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1. INTRODUCTION

More than 100 years ago Lyapunov introduced the concept of stability of
a dynamic system and created a very powerful tool known as the method of
Lyapunov functions in the study of stability. The Lyapunov method has
been developed and applied by many authors during the past century. One
of the important developments in this direction is the LaSalle theorem (cf.
LaSalle [10]), from which follow many of the classical Lyapunov results on
stability. Another one is Hale’s extension to functional differential equa-
tions (cf. Hale [3]) with the introduction of the extended dynamical systems
(cf. Hale and Infante [4]). On the other hand, since ItG introduced his
stochastic calculus about 50 years ago, the theory of stochastic differential
equations has been developed very quickly. Especially the Lyapunov
method has been developed to deal with stochastic stability by many
authors, and we here only mention Arnold [1], Friedman [2], Has’minskii
[5], Kushner [7], Kolmanovskii and Myshkis [8], Ladde and Lakshmikan-
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than [9], Mohammed [15] and myself [12—-14]. However, so far there seems
no stochastic version of the LaSalle asymptotic convergence theorem for
stochastic differential delay equations, and the main aim of this paper is to
extend the LaSalle theorem from ordinary differential equations to
stochastic differential delay equations. We also apply the LaSalle-type
theorems to establish sufficient conditions for the asymptotic stability of
stochastic differential delay equations.

2. ASYMPTOTIC CONVERGENCE

Throughout this paper, unless otherwise specified, we let (Q,%,
{#},. o, P) be a complete probability space with a filtration {7}, . , satisfy-
ing the usual conditions (i.e., it is right continuous and %, contains all
P-null sets). Let B(¢) = (By(t),..., B,(t))" be an m-dimensional Brown-
ian motion defined on the probability space. Let |- | denote the Euclidean
norm in R". If A is a vector or matrix, its transpose is denoted by A”. If 4
is a matrix, its trace norm is denoted by |A| = y/trace( 4’4) . Let 7> 0
and C([—7,0]; R") denote the family of all continuous R"-valued func-
tions on [—7,0]. Let C2([—7y; R") be the family of all #-measurable
bounded C([— 7, 0]; R™)- valued random variables E={&0): —1<6<0}

Consider an n-dimensional stochastic differential delay equation

de(t) =f(x(t),x(t —7),t)dt +g(x(t), x(t — 7),t)dB(t), (2.1)

on ¢>0 with initial data {x(8): —7<6<0}=¢&e C2(—7,0];R".
Here f: R” X R" X R,—» R" and g: R" X R" X R, — R"*". As a stand-
ing condition, we impose a hypothesis:

(H1) Both f and g satisfy the local Lipschitz condition and the
linear growth condition. That is, for each £k =1,2,..., there isa ¢, > 0
such that
[fCey ) = f(2 5.0 VIgx,y.1) —g(%. 7. 0)] < eplx — % + [y =)

for all # > 0 and those x,y, x,y € R" with |x| vV |yl vV |x| V |y| < k, and
there is moreover a ¢ > 0 such that

[f(x,y, )| VIg(x,y t)| < c(1+1xl+ 1yl

for all (x,y,1) € R” X R" X R,.

It is known (cf. Mao [13, 14] and Mohammed [15]) that under hypothesis
(H1), Eqg. (2.1) has a unique continuous solution on ¢ > —r, which is
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denoted by x(z; £) in this paper. Moreover, for every p > 0,

E| sup |x(s;&)["| <o ontx>o0.

—T<s<t

Let C2*(R" X R,; R,) denote the family of all nonnegative functions
V(x,t) on R" X R, which are continuously twice differentiable in x and
once differentiable in ¢. For each V€ C*Y(R" X R,; R,), define an
operator £V from R" X R" X R, to R by

LV(x,y,t) =V(x,0) =V(x,0)f(x,y,1)

+ strace[ g7 (x, y, )V, (x, 1) g(x,y.1)],

where
aV(x,t aV(x,t aV(x,t
z(x,t)=¥, Vx(x,t)=( ( ) (x.0) ,
Jat dx, ax,,
IV (x,t
V(e = | 2220
Jx; dx; n

Let us stress that <V is defined on R" X R" X R, while V' on R" X R,.
Moreover, let .7 denote the class of continuous (strictly) increasing func-
tions w from R, to R, with u(0) =0. Let % denote the class of
functions w in Z with u(r) - « as r — «. Functions in % and %, are
called class .7 and .%Z, functions, respectively. If u €.%; its inverse function
is denoted by w~*. We also denote by L'(R,;R,) the family of all
functions y: R, — R, such that [;y(¢) dt < . Furthermore let C(R"; R )
and C(R" X R_; R,) denote the families of all continuous functions from
R" to R, and from R" X R, to R_, respectively. The following lemma
plays an important role in this paper.

