeros in t of P (t) +
z(θ)trQ(t) in the closed disk centered at the origin with radius τ(θ) are t0,1 := τ(θ)e±iθ.
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Proof. Lemma 7 implies that P (t) + z(θ)trQ(t) has no zero in t on the region R in (3.17) except τ(θ)e±iθ. 
Suppose t /∈ R, |t| ≤ τ(θ), Im t ≥ 0, and t �= 0. We consider four cases.

Case 1: t ∈ (0, ta]. Recall that ta as the smallest positive zero of P (t)R(t) where R(t) is given in (2.2). Since 
d
dt (P (t)/trQ(t)) = −P (t)R(t)

tr+1Q(t) , we see that P (t)/trQ(t) is monotone on (0, ta]. From (2.1), the sign of the 

derivative is (−1)p+−q++1 for t � 1 and hence

(−1)p+−q++1 P (t)
trQ(t) ≤ (−1)p+−q++1 P (ta)

traQ(ta)
.

On the other hand, since θ ≥ 0, Lemmas 5 and 6 imply

(−1)p+−q+z(θ) ≥ (−1)p+−q++1 P (ta)
traQ(ta)

= (−1)p+−q+z(0).

If P (t) + z(θ)trQ(t) = 0, then

(−1)p+−q++1 P (ta)
traQ(ta)

≥ (−1)p+−q++1 P (t)
trQ(t) = (−1)p+−q+z(θ) ≥ (−1)p+−q++1 P (ta)

traQ(ta)
,

from which we conclude t = ta. If θ = 0, then t = ta = t0 = t1. On the other hand, if θ > 0, then the 
identity z(0) = z(θ) contradicts to Lemma 5.

Case 2: 0 ≤ Arg t ≤ θ and t /∈ (0, ta]. Since t /∈ R and |t| ≤ τ(θ), we have τ(θ) ≥ |t| > τ(Arg t). By the 
intermediate value theorem, there exists θ∗ ∈ (Arg t, θ] such that τ(θ∗) = |t|. Recall from Lemma 2 that 
|trQ(t)/P (t)| is decreasing in Arg t for fixed |t|. Thus the fact that θ∗ ∈ (Arg t, θ] and τ(θ∗) = |t| together 
with Lemma 5 and (3.13) imply

∣∣∣∣ P (t)
trQ(t)

∣∣∣∣ < (−1)p+−q+z(θ∗) ≤ (−1)p+−q+z(θ) = |z(θ)|

from which we conclude P (t) + z(θ)trQ(t) �= 0.

Case 3: θ < Arg t < π/r. Similar to the second case, the inequalities τ(θ) ≥ |t| > τ(Arg t) and the 
intermediate value theorem imply that there exists θ∗ ∈ (θ, Arg t) such that τ(θ∗) = |t|. Thus from the 
decreasing of |trQ(t)/P (t)| in Arg t for fixed |t|, Lemma 5 and (3.13) imply

∣∣∣∣ P (t)
trQ(t)

∣∣∣∣ > (−1)p+−q+z(θ∗) > (−1)p+−q+z(θ) = |z(θ)|

and consequently P (t) + z(θ)trQ(t) �= 0.

Case 4: π/r ≤ Arg t ≤ π. From Lemma 6, we have 0 = τ(π/r) ≤ |t| ≤ τ(θ). By the intermediate value 
theorem, there exists θ∗ ∈ (θ, π/r) such that τ(θ∗) = |t| and thus, after employing similar arguments as in 
the previous cases, we conclude

∣∣∣∣ P (t)
trQ(t)

∣∣∣∣ > (−1)p+−q+z(θ∗) > (−1)p+−q+z(θ) = |z(θ)|

and P (t) + z(θ)trQ(t) �= 0.
In all cases we showed that if t is in the closed disk with radius τ and t �= τe±iθ, then t cannot be a zero 

of P (t)/trQ(t). The proof is thus complete. �
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4. Zeros of Hm(z)

Having studied the functions τ(θ) and z(θ), we now turn our attention to studying the zeros of the 
polynomials Hm(z).

Let tκ := tκ(z), 0 ≤ κ ≤ L, be the simple zeros of P (t) + ztrQ(t) in non-decreasing (in modulus) order 
according to their indices, so that tL+1 is the smallest zero (in modulus) with multiplicity bigger than 1. 
Then the Cauchy integral formula gives

Hm(z) = 1
2πi

∮
|t|=ε

dt

(P (t) + ztrQ(t))tm+1

= −
∑

0≤κ≤L

1
Dt(tκ, z)tm+1

κ

+ 1
2πi

∮
|t|= |tL|+|tL+1|

2

dt

(P (t) + ztrQ(t))tm+1 , (4.1)

where

Dt(tκ, z) = P ′(tκ) − P (tκ)
tr
κ
Q(tκ)

(
rtr−1

κ
Q(tκ) + tr

κ
Q′(tκ)

)

= −P (tκ)R(tκ)
tκ

.

Substituting this expression into (4.1) we obtain

Hm(z) =
∑

0≤κ≤L

1
P (tκ)R(tκ)tm

κ

+ 1
2πi

∮
|t|= |tL|+|tL+1|

2

dt

(P (t) + ztrQ(t))tm+1 . (4.2)

The reader will recall that for θ ∈ (0, π/r), t0 and t1 are distinct zeros of P (t) + z(θ)trQ(t) (cf. Lemma 8), 
hence L ≥ 1 in this representation.

