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1. INTRODUCTION AND STATEMENT OF RESULTS

Let p(z) = X"_, a,z" be a polynomial of degree n. Then we have
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(fohlp’(e”)lqd@)wsn(f()”l;a((zi")l"de)l . g=1, (11)
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and

2 . q Ya 2 . q /q
p(Re' 0 <R" p(e 0 , q=1R>1.
([ pere do] < re( [ pe) [ ao)
0 0

(1.2)

Inequality (1.1) is due to Zygmund [12] and inequality (1.2) is easy to
prove.

For p(z) # 0 in |z| <1 the inequalities (1.1) and (1.2) have been
replaced, respectively, by

2wy ey |9 Y 1/q 2@ o 19 La
lp'(e”)["do| <n(C,) lp(e)[ do) . q=1,
0 0
(1.3)
where
C,=279aT(3q + 1)[T(3q + }).
and
27 . q Ya 1/ 2 . q /q
([ ptren [ do) < (1)( [ pe)[" an]
R>1¢>1, (1.4)
where

K, = /Oz”ll + Rreint]! do/foz”ll + e do.
Inequality (1.3) was first proved by de-Bruijn [2] (for another proof, see
Rahman [11]), and (1.4) is due to Boas and Rahman [1]. The extremal
polynomial in each case is p(z) = « + Bz", |la| = | BI.

Dewan and Govil [4] (see also Govil and Jain [7]) considered the class of
polynomials p(z) satisfying p(z) = z"p(1/z) and obtained a sharp in-
equality analogous to (1.1).

There is greater interest attached to the case when p(z) does not vanish
in the circle |z| < K, where K is a positive number. The answer to this
more general question for the case when K <1 and g = 2 was given by
Rahman [10]. For the case when K > 1, the following result is known [5].

THEOREM A. Ifp(z) = X" _, a,z" is a polynomial of degree n, having no
zeroes in |z| < K, K > 1, then, for q > 1, we have

(fo%lp’(e“’)l" do)l/q < n(Eq)(foz”lp(em)V de)l/q, (15)
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where

o . 1/q
E, = (277/f0 K + el d0) .

Theorem A is not sharp and the sharp inequality does not seem to be
obtainable even for g = 2. In this direction Dewan and Bidkham [3]
obtained an inequality for g = 2, the bound of which is, in general, better
than the bound obtained by (1.5).

In this paper we shall generalize Theorem A as well as improve upon
the bound obtained in inequality (1.5) by involving the coefficients |a,| and
la,, 1 < p < n. Besides this, we also prove an inequality analogous to
(1.2). We prove

THEOREM 1. If p(2) = a, + X)_, a,z’ is a polynomial of degree n such
that p(z) has no zeros in the disk |z| < K, K > 1, then, for q > 1,

(fohlp’(e”’)lq de)l/q < nsq(j:”|p(ef9)|q de)l/q, (1.6)

where
. ol 1/q
S, = (277/[0 |8, + €| de)
and
¢ K** Y w/nla,/aq|K*~* + 1)
pe 1+ p/nla,/a,|K***

The result is best possible in the case K =1 and equality holds for the
polynomial p(z) = 1 + z".

For K = =1, Theorem 1 reduces to (1.3) due to de-Bruijn [2]. For
w =1, Theorem 1 is, in general, an improvement over Theorem A due to
Govil and Rahman [5]. To show this we have to prove that for ¢ > 1,

S, <E,
which is equivalent to

1/aq
(277//27T|SM + ! de) < (27r/f2”|1<+ e[ do)
0 0

1/q

or

[Tk + el a0 < [77]s, + e
0 0

do. (1.7)
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Now to prove (1.7) it is sufficient to prove that
K<S,
or
K?(1/n|ay/a,| + 1)
1+ 1/n|a,/a,|K?

for u =1,

which on simplification gives

KZ(i & )(K— 1) <K(K-1),
niag
which implies
a, n
a—o < E (1.8)

Since (1.8) is always true (see [6, pp. 320—-321]), hence (1.7) follows.
If we assume u = 2 in Theorem 1, then we get the following:

CoroLLARY 1. Ifp(z) = X"_, a,z" is a polynomial of degree n, having
no zeros in |z| < K, K = 1, and p'(0) = 0, then, for q > 1,

([ 1ol do)l/q

27 2 014 /4 21 o 14 l/q
Sn(ZTr [O |K? + e de) (fo | p(e'®)] de) . (1.9)

If is easy to see that Corollary 1 also provides a generalization and
improvement to Theorem A due to Govil and Rahman [5] and to a result
proved by Dewan and Bidkham [3].