LEMMA 2.1. Let (H1) hold. Assume that there are functions V €
C>YR"XR,;R,), yELXR,;R,), and w;,w, € C(R" X R,; R.,) such
that

LV (x,y,t) < y(t) —wy(x, 1) +wy(y, 1),
(x,9,6) ER" X R" X R,, (22)

and

wi(x,t) = wy(x,t+ 1), (x,t) ER" XR,. (2.3)
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Then, for every ¢ € CZ([—7,0]; R"),
lim [V(x(t; £).1) + ftiTwz(x(s; £),s+7)ds| <oas., (2.4)
and, moreover,
j:[wl(x(t; £).1) —wy(x(t;€).t + 7)] dt <=as.  (25)

The proof of this lemma is based on the following semimartingale
convergence theorem established by Lipster and Shiryayev [11, Theorem 7
on p. 139].

LEMMA 2.2. Let A(t) and U(t) be two continuous adapted increasing
processes on t > 0 with A(Q) = U(0) =0 a.s. Let M(t) be a real-valued
continuous local martingale with M(0) = 0 a.s. Let { be a nonnegative
Fy-measurable random variable. Define

X(t) =¢+A(t) —U(t) + M(t) fort=0.

If X(¢) is nonnegative, then

{lim 4(1) <=} {tli_)r‘r;X(t) <e)n {Ili_)rr; U(r) < =) as.

| ]

where B C D a.s. means P(B N D°) = 0. In particular, if lim,_,_ A(t) <
a.s., then for almost all w € ():

ImX(t,w) <o and limU(¢, w) <,
t— o

t— o
that is both X(t) and U(t) converge to finite random variables.

Proof of Lemma 2.1. Fix initial data £ C%([—r, 0;R™) arbitrarily and
write simply x(¢; x,) = x(¢). By 1t0’s formula,

V(x(1),1) = V(x(0),0) + [ZV(x(s), x(s = 7),5) ds
0

+ [Vi(x(5),)g(x(s), x(5 = 7),5) dB(5).
0

Note that

ft Twz(x(s),s + 1) ds = fiwz(x(s),s + 1) ds

+fof[wz(x(s),s + 1) —wy(x(s —7),s)] ds.
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Hence
V(x(t),t) + ftiTwz(x(s),s + 1) ds
= V(£0),0) + [ wy(£(6),0+ 7)o+ /O’y(s) ds

~ [1(5) = 2V(x(). 55 = 7).

—wy(x(s),s + 1) +wy(x(s — 7),s)] ds
+ [V(x(5),9)8(x(5), x(s = 7). 5) dB(s) (2.6)
< V(£(0),0) + [f wo(£(0),0+ 7)d6 + ]O’y(s) ds
= [Iwi(x(s).8) = wa(x(s),s + 7)) ds

+ [Vi(x(5),9)8(x(s), x(s = 7). 5) dB(s), (27)
0
where we have used the following fact from (2.2) and (2.3) that

Y(s) —ZV(x(s),x(s —7),8) —wy(x(s),s +7) +wy(x(s—7),s)
> wy(x(s),s) —wy(x(s),s+7)=0.
Note also that [;y(s)ds < « since y € L}(R,; R,). Therefore, applying

Lemma 2.2 to (2.6) yields the required Assertion (2.4) while applying
Lemma 2.2 to (2.7) gives (2.5). The proof is complete.

Let us now employ Lemma 2.1 to establish the asymptotic convergence
theorems of LaSalle-type for Eq. (2.1).