Let

g(t) = P (t)R(t)tm, (4.3)

and denote by {θh}, 0 ≤ θh ≤ π/r, the sequence (possibly finite) of angles which correspond to the points 
sh := τ(θh)eiθh on the τ -curve where1

Im g (sh) = 0. (4.4)

Note that under the assumption (3) of Theorem 1 and the inequality τ(θ) < τ2, for 0 < θ < π/r, in (3.10), 
ImR(t) > 0 on the τ -curve, and hence g(sh) = 0 if and only if sh = ta or sh = 0. Let σ (Hm(z(θh); 0, π/r)
denote the number of sign changes of the sequence {Hm(z(θh)}h where z(0) and z(π/r) are defined by the 
limits in Lemma 6. Deferring the proof of Hm(z(θh)) �= 0 for m � 1 (cf. Lemmas 9 and 11), we now show 
that

σ (Hm(z(θh); 0, π/r) ≥ �m/r
 .

1 The function g and the angles θh clearly depend on m. In the interest of readability, we suppress this dependence in the 
notation. When necessary, the dependence will be explicitly emphasized in the text rather in the notation.
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With this inequality, Lemmas 5 and 6 show that function z(θ) is monotone and it maps the interval 

(0, π/r) onto the interval with endpoints (−1)p+−q+∞ and a = − P (ta)
traQ(ta)

where ta is defined in Lemma 1. 

Consequently Hm(z) has at least �m/r
 real zeros between − P (ta)
traQ(ta)

and (−1)p+−q+∞ by the intermediate 

value theorem.
In order to establish a lower bound on the quantity σ (Hm(z(θh); 0, π/r), we first study the sign changes in 

the sequence {g(sh)} omitting the first and last terms (which are 0). To this end, let γ be the counterclockwise 
loop formed by the curve τ(θ)eiθ and its conjugate (see Fig. 3.2). Denote by γ′ the image of γ under the 
map g(t) − ξ, where ξ �= 0 is a small real number chosen so that ξP (0)R(0) > 0. According to the Argument 
Principle, the winding number of γ′ around the origin is equal to the number of zeros of g(t) − ξ inside γ, 
since this function has no poles there. If g(t) − ξ = 0, truncating the Taylor expansion of P (t)R(t) about 
the origin at the constant term yields

P (0)R(0)tm (1 + O(t)) = ξ.

Rearranging for t yields

t = ωk
m

√
ξ

P (0)R(0)

(
1 + O(ξ1/m)

)
, (4.5)

where ωk = e2kπi/m is an m-th root of 1.
If we truncate the Taylor expansion of P (t)R(t) about the origin at the linear term instead, we obtain

P (0)R(0)tm
(

1 +
(
P ′(0)
P (0) + R′(0)

R(0)

)
t + O(t2)

)
= ξ.

Using the expression of t from (4.5) and rearranging lead to the more precise estimate

t = ωk
m

√
ξ

P (0)R(0)

(
1 − ωk

m

(
P ′(0)
P (0) + R′(0)

R(0)

)
m

√
ξ

P (0)R(0) + O(ξ2/m)
)
. (4.6)

Computing the principal argument of both sides gives

Arg t = 2kπ
m

− sin(2kπ/m)
m

(
P ′(0)
P (0) + R′(0)

R(0)

)
m

√
ξ

P (0)R(0) + O(ξ2/m). (4.7)

Equations (4.6) and (4.7) establish that as ξ → 0, |t| → 0, while Arg(t) → 2kπ/m. If | Arg(t)| ≤ π/r − ν

for some fixed small ν independent of ξ, then for sufficiently small ξ, |t| < τ(Arg t), and consequently t lies 
inside γ. Thus g(t) − ξ has at least

2 �m/2r
 + 1

zeros inside γ close to the origin if 2r � m (namely one for each value of k between −�m/2r
 and �m/2r
), 
while it has at least m/r − 1 such zeros in case 2r | m.

In addition to the zeros found by the above asymptotic expansion, g(t) −ξ has an additional zero near ta. 
Indeed, g(0) = g(ta) = 0, g(t) �= 0 on (0, ta) and g(t) is continuous and real valued on [0, ta]. Furthermore, 
equation (4.6) (with k = 0) implies that g(t) − ξ has a simple positive zero close to the origin for sufficiently 
small ξ. It follows that g(t) − ξ must also have a real zero near (but to the left of) ta, which therefore lies 
inside γ. Applying argument principle to g(t) − ξ we conclude that
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1
2πi

∮
γ

g′(t)
g(t) − ξ

dt ≥
{

2 �m/2r
 + 2 if 2r � m

m/r if 2r|m
.

Note that we may partition the curve γ into arcs [sh, sh+1] ⊂ γ and their conjugates. Having done so we 
obtain

1
2πi

∮
γ

g′(t)
g(t) − ξ

dt = 1
2πi
∑
h

∫
[sh,sh+1]∪[sh+1,sh]

g′(t)
g(t) − ξ

dt.

By the definition of the points {sh}, g(t) − ξ maps [sh, sh+1] ∪ [sh+1, sh] to a loop whose winding number 
around 0 is nonzero if and only if

(g(sh+1) − ξ) (g(sh) − ξ) < 0,

which, by taking ξ is sufficiently small, implies that g(sh+1)g(sh) ≤ 0. Since g(sh) = 0 if and only if θh = 0
or θh = π/r, we conclude that

σ (g(sh), 0, π/r) ≥
{

2 �m/2r
 if 2r � m

m/r − 2 if 2r|m
.

In Section 5 we will prove that

(i) For m � 1, Hm(z(θh)) �= 0 and the sign of g(sh) is the same as the sign of Hm(z(θh));
(ii) if 2r|m and one endpoint of (θh, θh+1) is π/r then Hm(z(θ)) has a zero on this interval, and
(iii) the sign of Hm(z(θ)) is (−1)p+ and (−1)p++	m/r
 as θ → 0 and θ → (π/r)− respectively.

