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Let �Sn�n denote a sequence of polynomials orthogonal with respect to the
Sobolev inner product

�f; g�S =
∫
f �x�g�x�dψ0�x� + λ

∫
f ′�x�g′�x�dψ1�x�;

where λ > 0 and �dψ0; dψ1� is a so-called coherent pair with at least one of the
measures dψ0 or dψ1 a Laguerre measure. We investigate the asymptotic behaviour
of Sn�x� outside the supports of dψ0 and dψ1, and n→+∞. © 2000 Academic Press

Key Words: Laguerre polynomials; Sobolev orthogonal polynomials; coherent
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1. INTRODUCTION

Consider the Sobolev inner product

�f; g�S =
∫ b
a
f �x�g�x�dψ0�x� + λ

∫ b
a
f ′�x�g′�x�dψ1�x�; (1.1)

where ψ0 and ψ1 are distribution functions on �a; b� and λ > 0.

1 This research was partially supported by Junta de Andalućıa, Grupo de Investigación
FQM 0229 and DGES under Grant PB 95 - 1205.

528

0022-247X/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.



sobolev orthogonal polynomials 529

In [2] Iserles et al. introduced the notion of a coherent pair of measures
for inner products of the form (1.1). This concept proved to be very fruitful
(see [3, 7]). We define the notion here as follows. Let �Pn�n and �Tn�n
denote orthogonal polynomial sequences with respect to the inner products
defined by dψ0 and dψ1, respectively. The pair �dψ0; dψ1� is called a
coherent pair if there exist non–zero constants An and Bn such that

Tn = AnP
′
n+1 + BnP ′n; n ≥ 1: (1.2)

Let �dψ0; dψ1� denote a coherent pair and let �Sn�n be a sequence of
polynomials orthogonal with respect to (1.1). As a direct consequence of
(1.2) there exist non–zero constants Cn and Dn such that

AnPn+1 + BnPn = CnSn+1 +DnSn; n ≥ 1: (1.3)

The existence of this simple relation between the “Sobolev” polynomials
Sn and the “standard” polynomials Pn makes the concept of coherent pair
so useful. The relation will play a central part in the present paper. In
[8] all coherent pairs of measures have been determined. Especially, it has
been proved that at least one of the two measures dψ0 or dψ1 has to be a
Laguerre or Jacobi measure (apart from a linear change in the variable).

In the present paper, �dψ0; dψ1� is a coherent pair where one of the
measures is a Laguerre measure xαe−x dx; α > −1, on �0;+∞�. We in-
vestigate the asymptotic behaviour of Sn�x� outside the supports of dψ0 and
dψ1, and n → +∞. In [4] the special case dψ0�x� = dψ1�x� = xαe−x dx
already has been treated. In [6] the similar problem for coherent pairs of
Jacobi type has been studied.

In Section 2 we recall some well known results for Laguerre polynomials
�L�α�n �n which will be used in the paper. Especially we give the asymp-
totic result of Perron for L�α�n �x� with fixed x ∈ C \ �0;+∞� and n → ∞
(Lemma 2.1).

In Section 3 we study coherent pairs �dψ0; dψ1� where dψ1 is a Laguerre
measure. We obtain the first two terms of the asymptotic expansion of Sn�x�
where x ∈ C \ �0;+∞� and n→∞ (Theorem 3.5). In two special cases our
method even gives the complete asymptotic expansion (Theorem 3.6).

In Section 4 the first measure dψ0 is a Laguerre measure and �dψ0; dψ1�
is again a coherent pair. The situation is more complicated than in Section 3
and we can only give the first term of the asymptotic expansion of Sn�x�
outside the supports of dψ0 and dψ1 and n→∞ (Theorem 4.11).

In both sections we choose the normalization of Sn in such a way that
the leading coefficients of Sn and L�α�n are equal. Then there exist positive
constants Bn and Dn such that

L
�α�
n+1 − BnL�α�n = Sn+1 −DnSn; n ≥ 0; (1.4)

see Lemmas 3.1 and 4.7, respectively.
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In Lemma 3.1 we have Bn ≡ 1 and Lemma 4.7 is just (1.3) in the present
normalization. Then it suffices to determine the asymptotic behaviour of
the constants in (1.4) in order to obtain the asymptotic behaviour of Sn�x�
from Perron’s result on the asymptotic behaviour of L�α�n .