THEOREM 2.3. Let (H1) hold. Assume that there are functions V €
C>YR"XR,;R,), yEILXR,;R,),w € C(R"; R,), and a constant & >
1, such that
LV (x,y,t) <vy(t) —dw(x) +w(y), (x,y,t) ER" XR" XR_.
Then, for every ¢ € C%([—T,O]; R"),

limV(x(t; &), t) <»a.s., (2.8)
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and
fomw(x(t;f)) dt <»a.s. (2.9)

If there is moreover a continuous function . R, — R, such that
n(V(x,t)) <w(x), (x,t) €R" X R, (2.10)

then
lim (V(x(1:€),1)) = n(tli_)rr;V(x(t; £),0)) =0as. (211)

Proof.  Letting w,(x,t) = dw(x) and w,(x,t) = w(x) we obtain (2.9)
from (2.5) of Lemma 2.1. Hence we must have

lim [* w(x(s; €)) ds = Oas.

This, together with (2.4), yields the required assertion (2.8). If (2.10) holds,
it follows from (2.9) that

/:n(V(x(t;g),z))dz<oca.s. (2.12)

On the other hand, since n(-) is continuous, we see from (2.8) that
lim n(V(x(1:€).1)) = n(t[rr;V(x(t; £).1)). (2.13)
The required Assertion (2.11) follows from (2.12) and (2.13) immediately.

The proof is complete.

Assertion (2.8) means that lim, . V(x(z; £),¢) is a finite random vari-
able, while (2.11) further shows that lim, . V(x(z; £),¢) takes values in
the set {z = 0:n(z) = 0}. Especially, when {z > 0:n(z) = 0} = {c} (i.e,
n(z) = 0ifand only if z = ¢), then lim, _,, V(x(z; £), 1) = ¢ almost surely.

THEOREM 2.4. Let (H1) hold. Assume that there are functions V €
C>*YR"XR,;R,), yeLXR,;R,), and w;,w, € C(R"; R.) such that

ZLV(x,y,t) <y(t) —wi(x) +wy(y), (x,y,t) ER"XR" XR_,
wi(x) = wy(x), x € R",
and

lim inf V(x,t) = . (2.14)

x| >0 0<t<®
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Assume also that for each initial data & Cgb,o([— 7,0; R") there isap > 2
such that

sup  E|x(t; €)[ < . (2.15)

—T7<t<®©

Then, for every & € C%([—T,O]; R"):
tler;[wl(x(t;g)) —wy(x(t; €))] = 0a.s. (2.16)

The property of (2.14) is known as radially unbounded in the literature
(cf. Arnold [1]. If we define & = {x € R":w,(x) — w,(x) = 0} and let
d(x, 2) denote the distance between x and set 2, that is d(x,2) =
min, ¢ ,|x — y|, then (2.16) means

limd(x(t;£),2) =0 as. (2.16)

In other words, the solutions of Eq. (2.1) asymptotically approach & with
probability 1. To prove the theorem let us present three useful results. The
first one is the well-known Kolmogorov—-Centsov theorem on the continu-
ity of a stochastic process driven from the moment property.

LEMMA 2.5. Suppose that an n-dimensional stochastic process X(t) on
t > 0 satisfies the condition

E|X(t)—X(s)|asC|t—s|HB, 0<s,t<oo,

for some positive constants a, B, and C. Then there exists a continuous
modification X(¢t) of X(t), which has the property that for every y € (0, B/ a),
there is a positive random variable 5(w) such that

| X(t, w) — X(s, )| 2
plw: sup 7 < — = 1.
0<t—s<8(w) lt = s| 1-277
0<s,t<%»

In other words, almost every sample path of X(@) is locally but uniformly
Holder-continuous with exponent vy.

The proof of this result can be found in Karatzas and Shreve [6] in the
case when the stochastic process X(¢) is on the finite interval [0, T'] but a
little bit of the modification of the proof works for the case when X(¢) is
on the entire R,.
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LEMMA 2.6. Let (H1) and (2.15) hold. Set

y(t) = Atg(x(s),x(s —1),8)dB(s) ont>0,

where we write x(¢t; £€) = x(t) simply. Then almost every sample path of y(t) is
uniformly continuous on t > 0.