Using these three results we now complete the proof of Theorem 1. By the intermediate value theorem 
Hm(z(θ)) has at least �m/r
 − 1 zeros on (0, π/r) each of which gives a distinct zero of Hm(z) between 
a = −P (ta)/(traQ(ta)) and (−1)p+−q+∞ by the monotonicity of z(θ). Since the degree of Hm(z) is �m/r

(see (iii) in Remark 1), its remaining zero must be real, and

sgn
(

lim
z→(−1)p+−q++1∞

Hm(z)
)

= (−1)	m/r
 sgn
(

lim
z→(−1)p+−q+∞

Hm(z)
)

Thus by (iii), Hm(z) has the same sign at z = a as it does near (−1)p+−q++1∞. We conclude that Hm(z)
cannot change sign between a and (−1)p+−q++1∞, and must therefore have its remaining zero between a
and (−1)p+−q+∞.

We finish this section by proving that the union of the zeros of the Hm(z)’s (m � 1) form a dense subset 

of the interval I with endpoints a = − P (ta)
traQ(ta)

and (−1)p+−q+∞. To this end, note that z (the function 

defined in (3.13)) is a continuous and monotone map from (0, π/r) to I. Therefore, if we can demonstrate 
that the set of θ′hs (which depend on m) form a dense subset of (0, π/r) the claim would follow. To this end, 
consider an arbitrary open interval or (α, β) ⊂ (0, π/2), and the arc

Λ =
{
τ(θ)eiθ | θ ∈ (α, β)

}
associated to it on the τ -curve. Recall that g depends on m, and note that the change in argument of g(t)
on Λ
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ΔΛ Arg(g) = ΔΛ(P (t)R(t)) + m(β − α) → ∞ as m → ∞.

Thus, there exists an m so that ΔΛ Arg(g) > π. Hence g(t) ∈ R for some t ∈ Λ (i.e., Arg(t) = θh for some 
h), or equivalently, Im(g(t)) = 0.

5. Proofs of the three lemmas

We begin this section with a result concerning exponential polynomials. While we will use it to establish 
the three claims made at the end of the previous section, the result is interesting in its own right, as 
exponential polynomials are objects of interest in a number of active research areas. Without striving for 
completeness, we mention only a few here. Shapiro’s 1958 conjecture on the zero distribution of the members 
of the ring or exponential polynomials motivated D’Aquino, Macintyre and Terzo to study these objects in 
an algebraic setting in the paper [1], where they attribute the origins of Shapiro’s conjecture to complex 
analytic considerations. Exponential polynomials are also central objects in the study of decomposition of 
integers into sums of powers of integers (such as Vinogradov’s Three primes theorem) and in the methods 
used in arriving at such theorems (such as the Hardy-Littlewood circle method). Finally, we note that they 
also appear in Weyl’s criterion regarding the equidistribution of sequences. We are unaware of results akin 
to that of Proposition 2, which shows that certain exponential polynomials have infinitely many real zeros.

Proposition 2. Let n ∈ N, n ≥ 2, and let ωκ = e(2κ−1)πi/n be the n-th root of −1 for 1 ≤ κ ≤ n − 1. For 
any � ∈ Z, and x ≥ 0 such that ω�

1e
xω1 = ω�

0e
xω0 ∈ R, the sign of

n−1∑
κ=0

ω�
κ
exωκ (5.1)

is the same as the sign of the first term. In particular, the function in (5.1), as a function of x, has infinitely 
many real zeros.

Proof. The result is immediate for the cases n = 2. We henceforth assume that n ≥ 3, and (without loss of 
generality) that 0 ≤ � < n. The requirements that ω�

1e
xω1 = ω�

0e
xω0 ∈ R and x ≥ 0 necessitate that

x =
π
(
b− �

n

)
sin
(
π
n

) , for some b ∈ N.

With this explicit expression for x we also calculate

ω�
0e

xω0 = (−1)beπ
(
b− �

n

)
cot(π/n). (5.2)

Thus, if x is as required, then

n−1∑
κ=0

ω�
κ
exωκ = ω�

0e
xω0

(
2 +

n−1∑
κ=2

(
ωκ

ω0

)�

ex(ωκ−ω0)

)
(5.3)

and consequently, it remains to prove that

2 +
n−1∑
κ=2

ω�
κ
exωκ

ω�
0e

xω0
> 0.

We note that
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∣∣∣∣∣
n−1∑
κ=2

ω�
κ
exωκ

ω�
0e

xω0

∣∣∣∣∣ ≤
n−1∑
κ=2

∣∣∣∣ω�
κ
exωκ

ω�
0e

xω0

∣∣∣∣
=

n−1∑
κ=2

exp−1
(
x cos π

n
− x cos (2κ − 1)π

n

)

=
n−1∑
κ=2

exp−1
(

2x sin κπ

n
sin (κ − 1)π

n

)

(
)
< 2

	n/2
∑
κ=2

exp−1
(
x(κ − 1)2π2

2n2

)

< 2 exp−1
(
xπ2

2n2

)
+ 2

+∞∫
1

exp−1
(
xπ2

2n2 t
2
)
dt,

where inequality (�) follows from the fact that 2 sin(t) > t, for all t < π/2. Observe that

+∞∫
1

exp−1
(
xπ2

2n2 t
2
)
dt =

√
2n

π
√
x

+∞∫
π
√
x/

√
2n

e−t2dt

≤
√

2n
π
√
x

+∞∫
π
√
x/

√
2n

t(
π
√
x√

2n

)e−t2

= 2n2

π2x

+∞∫
π
√
x/

√
2n

te−t2dt

= n2

π2x
e−π2x/2n2

.