For g = 1, Theorem 1 yields

COROLLARY 2. Let p(z) be the same as in Theorem 1. Then
2my o 16 2m i 2m i

do <n|2 St do de. (1.10
[ e n(w/fo [Sye + €| )fo | p(e)]do. (1.10)

THEOREM 2. If p(2) =ay+ X)_, a,z" is a polynomial of degree n,
having no zeroes in |z| < K, K > 1, then, for R > 1,

[T p(Re®)|do < {s,(R" = 1) + 1} [*7| p(e)[d6, (L11)
0 0

where S, = 2w/ ({7 |S,. + ¢’|d6 and S, is the same as defined in Theo-
rem 1.
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2. A LEMMA
We need the following result due to Qazi (see [8, p. 339]) for the proof
of the theorems.
LEMMA. If p(z) = a, + Xy_, a,z" has no zeroes in Izl <K, K=>1,
then, for |z| =1,

1+ p/nla,/a,|[K** 1
lp'(2)l < -1 1
w/nla,/a,|K*~t + 1 K*

lg'(2)l, (2.1)

where
q(z) =2"{p(1/2)}.

Proof of Theorem 1. By a known result due to de-Bruijn [2, p. 1271], we
have for every g > 1 and real «,

f277
0

Integrating both the sides of the above inequality with respect to « from 0
to 27, we get

Ldeajt;Zw

szwfoz”lp(ew)lqdo, q=1. (3.1)

(6.1 i 6 ' i 0 q
ez‘f’) ¢ ( ¢ ) i(a+0)p (el )
n

do < fOZ”Ip(e”’) " ae.

; q
19 r( 19) i(a+9)pr(619)
n

10) d@

Note that p’(e’®) can be zero only at a countable number of points.
Besides, we can clearly invert the order of integration on the left-hand side
of (3.1). Therefore,

];deajjw
_ /;ZWdaj;Zw

; q
10 /( 10) i(a+0)p,(616)
n

q ; ,
‘em . np(e”’) _ eze (eze)

19) d@

reiH
p'(e?) 10

n 16 1(616)
’ ioy |4 i6 6.7 19
w e w . n e — e
= fz L ( ) dafz elUé p( 1)0 ’ i6 ( ) (32)
0 n 0 (e )
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Thus for 0 < 0 < 27 and every g > 1 and using the lemma, we get

o " np(eiﬂ) _610 /(610)
[ € 16 ’ i6 dO[
0 p'(e”)
o _ np(eie) _ ezo /(610)
=f et 16 ’ i6 da
0 (e )
' i6
P e
= fz e'” q,( m) da
0 p'(e?)
2w . q
> e+ ["da. 3.3
[ lew s, (33)

Combining inequalities (3.1), (3.2), and (3.3), we get, for g > 1,

fZﬂ'
0

which gives

fozw|p’(e”’)|q de < (277n"//()27r|ei“ + S, !

from which the theorem follows.

p'(e”) [
n

d0/2#|ei“ +S,. !
0

I p(e)" ao,
0

IRECRIRT

Remark. The proof of the theorem can also be obtained from the
arguments used in Rahman [9] for proving de-Bruijn’s theorem.

Proof of Theorem 2. For each 0 < 6 < 27, we have
p(Re'?) — p(e'?) =[1 ep'(re'?) dr, R>1,
which implies
[p(Re") < [*1p'(re ) dr +]p(e™)], B> 1.

Integrating both sides of the above inequality with respect to 6 from 0 to
21, we get

fzw|p(Re”’)|d0$/Rdrfzw|p’(rei9)|d0+/27|p(e”’)|d0. (3.4)
0 1 o 0
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Now since the polynomial p’(z) is of degree (n — 1), therefore, inequality
(1.2), for ¢ = 1 reduces to

/27|p'(Rei9)|d0 < R"‘1/2W|p’(ei")|d0.
0 0

Applying the above inequality to (3.4), we get

f2ﬁ|p(Re”’)|d0ser"*ldrf2w|p'(e"")|d0+f2#|p(e”’)|d6,
0 1 0 0
which on using Corollary 2 gives

27 . 2 . R 2 .

f |p(Re”’)|d05nSlf |p(e”’)|d9f r”_ldr+/ |p(e’9)|d9,

0 0 1 0

(3.5)
where
21 .
S, = 277/[0 |S,. +¢|d6

and

_ K* Y /nla,/ag|KFTH 4 1)
B 1+ p/nla,/ay|KHHY

Thus inequality (3.5) is equivalent to
2 . 21 .
[ p(Re™) o < {Sy(R" = 1) + 1} [T | p(e”) | do,

which completes the proof of the theorem.
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