Proof. By the moment inequality for stochastic integrals (cf. Friedman
[2] or Mao [14]) we have that for 0 < s < ¢ < oo,

p(p—1) r/Z(t _ )22

ﬂﬂﬂ—ﬂﬂVS[ :

XflE|g(x(r),x(r - 7),r)|p dr.
N
But by hypotheses (H1) and (2.7) we can derive that
Elg(x(r), x(r = 7)., 1) [ < E[e(t +|x(r)| +|x(r = D]’
<37 %’ (1+ Elx(r)[" + Elx(r — 7)[)
<377 1cP(1 + 2K),
where K == sup_, _, ... E|lx(¢)|” < . Therefore

p(p—1)
2

p/2
377 1P (1 + 2K)(t — 5) 72

Ely(t) —y(s)[" < [

Bearing in mind that y(z) is continuous, we see from Lemma 2.4 that
almost every sample path of y(z) is locally but uniformly Hdlder continu-
ous with exponent y for every v € (0,(p — 2)/2p) and therefore almost
every sample path of y(¢#) must be uniformly continuous. The proof is
complete.
LEMMA 2.7. Let (H1) hold. Assume the solution of Eq. (2.1) has the
property that
sup |x(t; &) <wa.s. (2.17)

0<t<>

Then almost every sample path of

z(t) = j(;[f(x(s),x(s —7),8)ds

is uniformly continuous on t > 0.
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Proof. Write x(¢; ¢) = x(¢) simply. By (2.17) and the boundedness of
the initial data on —7 <t < 0, we observe that for almost every w € (),
there is a positive number 4(w) such that

|x(t, )| <h(w) forallt> —r.

From this and hypothesis (H1) we compute that, for 0 < s <t < o,
|z(t, w) — z(s, w)]| < fl|f(x(r, w),x(r—71,0),r)|dr

< cft(l +|x(r, 0)| +|x(r — 7, )|) dr
S
<c(l+2h(w))(t—s),
which implies that z(¢, w) is uniformly continuous on ¢ > 0. The lemma is
therefore proven.
We can now easily prove Theorem 2.4.

Proof of Theorem 2.4. Again fix any initial data ¢ and write x(¢; ¢£) =
x(#). By Lemma 2.1 and Condition (2.14), we can easily see that (2.17) is
satisfied. Hence, by Lemmas 2.1, 2.6, and 2.7, there exists an () C () with

P(Q) = 1 such that for every w € Q, x(¢, ) is uniformly continuous on
t >0, and

[ Ta(x(e, @) = wa(x(1,0))] di < == (2.18)
In order to prove the theorem, it is clearly enough if we can show that
tILngc[wl(x(t, w)) —wy(x(t, ))] =0 forall we Q. (2.19)
For convenience, set w = w, —w,. If (2.19) is not true, then for some
o< O

limsupw(x(t, ®)) > 0.

— >

So there is some ¢ > 0 and a sequence {t,}, ., of positive numbers with
t, + 1 <t,,, such that

w(x(t,, ®)) > & forall k > 1. (2.20)

Set S, = {x € R":|x| < h}, where h = h(®) has been defined in the proof
of Lemma 2.7 such that {x(¢+, ®):¢t > —7} C §,. Since it is continuous,
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w(-) must be uniformly continuous in S, and there is a 8, > 0 such that
& —
|w(x)—w(y)|<§ if x,yeS,, lx—yl <8, (2.21)
On the other hand, recalling that x(¢, @) is uniformly continuous on
t > —7,wecan find a §, € (0,1) such that
|x(t,®) —x(s,@)| <8, if—1<t,5s<o|t—s]—8, (222)

Combining (2.21) and (2.22) we see that for every k > 1,
&
|W(x(tk,a))—w(x(t,&‘)))|<5 ift, <t <t +8,
This, together with (2.20), yields

w(x(t, ®)) =w(x(t,, ®)) —|w(x(tk, @)) — w(x(t, &\)))| > & — ; = ;

Therefore
oo > * 88
[wxea)de= T [ w(x(r, o)) di= T =,
0 k=1"1 k=1 2

which contradicts (2.18). Hence, (2.19) must be true and the theorem has
been proven.

Remark 2.8. From the proof above, we see clearly that condition (2.15)
is only used to show the uniform continuity of almost every sample path of
[$g(x(s; €),s) dB(s) on t > 0. In other words, any condition that guaran-
tees this uniform continuity can replace condition (2.15). For example,
condition (2.15) can be replaced by the boundedness of g.

Condition (2.15) means the boundedness of the pth moment of the
solution which has its own interest. The following lemma gives a criterion
for this boundedness.

LEMMA 2.9.  Assume that there is a convex function p € %,, a constant
p > 0 and, moreover, functions U € C**(R" X R_;R.,),y€ MR, R,),
w € C(R"; R,), such that

w(lxl7) < U(x0),
LU(x,t) <y(t) —w(x,t) +w(y, 1),
w(x, t) =w(x,t+7)
for all (x,t) € R" X R, Then, for every £ € C5([—7,0]; R"),
sup  E|x(t; &) < .