We thus deduce that if x > n2/8, then

n−1∑
κ=2

exp−1
(
x cos π

n
− x cos (2κ − 1)π

n

)
< 2. (5.4)

We next consider the case when x ≤ n2/8. It is easy to verify that

π

n
≥ sin π

n
≥ π

n

(
1 − π2

6n2

)
, (n ≥ 1)

1 + 2t > 1
1 − t

, (t ∈ (0, 1/2))

and consequently

nb− � ≤ x = b− �/n

sin(π/n)π ≤ (nb− �)
(

1 + π2

3n2

)
. (5.5)

The first inequality in (5.5) implies that

nb− � ≤ n2
8
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which, when put in the second inequality in (5.5) yields

x ≤ nb− � + π2

24 .

We write x = nb − � + δ where 0 ≤ δ ≤ π2/24, and expand exωk in a Maclaurin series to obtain

n−1∑
κ=0

ω�
κ
exωκ =

n−1∑
κ=0

ω�
κ

+∞∑
j=0

(xωκ)j

j!

= n
+∞∑
j=1

(−1)j xjn−�

(jn− �)! =: n
+∞∑
j=1

aj .

We note that for any j ∈ N,
∣∣∣∣aj+1

aj

∣∣∣∣ =
n∏

k=1

x

jn− � + k
.

Since for any 1 ≤ k ≤ n, x = nb − � + δ ≥ jn − � + k if j ≤ b − 1 and x ≤ jn − � + k if j ≥ b + 1, we 
conclude that the sequence |aj | is increasing when j ≤ b − 1 and decreasing when j ≥ b + 1. Since the series 
is alternating, the inequalities∣∣∣∣∣∣

∑
j≤b−1

aj

∣∣∣∣∣∣ ≤ |ab−1| and

∣∣∣∣∣∣
∑

j≥b+1

aj

∣∣∣∣∣∣ ≤ |ab+1|

are immediate. Thus, the sign of (5.1) is (−1)b, provided that

|ab| > |ab−1| + |ab+1| (5.6)

with the convention that a0 = 0. In order to establish (5.6), we observe that if b > 1, then

ln |ab−1|
|ab|

= ln
∏n

j=1 (n(b− 1) − � + j)
xn

= ln
n∏

j=1

(
1 − n− j + δ

x

)

< −
n∑

j=1

n− j + δ

x

= −nδ

x
− n2

2x

(
1 − 1

n

)

< −4
(

1 − 1
n

)

where the last inequality follows from the assumption x ≤ n2/8. Similarly

ln |ab+1|
|ab|

= ln xn∏n
j=1(nb− � + j)

= ln
n∏

j=1

(
1 + j − δ

x

)−1

.
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The inequalities

t/2 < ln(1 + t) for all t ∈ (0, 2),

and

0 < j − δ ≤ n− δ < 2x

imply that

ln
n∏

j=1

(
1 + j − δ

x

)−1

≤ −
n∑

j=1

j − δ

2x

= −n(n + 1)
4x + nδ

2x

< −n2

2x

(
1
2 − δ

n

)

< −4
(

1
2 − π2

24n

)
.

Thus

|ab−1|
|ab|

+ |ab+1|
|ab|

< exp
(
−4 + 4

n

)
+ exp

(
−2 + π2

6n

)
< 1

since n ≥ 3. This establishes that the sign of (5.1) is determined by that of its first term.
With this result in hand it is now easy to see that (5.1) has infinitely many zeros, since the right hand 

side of (5.2) changes signs infinitely many times as x ranges through the real numbers. The proof is thus 
complete. �
Remark 3. Using equation (5.3) and inequality (5.4) (for x > n2/8), we conclude that there is an ε > 0
independent of x so that

∣∣∣∣∣
n−1∑
κ=0

ω�
κ
exωκ

∣∣∣∣∣ > εex cos(π/n)

for all x ≥ 0 such that ω�
1e

xω1 = ω�
0e

xω0 ∈ R.

The three lemmas We now prove the three statements preceding the completion of the proof of Theorem 1. 
The asymptotic O notation in the proof is used under the assumption that m → ∞. We begin by showing 
that the function g(sh) and Hm(z(θh)) have the same sign for appropriately chosen values of θh.

Lemma 9. Let g(t) = P (t)R(t)tm and denote by {θh}, 0 < θh < π/r, the sequence of angles corresponding 
to the points sh := τ(θh)eiθh on the τ -curve where

Im g (sh) = 0.

For all m � 1, Hm(z(θh)) �= 0 and the sign of g(sh) is the same as the sign of Hm(z(θh)) for all values of 
h under consideration.



22 T. Forgács, K. Tran / J. Math. Anal. Appl. 488 (2020) 124085
Proof. The proof is by cases, based on the asymptotic behavior of the angles θh as m tends to infinity. Some 
of these angles may tend to 0, some may tend to π/r, and some may remain bounded away from both. We 
begin with the latter, simplest case.

Case 1: γ ≤ θh ≤ π/r − γ for some small fixed γ (independent of m).
Lemma 8 implies there exists ε > 0 such that if 2 ≤ k < max(n, r+s), then |tk| > τ(1 +2ε). Consequently, 

for angles satisfying γ ≤ θ ≤ π/r − γ,

τm(θ)Hm(z(θ)) = 2 Re τm(θ)
P (t1(θ))R(t1(θ))t1(θ)m

+ τm(θ)
2πi

∮
|t|=τ(θ)(1+ε)

dt

(P (t) + z(θ)trQ(t))tm+1 .