—T<Lt<>
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Proof. In the same way as in the proof of Lemma 2.1 we can show that
EU(x(t),t) + Eft w(x(s),s+ 71)ds
t—71
= EU(£(0).0) + E[* w(£(0), 0+ ) do

+Ef0t[fo(x(S)nx(S —7),5) +w(x(s),s + 1)
—w(x(s —1),5)] ds

< EU(£(0),0) +Eff w(£(0),0+ 1) do
+Ef0t[7(s) —w(x(s),s) +w(x(s),s + 7)] ds

< EU(£(0),0) + E[* w(£(6),0+ 1) do + f:?(s) ds

= C,

where we simply write x(¢; £€) = x(¢) as before. By Jensen’s inequality and
condition u(|x|”) < U(x, t), we then have

r(Elx()l") < En(lx()l') < C,
which implies
Elx(t)" < w3(C) forallt> 0.

Hence the assertion follows since the initial data are bounded. The proof
is complete.

3. ASYMPTOTIC STABILITY

The results obtained in the previous section can be applied to establish
useful sufficient criteria for the almost surely asymptotic stability of the
stochastic differential delay equation (2.1).

COROLLARY 3.1. Let (H1) hold. Assume that there are functions V €
C>YR"XR,;R,),yELXR,;R,),w < C(R"; R.), and a constant § >
1, such that

ZLV(x,y,t) <y(t) — éw(x) + w(y), (x,y,t) ER" XR" XR_.
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Assume furthermore that there are functions w,, w, €%, and u; € % such
that

i) < V(0 < () and pa(lel) <w(x)  (3)
forx € R" and > 0. Then, for every ¢ € C;-O([—T, 0; R"),

limx(¢; ) =0a.s. (3.2)

t— >

Proof. Note from (3.1) that
o t(V(x,1)) < Ixl < pg*(w(x)),
which yields
ms( 1yt (V(x,1))) < w(x).

Applying Theorem 2.3 with n(-) = u,( u,*(-)) we obtain that
,IL”JO ma( ey H(V(x(2;€),1))) =0as,

which implies

limV(x(t;¢),t) =0as,

since us( u; (+)) €% Hence, by (3.1) again,
,“_Tc pi(lx(t; €)]) = 0as.

Since u, €%, we must have the required assertion (3.2).
The results in the previous section can also be used to discuss the almost
surely exponential stability.

COROLLARY 3.2. Let (H1) hold. Assume that there are functions U €
C*YR" X R,;R,), Ue C(R",R,), and two constants A, > A, > 0 such
that

ZU(x,y,t) < —Aaw(x) + Aw(y), (x,y,t) ER"XR"XR,,
(3.3)

and

U(x,t) <w(x), (x,t) €ER" XR,. (3.4)
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Then, for every ¢ € C;O([— 7,0; R"),

lim sup % log(U(x(t;&),t)) < —vya.s., (3.5)

oo
where vy € (0, A, — A,) is the unique root of
M — 7= A", (3.6)
If furthermore for some positive constants p and c,
clx|” < U(x,1), (x,1) ER" X R, (3.7)

then

1
lim sup 7Iog(|x(t; ) < _117/ a.s. (3.8)

t—>x

Proof. Define V(x,t) = e”U(x,t) for (x,¢) € R" X R,. Then, by (3.3)
and (3.4),

LV(x,y,t) =e"[yU(x,t) +ZU(x,y,t)]
<o =N — y)w(x) — Aw(y)].
Define
wi(x,t) = (A — y)e?'w(x) and w,(x,t) = d,e”'w(x)
for (x,t) € R” X R,. Then
LV(x,y,t) < —wy(x,t) +wy(y,t).
Moreover, by (3.6),
wi(x, 1) = L,e""Dw(x) = wy(x,t + 7).