Note that on the contour of integration P (t) +ztrQ(t) is bounded away from 0, hence the integral approaches 
0 as m → +∞. The sign of Hm(z) therefore is the same as the sign of 2 Re τm

P (t1)R(t1)tm1
provided this 

expression does not also approach 0. We also note that by the definitions of g(t) and sh in (4.3) and (4.4)

0 = Im(g(sh)) = Im(g(t1(θh))

and hence g(t1(θh)) ∈ R for 0 < θh < π/r. Consequently the modulus of the first term is

2
|P (t1(θh))R(t1(θh))| ,

which is bounded away from zero on the compact set γ ≤ θh ≤ π/r−γ. It follows that the sign of Hm(z(θh))
is the same as the sign of g(sh) when γ ≤ θh ≤ π/r − γ.

Case 2: θh → 0 as m → +∞. Let ρ be the multiplicity of the zero τ1 of P (t). Suppose first that ρ = 1. 
In this case, the multiplicity of τ1 (as a zero of P (t)) is 1, and by Lemma 1, ta (the smallest positive 
zero of P (t)R(t)) satisfies τ1 < ta < τ2. With a = −P (ta)/traQ(ta) (cf. (2.4)), as θ → 0, the polynomial 
P (t) + ztrQ(t) approaches

P (t) + atrQ(t) =
(

P (t)
trQ(t) + a

)
trQ(t),

which has a real zero at t = ta with multiplicity at least two, as a complex conjugate pair of zeros converge 
there. This means in particular that

d

dt

(
P (t)
trQ(t)

) ∣∣∣
t=ta

= 0. (5.7)

On the other hand,

R(t) =
ta

d

dt

(
P (t)
trQ(t)

)
P (t)
trQ(t)

,

and hence using equation (5.7) and Lemma 1 we conclude that

0
Lemma 1

�= R′(ta)
(5.7)=

ta
d2

dt2

(
P (ta)
traQ(ta)

)
P (ta)
r

.

taQ(ta)
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Consequently, d2

dt2

(
P (ta)

traQ(ta)

)
�= 0, and we conclude that the multiplicity of ta as a zero of P (t) + ztrQ(t) is 

exactly two. Thus the remaining zeros tκ, 2 ≤ κ ≤ max{n, r} still satisfy |tκ | > (1 + ε) for some ε > 0, and 
the argument we gave in Case 1 still applies.

We next consider the case ρ > 1. Lemmas 1 and 6 imply that

lim
θ→0

τ(θ)eiθ = ta = τ1 = τ2 = · · · = τρ

from which (see Fig. 3.1) we conclude as θ → 0

θk →
{

0 if − p− < k ≤ 0
π if ρ < k ≤ p+

and ηj →
{

0 if − q− < j ≤ 0
π if 1 ≤ j ≤ q+

.

We combine these limits, equation (3.8), and the fact that θ1 = θ2 = · · · = θρ to deduce that θk → π− π/ρ, 
for 1 ≤ k ≤ ρ, as θ → 0. If we define the angles θ∗k, −p− < k ≤ p+, and η∗j , −q− < j ≤ q+, by

θ∗k =

⎧⎪⎪⎨
⎪⎪⎩
−θk if − p− < k ≤ 0
π − π/ρ− θk if 1 ≤ k ≤ ρ

π − θk if ρ < k ≤ p+

and η∗j =
{
−ηj if − q− < j ≤ 0
π − ηj if 1 ≤ j ≤ q+

, (5.8)

then θ∗k → 0 and η∗j → 0 as θ → 0. For θ1 = θ2 = · · · = θρ, we obtain the following estimate:

sin θ1

sin(θ1 − θ) = sin(π/ρ + θ∗1)
sin(π/ρ + θ∗1 + θ)

= sin(π/ρ) + cos(π/ρ)θ∗1 + O(θ∗21 )
sin(π/ρ) + cos(π/ρ)(θ∗1 + θ) + O(θ∗21 + θ∗1θ + θ2)

= 1 −
(

cot π
ρ

)
θ + O(θ∗21 + θ∗1θ + θ2)

The corresponding estimate for the cases −p− < k ≤ 0 or ρ < k is given by

sin θk
sin(θk − θ) = θ∗k + O(θ∗3k )

θ∗k + θ + O((θ∗k + θ)3) = θ∗k
θ∗k + θ

(
1 + O(θ∗2k + θ2 + θ∗kθ)

)
.

Similarly if −q− < j ≤ q+, then

sin ηj
sin(ηj − θ) =

η∗j
η∗j + θ

(
1 + O(η∗2j + θ2 + η∗j θ)

)
.

For indices satisfying −p− < k ≤ 0 or ρ < k, the identity (cf. (3.3))

τ1 sin θ1

sin(θ1 − θ) = τk sin θk
sin(θk − θ)

gives

(θ∗k + θ)τ1 − τ1

(
cot π

ρ

)
θ(θ∗k + θ) = τkθ

∗
k + O((θ∗1 + θ∗k + θ)3)

which we solve for θ∗k and obtain
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θ∗k =
τ1
(
θ − cot(π/ρ)θ2)

τk − τ1 + τ1 cot(π/ρ)θ + O((θ∗1 + θ)3)

=
(

τ1
τk − τ1

θ − τ1
cot(π/ρ)θ2

τk − τ1

)(
1 − τ1 cot(π/ρ)θ

τk − τ1

)
+ O((θ∗1 + θ)3)

= τ1
τk − τ1

θ − cot(π/ρ)τ1τk
(τk − τ1)2

θ2 + O((θ∗1 + θ)3).

With the similar identity

η∗j = τ1
γj − τ1

θ − cot(π/ρ)τ1γj
(γj − τ1)2

θ2 + O((θ∗1 + θ)3), −q− < j ≤ q+,

and the angle sum identity

∑
−p−<k≤p+

θ∗k −
∑

−q−<j≤q+

η∗j + rθ = 0

obtained from (3.8) and definition (5.8), we deduce that

ρθ∗1 = −

⎛
⎝ ∑

k≤0 or k>ρ

τ1
τk − τ1

+ r −
∑

−q−<j≤q+

τ1
γj − τ1

⎞
⎠ θ

+

⎛
⎝ ∑

k<0 or k>ρ

cot(π/ρ)τ1τk
(τk − τ1)2

−
∑

−q−<j≤q+

cot(π/ρ)τ1γj
(γj − τ1)2

⎞
⎠ θ2 + O(θ3).

We now turn our attention to the representation given in (4.2). Note that as θ → 0, z → −P (ta)/traQ(ta)
by Lemma 6 part (ii). Since ρ > 1, Lemma 1 implies that ta = τ1 and hence −P (ta)/traQ(ta) = 0. It follows 
that as θ → 0, the function P (t) +ztrQ(t) approaches P (t) which has a zero ta with multiplicity ρ. Lemma 8
implies there exists ε > 0 independent of m such that if ρ ≤ κ < max(n, r + s), then |tκ | > ta(1 + 2ε) and 
consequently

tma Hm(z(θ)) =
∑

0≤κ<ρ

tma
P (tκ)R(tκ)tm

κ

+ 1
2πi

∮
|t|=ta(1+ε)

tma dt

(P (t) + z(θ)trQ(t))tm+1

where the integral approaches 0 as m → ∞. Thus it is sufficient to consider the sign of sum

∑
0≤κ<ρ

1
P (tκ)R(tκ)tm

κ

as tκ → ta = τ1, (0 ≤ κ < ρ) (5.9)

if after multiplication by tma , the summation does not approach 0 as m → +∞ (which is the case, as can be 
seen from equation (5.13) and the expression in (5.16)). Recall that

z(θ) = − P (t)
trQ(t) ,

and by the definition of the tκs,

P (tκ) + ztr
κ
Q(tκ) = 0.
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Combining these two equations and rearranging yields the equation

P (tκ)
P (τeiθ) − Q(tκ)

Q(τeiθ)

(
tκ
τeiθ

)r

= 0, (1 ≤ κ < ρ).

We let tκ = τ1 + τ1εκ, 0 ≤ κ < ρ, and expand the left hand side in a Taylor series centered at τ1 using the 
identity (cf. equation (3.11))

τeiθ − τ1 = τ1
sin θ

sin(θ1 − θ)e
iθ1 .

Doing so produces

− sinρ(π/ρ)ερ
κ

(−1)ρθρ (1 + O (εκ + θ)) − 1 + O (εκ + θ) = 0,

which we rearrange to get

sinρ(π/ρ)ερ
κ

(−1)ρθρ = 1 + O(εκ + θ).

We solve for εκ to achieve

εκ = − ωκ

sin(π/ρ)θ (1 + O(εκ + θ)) (0 ≤ κ < ρ)

with ωκ = e(2κ−1)πi/ρ. We deduce that εκ � θ and the equation above becomes

εκ = − ωκ

sin(π/ρ)θ + O(θ2) (0 ≤ κ < ρ). (5.10)

Using the estimate

R(tκ) = r −
∑

−p−<k≤p+

tκ
tκ − τk

+
∑

−q−<j≤q+

tκ
tκ − γj

= ρ
sin(π/ρ)
ωκθ

+ O(1) (5.11)

together with

P (tκ) = P (ρ)(τ1)
ρ! (tκ − τ1)ρ (1 + O(tκ − τ1)) (5.12)

= (−1)ρP (ρ)(τ1)τρ1ωρ
κ
θρ sin(π/ρ)−ρ

ρ! (1 + O(θ)) ,

we conclude that the main term of the expression in (5.9) is given by

(−1)ρ+1 (ρ− 1)! sin(π/ρ)ρ−1

P (ρ)(τ1)θρ−1τm+ρ
1

∑
0≤κ<ρ

ωκ

(1 + εκ)m . (5.13)

If θ ≥ δ/
√
m for some small δ, then (5.10) implies that for each 2 ≤ κ < ρ,

∣∣∣∣ 1 + ε1
∣∣∣∣
m

=
∣∣1 + (ε1 − εκ) + O(θ2)

∣∣m

1 + εκ
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=
∣∣∣em(ε1−εκ)+O(mθ2)

∣∣∣
=
∣∣∣∣exp

(
−m

cos(π/ρ) − cos((2κ − 1)π/ρ)
sin(π/ρ) θ + O(mθ2)

)∣∣∣∣
≤ exp

(
−m

cos(π/ρ) − cos((2κ − 1)π/ρ)
2 sin(π/ρ) θ

)

≤ exp
(
−δ

√
m

cos(π/ρ) − cos((2κ − 1)π/ρ)
2 sin(π/ρ)

)
→ 0

as m → ∞. Consequently, the sign of the expression in (5.13) when θ = θh is determined by the sign of the 
sum of the first two terms of (5.13) (or equivalently of (5.9)) which is the sign of g(sh).