Applying Lemma 2.1 we obtain that

limsupe”U(x(t;¢),t) <>as.,

t— >

which vyields (3.5) immediately. Finally (3.8) follows from (3.5) and (3.7)
directly. The proof is complete.
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COROLLARY 3.3. Let (H1) hold. Assume that there are four positive
constants A\,—\, such that

2xTf(x,0,1) < —Aylxl?,
[f(xy,t) = f(x,0,0)| < A5lyl,
lg(x,y, ) < Al + Aglyl?
forx,y € R" andt > 0. If
AL > 20, + A + Ay, (3.9)

then for all ¢ € CL([—,0]; R"),

lim sup %Iog(lx(t; &))< - ’ a.s., (3.10)

[— oo 2
where vy is the unique positive root of
M —=A = A —7y=(A+ A)e". (3.11)

Proof. Let U(x,t) = |x|°. Using the conditions, we compute

ZU(x,y,1) = 2x"f(x,y,1) +|g(x,y, 1)

< 2x"f(x,0,7) + 2lx|| f(x, y,0) = f(x,0,0)| +]g(x, y,0)|°
< —)\1|x|2 + 2A,1x| Iyl + )\3|x|2 + )\4|y|2
< —Alx]? + )\Z(le2 + |y|2) + Aglxl® + Ayl

= —(A = A = A)lxlP + (A + Ayl
Now the conclusion follows from Corollary 3.2. The proof is complete.

To close this section, let us show that the results in the previous section
can also be applied to deal with the problem of partially asymptotic
stability. Let1 <7 <nand1l <i, <i, < -+ <i; <n beall integers. Let
X =(x;,x,,...,x.) be the partial coordinates of x, which can be regarded
as in R™ with the norm || = \/xf1 + e xl

CoROLLARY 3.4. Let (H1) hold. Assume that there are functions V €
C* R"XR,;R,),y€IMR;R,) andw,,w, € C(R"; R,) and p, €F
such that

ZV(x,y,1) < y(1) =wi(x) +wy(y),  (x,y,0) ER"XR"XR,,
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and
wi(x) — wy(x) > wy(1%]), x € R, (3.12)
Moreover, there is a convex function u € %, and a constant p > 2 such that
w(lxl?)y <V(x,t), (x,t) €R"XR,.
Then, for every & € C}O([— 7,0; R"):
limx(t;¢) =0a.s. (3.13)

t— >

Proof. To apply Lemma 2.9, let U(x,t) = V(x,t) and w(x,t) = w,(x).
Then

LU(x,y,t) < (1) = wy(x) +wy(y) < y(r) —w(x, 1) +w(y,1).
Hence, by Lemma 2.9,

sup E|x(t; &) < .

—T<t<®

We can now apply Theorem 2.4 to obtain that
tIerJO [wi(x(;€)) —wy(x(2;€))] =0as.
This, together with (3.12), yields
tIerJc w(|2(t; €)]) = 0as.

Since u, €%, (3.13) must be true.

4. ORDINARY DIFFERENTIAL DELAY EQUATIONS
If g =0, Eqg. (2.1) becomes an n-dimensional ordinary differential delay
equation
x(t) =f(x(t),x(t —7),1), (4.1)

on ¢t > 0, and the corresponding initial data becomes {x(8): —7 < 6 < 0}
= £ C(—r,0]; R"). Moreover, hypothesis (H1) reduces to:

(H2) The function f satisfies the local Lipschitz condition and the
linear growth condition. That is, for each k =1,2,..., there isa ¢, > 0
such that

|f(x,p,0) = f(2, 5, 0)| < e (Ix — %[ + |y = 3)
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for all # > 0 and those x, y, x,y € R" with |x| vV |yl vV |x| V |y| <k, and
there is moreover a ¢ > 0 such that

[fCxy )| < e(d+1xl +1yD),
for all (x,y,1) € R" X R" X R,.

Under hypothesis (H2), Eg. (4.1) has a unique solution which is still
denoted by x(¢; ¢£). Furthermore, the operator ZV becomes

LV(x,y.1) = Vi(x,1) + V(2,0 f(x,7.1).

Here we use LV instead of ZV to indicate this operator is associated with
Eq. (4.1). The following corollaries follow from Theorems 2.3 and 2.4,
respectively.