On the other hand, if θ < δ/
√
m for δ � 1, then equations (5.11) and (5.12) imply that

1
P (t1)R(t1)tm1

= (−1)ρ+1 (ρ− 1)! sin(π/ρ)ρ−1

P (ρ)(τ1)θρ−1τm+ρ
1

ω1 (1 + ε1)−m

(5.10)= (−1)ρ+1 (ρ− 1)! sin(π/ρ)ρ−1

P (ρ)(τ1)θρ−1τm+ρ
1

ω1

(
1 − ω1

sin(π/ρ)θ + O(θ2)
)−m

= (−1)ρ+1 (ρ− 1)! sin(π/ρ)ρ−1

P (ρ)(τ1)θρ−1τm+ρ
1

ω1 exp
(

mω1θ

sin(π/ρ) + O(mθ2)
)
. (5.14)

The condition

0 = Im(g(sh)) = Im(g(t1(θh)))

is equivalent to

Im
(

1
g(t1(θh))

)
= 0,

which gives the solutions

θh = h− 1/ρ
m

π + O(θ2).

When θ = θh, equation (5.14) shows that g(sh) and (−1)h+ρ+1P (ρ)(τ1) carry the same sign. We claim that 
the sign of (5.13) is also (−1)h+ρ+1P (ρ)(τ1). Writing

(1 + εκ)m = exp
(
− mωκθ

sin(π/ρ)

)(
1 + O

(
h2

m

))
,

for large m, we see that the sign of (5.13) is same as that of

(−1)ρ+1P (ρ)(τ1)
∑

0≤κ<ρ

ωκ exp
(

mωκθ

sin(π/ρ)

)
(5.15)

or, with θ = θh, the sign of

(−1)ρ+1P (ρ)(τ1)
∑

ωκ exp
(
ωκ(h− 1/ρ)π

sin(π/ρ)

)
. (5.16)
0≤κ<ρ
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Besides the factor (−1)ρ+1P (ρ)(τ1), the first summand in (5.16) is real and its sign is (−1)h. The claim now 
follows from Proposition 2.

Case 3: θ → π/r as m → +∞. If we define the angles θ∗ = π/r − θ, and θ∗k, −p− < k ≤ p+, and η∗j , 
−q− < j ≤ q+, by

θ∗k =
{
π − θk if 0 < k ≤ p+

−θk if − p− < k ≤ 0
and η∗j =

{
π − ηj if 1 ≤ j ≤ q+

−ηj if − q− < j ≤ 0
,

then as a consequence of Lemma 6, θ∗, θ∗k and η∗j all approach 0 as θ → π/r. Using the equations (3.3) and 
(3.2) we obtain

τ = τk
sin θk

sin(θk − θ)

= τk
θ∗k + O(θ∗3k )

sin(π/r) + cos(π/r)(θ∗k − θ∗) + O((θ∗k + θ∗)2)

= τkθ
∗
k

sin(π/r)

(
1 − cot π

r
(θ∗k − θ∗) + O((θ∗k + θ∗)2)

)
,

and similarly,

τ =
γjη

∗
j

sin(π/r)

(
1 − cot π

r
(η∗j − θ∗) + O((η∗j + θ∗)2)

)
.

Thus for any −p− < k ≤ p+ and η∗j , −q− < j ≤ q+, we have θ∗k � η∗j � τ , and consequently from the 
equations above we deduce

θ∗k = τ

τk
sin π

r
(1 + O(τ + θ∗)) and η∗j = τ

γj
sin π

r
(1 + O(τ + θ∗)) .

We combine these identities with the angle sum identity

∑
−p−<k≤p+

θ∗k −
∑

−q−<j≤q+

η∗j = rθ∗

obtained from (3.8) to get

τ sin π

r

⎛
⎝ ∑

−p−<k≤p+

1
τk

−
∑

−q−<j≤q+

1
γj

⎞
⎠ = rθ∗(1 + O(τ + θ∗)).

Thus θ∗ � τ and the equation above becomes

τ sin π

r

⎛
⎝ ∑

−p−<k≤p+

1
τk

−
∑

−q−<j≤q+

1
γj

⎞
⎠ = rθ∗(1 + O(θ∗)). (5.17)

We claim that as θ → π/r (which implies τ → 0), the polynomial in t

P (t)
iθ

− Q(t)
iθ

(
t
iθ

)r
P (τe ) Q(τe ) τe
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has exactly r zeros approaching the circle with radius τ centered at the origin, each of which satisfies 
tκ/τ → eκ = e(2κ−1)πi/r, 0 ≤ κ < r. Indeed, if we let u = t/τ , then this polynomial becomes

P (τu)
P (τeiθ) + Q(τu)

Q(τeiθ)u
r

which approaches the polynomial 1 + ur as τ → 0 and the claim follows.
From the claim above we assume tκ, 0 ≤ κ < r, approach τeκ and the remaining zeros tκ, r ≤ κ <

max(n, r + s), satisfy |tκ | > τ(1 + 2ε) for some fixed ε > 0 independent of m. Consequently

τmHm(z(θ)) =
∑

0≤κ<r

τm

P (tκ)R(tκ)tm
κ

+ 1
2πi

∮
|t|=τ(1+ε)

τm

(P (t) + z(θ)trQ(t))tm+1 dt

where the integral approaches 0 as m → ∞. This leaves us to consider the sign of

∑
0≤κ<r

1
P (tκ)R(tκ)tm

κ

(5.18)

if after multiplication by τm, the sum does not approach 0 as m → ∞ (which is the case, as can be seen 
from (5.26) and Remark 3). Writing tκ = τ(eκ + εκ), εκ ∈ C, we expand the left hand side of

P (tκ)Q(τeiθ)
P (τeiθ)Q(tκ) −

(
tκ
τeiθ

)r

= 0

in a Taylor series centered at τeiθ to obtain

1 +
(
P ′(0)
P (0) − Q′(0)

Q(0)

)(
eκ + εκ − eiθ

)
τ + (eκ + εκ)reirθ

∗
= O(τ2), (5.19)

where by (5.17)

P ′(0)
P (0) − Q′(0)

Q(0) = −
∑

−p−<k≤p+

1
τk

+
∑

−q−<j≤q+

1
γj

= − rθ∗

τ sin(π/r) + O(θ∗2).