CoOROLLARY 4.1. Let (H2) hold. Assume that there are functions V €
C>*YR"XR,;R,), yELXR,;R,),w € C(R"; R,), and a constant & >
1, such that

LV(x,y,t) <vy(t) —éw(x) +w(y), (x,y,t) ER" XR" XR_.
Then, for every &€ C%([—T,O; R™), the solution of Eq. (4.1) has the
properties that

limV(x(t;€),t) < and fxw(x(t;f))dt<00.
1= 0

If there is moreover a continuous function n: R, — R, such that
n(V(x,t)) <w(x), (x,t) €R" XR,,
then
lim n(V(x(t; €).0)) = n( im V(x(1: €).1)) = 0.
COROLLARY 4.2. Let (H2) hold. Assume that there are functions V €
C*YR"XR,;R,), yeLNR,;R,), and w;,w, € C(R"; R.) such that
LV(x,y,t) < vy(t) —wy(x) +wy(y), (x,y,t) ER"XR"XR,,
wi(x) = w,y(x), x € R",

lim inf V(x,t) = o.

|x|—>w 0<t<w

Then, for every ¢ € C([—7,0l; R"), the solution of Eq. (4.1) has the property
that

tli_)n;[wl(x(t; £€)) —wo(x(1:€))] = 0.
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These results can be used to investigate the asymptotic stability of Eq.
(4.1) as we did in the previous section for Eg. (2.1), but the details are left
to the reader.

5. EXAMPLES

In this section we discuss a number of examples to illustrate our theory.
In the following examples we let B(¢) be a scalar Brownian motion. We
omit mentioning initial data and write the solutions simply by x(z).

ExampLE 5.1. Let « and B be both bounded continuous functions
from R, to R_. Consider a one-dimensional stochastic differential delay
equation

dx(t) = —a(t)x(t)dt + B(t)x(t — 7)dB(t) ont=>0, (51)

with initial data {x(6): —7< 6 <0} = ¢€ C2(~7,0; R). Due to the
boundedness of « and B, hypothesis (H1) is satisfied. Assume further-
more that there are two constants p > 2 and & > 0 such that

pa(t) = 5ﬁllﬁ<o B()=B(t+1),  (52)

and
2a(t) — B¥(t+1) =6 (5.3)

for all £ > 0. We first show that E|x(¢; ¢)|” is bounded. To apply Lemma
2.9, we define

U(x,t) =xI” and w(x,t) =(p—1)B%(t)lx|"
for (x,1) € R X R,. Then, for (x,y,1) € R X R X R, we compute

p(p—1)

ZLU(x,y,t) < —pa(t)x]” + —B ()P 2 |yl?

IA

_pa(t)|x|l’ m (Z)[ 2|x|p+ ;|y|17:|

IA

1
—pmo—EUPAMp—awuwﬂp

+(p = DBy
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On the other hand, (5.2) implies

pa(t) —3(p —1(p —2)B*(1) = (p — 1 B(1).
Hence
ZLU(x,y,t) < —w(x,t) +w(x,t).
Note from the definition of w and (5.2) that
w(x,t) =(p—1)B2(DxI" = (p —1)B*(t + 7)|xI" =w(x,t+ 7).
By Lemma 2.9,

sup  E|x(t)]" < . (5.4)

—T7<t<»

To apply Lemma 2.1, we define
V(x,t) = x|, wi(x,t) = 2a(t)|x|2, wy(x,t) = ,82(t)|x|2
for (x,£) € R X R,. Then, by (5.3),
wi(x,t) —wy(x,t+7) = 8lx|%.
Moreover, for (x,y,1) € R X € R X R, we compute
LV(x,y,t) = =2a(t)lx]* + B2(t)ylP = —wy(x,1) + w,(x,1).

By Lemma 2.1, we have that

sup |x(#)] < <as., (5.5)
0<t<e»

and
[ lx(o)F dr < < as. (5.6)
0

In view of Lemmas 2.6 and 2.7, we observe that almost every sample path
of the solution x(¢) is uniformly continuous on ¢ > 0. This and (5.6)
implies that
limx(¢) =0as., (5.7)
t— >
that is, the solution of Eq. (5.1) asymptotically tends to zero with probabil-

ity 1. It is useful to point out that if both «a(f) = @ and B(¢+) = B are
constants, then (5.2) and (5.3) are guaranteed simply by 2a > B2.
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ExampLE 5.2. Consider a stochastic delay oscillator
Z(t) + 42(t) + 2z(t) = 22(¢t — 7)B(t), t=>0. (5.8)

By introducing a new variable x = (x,, x,)” = (z, 2)7, this oscillator can
be written as an It delay equation

dx (1) = x2(1) dr +
(=1 “2x,(r) - 4x,00)

Define V(x,t) = 2x% + x3 for (x,t) € R> X R,. Then, for (x,y,t) € R?
X R? X R, we compute

sz(to_ 7)} dB(t). (5.9)

LV(x,t) =4x,x, + 2x,(—2x, — 4x,) + 4y: = —8x3 + 4y3.

Applying Theorem 2.3 with w(x) = 4x3, we conclude that the solution of
Eq. (5.8) has the properties that

lim [22%(¢) + 22(¢)] = lim [2x3(¢) + x3(1)] <~ as.,
> » t—®
and
/méz(t) dr = fwxg(t) dt < o as.
0 0

ExampPLE 5.3. Consider a three-dimensional stochastic differential de-
lay equation

e—t

de(r) =b(x(t),t)de + | [-1Vx(t = )] A1 |dB(r). (5.10)
sin(x,(t — 7))

Here b: R® X R,— R" satisfies the local Lipschitz condition and the
linear growth condition, and has the property that

2x"h(x,t) < —Ix*,  (x,t) ER" XR,. (5.11)
To apply Theorem 2.4, define
V(x,t) = lx|?, wi(x) = x|, wy(x) =xZ A 1+ sin?(x,),
for x € R" and ¢ > 0. Clearly

wi(x) —wy(x) = 0.
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Moreover, for (x, y,t) € R® X R® X R, , we have

Z2V(x,y,t) =2x"b(x,t) + e ? +yZ AL+ sin?(y,)

=e % - wi(x) +wo(y).

By Theorem 2.4 and Remark 2.8 we have that

lim [wi(x(1)) —wy(x(1))] =0as. (5.12)

Note that w,(x) — w,(x) =0 if and only if x,=x,=0 and x? < 1.

H

ence, we can conclude from (5.12) that the solution of Eq. (5.10) has the

properties

10.

11.

12.

13.

14.

15.

lim [|x,(£)] + Ix,(¢)]] =0 and limsupx?(z) <las. (5.13)
t—> >

t—

REFERENCES

. L. Arnold, “Stochastic Differential Equations: Theory and Applications,” Wiley, New
York, 1972.

. A. Friedman, “Stochastic Differential Equations and Their Applications,” Vol. 2, Aca-
demic Press, San Diego, CA, 1976.

. J. K. Hale, Sufficient conditions for stability and instability of autonomous differential
equations, J. Differential Equations 1 (1965), 452-482.

. J. K. Hale and E. F. Infante, Extended dynamical systems and stability theory, Proc. Natl.
Acad. Sci. U.S.A. 58 (1967), 504-509.

. R. Z. Has’minskii, “‘Stochastic Stability of Differential Equations,” Sitjhoff & Noordhoff,
Rockville, MD, 1981.

. I. Karatzas and S. E. Shreve, “Brownian Motion and Stochastic Calculus,” Springer-
Verlag, Berlin/New York, 1991.

. H. J. Kushner, “Stochastic Stability and Control,” Academic Press, San Diego, CA, 1967.

. V. B. Kolmanovskii and A. Myshkis, “Applied Theory of Functional Differential Equa-
tions,” Kluwer Academic, Dordrecht/Norwell, MA, 1992.

. G. S. Ladde and V. Lakshmikantham, “Random Differential Inequalities,” Academic

Press, San Diego, CA, 1980.

J. P. LaSalle, Stability theory of ordinary differential equations, J. Differential Equations 4

(1968), 57-65.

R. S. Lipster and A. N. Shiryayev, “Theory of Martingales,” Kluwer Academic, Dor-

drecht/Norwell, MA, 1989 (translation of the Russian ed., Nauka, Moscow, 1986).

X. Mao, “Stability of Stochastic Differential Equations with Respect to Semimartingales,”

Longman Scientific and Technical, London /New York, 1991.

X. Mao, “Exponential Stability of Stochstic Differential Equations,” Dekker, New York,

1994.

X. Mao, “Stochastic Differential Equations and Applications,” Ellis Horwood, Chich-

ester, U.K,, 1997.

S.-E. A. Mohammed, “Stochastic Functional Differential Equations,” Longman Scientific

and Technical, London/New York, 1986.



	1. INTRODUCTION
	2. ASYMPTOTIC CONVERGENCE
	3. ASYMPTOTIC STABILITY
	4. ORDINARY DIFFERENTIAL DELAY EQUATIONS
	5. EXAMPLES
	REFERENCES