With O(τ2) = O(θ∗2) (see (5.17)) and

(eκ + εκ)reirθ
∗

= −1 − rεκ
eκ

− irθ∗ + O
(
ε2
κ

+ θ∗2
)
,

equation (5.19) can be rearranged as

− θ∗

sin(π/r)

(
eκ + εκ − eiπ/r

)
− εκ

eκ
− iθ∗ = O(ε2

κ
+ θ∗2)

from which we express εκ as

εκ = eκθ
∗ (cos(π/r) − eκ)

sin(π/r) + O(θ∗2) (0 ≤ κ < r). (5.20)

Using the estimates

R(tκ) = r −
∑ tκ

tκ − τk
+

∑ tκ
tκ − γj

= r + O(θ∗) (5.21)

−p−<k≤p+ −q−<j≤q+
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and

P (tκ) = P (0)(1 + O(θ∗)), (5.22)

we write the main term of (5.18) as

1
rP (0)τm

∑
0≤κ<r

1
(eκ + εκ)m . (5.23)

In the case θ∗ ≥ δ/
√
m for small δ independent of m, we apply the following computations for 2 ≤ κ < r, 

which are similar to those in Case 2
∣∣∣∣ e1 + ε1
eκ + εκ

∣∣∣∣
m

=
∣∣∣∣ 1 + ε1/e1

1 + εκ/eκ

∣∣∣∣
m

(5.20)=
∣∣∣∣1 − e1 − eκ

sin(π/r)θ
∗ + O(θ∗2)

∣∣∣∣
m

≤ exp
(
−δ

√
m

cos(π/r) − cos((2κ − 1)π/r)
2 sin(π/r)

)
→ 0

as m → ∞, from which we conclude that when θ = θh the sign of (5.23) is determined by the sign of the 
sum of the first two terms of (5.23) (or equivalently of (5.18)) which is the sign of g(sh).

In the case θ∗ < δ/
√
m for small δ, equations (5.22) and (5.21) imply that

1
P (t1)R(t1)tm1

= 1
rP (0)τm (e1 + ε1)−m (5.24)

(5.20)= 1
rP (0)τm e−m

1

(
1 + θ∗ (cos(π/r) − e1)

sin(π/r) + O(θ∗2)
)−m

= 1
rP (0)τm e−m

1 exp
(
imθ∗ + O(mθ∗2

)
.

The condition 0 = Im g(sh) = Im g(t1(θh)) gives the solutions

θ∗h = π

r
− hπ

m
+ O(θ∗2). (5.25)

When θ∗ = θ∗h, equation (5.24) shows that the sign of g(sh) agrees with that of (−1)hP (0). In order to 
demonstrate that the sign of (5.18) is the same as that of (−1)hP (0), we use a calculation analogous to that 
in (5.24) to write the main term of (5.23) as

e−mθ∗ cotπ/r

rP (0)τm
∑

0≤κ<r

e−m
κ

exp
(

mθ∗eκ
sin(π/r)

)
. (5.26)

It thus remains to show that the sign of the sum in (5.26) is (−1)h when θ∗ = θ∗h. This claim follows by 
setting x = mθ∗/ sin(π/r) in Proposition 2. The analysis of Case 3, and the proof the lemma is complete. �
Lemma 10. Let Hm(z) be as in Theorem 1, and let z(θ) be as in Definition 3. If 2r | m then Hm(z(θ)) has 
a zero on the interval (θm/r−1, π/r).
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Proof. In case 2r|m, the inequality θ∗h > 0 and (5.25) imply that the largest value of h is m/r − 1. Since 
the sign of the summation in (5.26) is the same as the sign of

∑
0≤κ<r

e−m
κ

= r(−1)	m/r


as θ∗ → 0+, and is (−1)m/r−1 when θ∗ = θ∗m/r−1 (see the claim after (5.26)), we conclude that Hm(z(θ))
has a zero on the interval (θm/r−1, π/r). �
Lemma 11. Let Hm(z) be as in Theorem 1, and let z(θ) be as in Definition 3. As θ → 0 and θ → (π/r)−, the 
limits (possibly infinite) of Hm(z(θ)) are nonzero and their signs are (−1)p+ and (−1)p++	m/r
 respectively.

Proof. Since the k-th derivative in θ∗ of the sum in (5.26) at θ∗ = 0 is 0 for 0 ≤ k < (m mod r) and its 
(m mod r)th derivative at 0 is

m(m mod r)
∑

0≤κ<r

e−m+(m mod r)
κ

= rm(m mod r)(−1)	m/r
,

we conclude that the sign of (5.26) is (−1)	m/r
 as θ∗ → 0+. Thus the sign of Hm(z(θ)) as θ → (π/r)− is 
the sign of (−1)	m/r
P (0) which is (−1)	m/r
+p+ by (2.1).

Similarly, since the (ρ − 1)st derivative of

∑
0≤κ<ρ

ωκ exp
(

mωκθ

sin(π/ρ)

)

in θ at θ = 0 is

mρ−1
∑

0≤κ<ρ

ωρ
κ

= −mρ−1,

we conclude this sum is negative when θ → 0. Thus the sign of (5.15) is the sign of

(−1)ρP (ρ)(τ1)
(2.1)= (−1)ρρ!

∏
−p−<k≤p+

k 
=1

(τ1 − τk)

which is (−1)ρ(−1)p+−ρ = (−1)p+ . �
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