We obtain for Bn and Dn in (1.4)

lim
n→∞ Bn = 1;

lim
n→∞ Dn = ` =

λ+ 2 −√λ2 + 4λ
2

< 1

(see Lemmas 3.3 and 4.10). As a consequence the asymptotic expansion of
Sn depends on λ.

We remark that in the Jacobi case studied in [6] the asymptotics fol-
low from a relation similar to (1.4), with lim Bn a non-zero constant and
lim Dn = 0. Then, in the Jacobi case, the asymptotic expansion is indepen-
dent of λ.

2. CLASSICAL LAGUERRE POLYNOMIALS

Laguerre polynomials, for arbitrary real α, are defined by (see Szegő [10,
pp. 100–102])

L
�α�
n �x� =

n∑
k=0

(
n+ α
n− k

) �−x�k
k!

; n = 0; 1; 2; : : :

The leading coefficient, �−1�n/n!, is independent of α and

L
�α�
n �0� =

(
n+ α
n

)
: (2.1)

The Rodrigues formula reads

L
�α�
n �x� = 1

n!
exx−α

(
d

dx

)n (
e−xxn+α

)
: (2.2)

If α > −1, then �L�α�n �n is orthogonal with respect to the inner product

�f; g� =
∫ +∞

0
f �x�g�x�xαe−x dx:

Moreover, if α > −1, then∫ +∞
0

(
L
�α�
n �x�

)2
xαe−x dx = 0�n+ α+ 1�

n!
; n = 0; 1; 2; : : : : (2.3)
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For arbitrary real α the following relations are satisfied

L
�α�
n �x� − L�α�n−1�x� = L�α−1�

n �x�; (2.4)

d

dx
L
�α�
n �x� = −L�α+1�

n−1 �x�; (2.5)

d

dx

(
L
�α�
n �x� − L�α�n−1�x�

)
= −L�α�n−1�x�: (2.6)

The following asymptotic result, due to Perron (see [10, p. 199]), will play
a central role in our investigations.

Lemma 2.1. Let α be an arbitrary real number. Then

L
�α�
n �x� = 1

2
√
π
ex/2�−x��−�α/2��−1/4nα/2−1/4e2

√−nx
{

1+O�n−1/2�
}
:

The relation holds if x is in the complex plane cut along the positive part of the
real axis; �−x�−�α/2��−1/4 and

√−x must be taken real and positive if x < 0.
The bound for the remainder holds uniformly in every closed domain with no
points in common with x ≥ 0.

As a direct consequence of Lemma 2.1 we have for an arbitrary real α

lim
n→∞

L
�α�
n �x�

L
�α�
n−1�x�

= 1; (2.7)

and

lim
n→∞

n1/2L
�α−1�
n �x�

L
�α�
n �x�

= √−x; (2.8)

uniformly on compact subsets of C \ �0;+∞�.

3. COHERENT PAIRS OF LAGUERRE TYPE I

Consider the coherent pair �dψ0; dψ1�, where dψ1 is a Laguerre mea-
sure on �0;+∞�,

dψ1�x� = xαe−x dx;
with α > −1. For dψ0 there are three different situations (see [8]):

(I a) If α > 0, then dψ0�x� = �x− ξ�xα−1e−x dx, with ξ ≤ 0.
(I b) If α = 0, then dψ0�x� = e−x dx+Mδ�0�, with M ≥ 0.
(I c) If −1 < α < 0, then dψ0�x� = xαe−x dx.
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In all cases, the support of dψ0 is �0;+∞�. We abbreviate to

dψ0�x� = �x− ξ�xα−1e−x dx+Mδ�0�;
with ξ = 0 if α ≤ 0 and M = 0 if α 6= 0.

Let �Sn�n denote the sequence of polynomials orthogonal with respect
to the Sobolev inner product

�f; g�S =
∫
f �x�g�x�dψ0�x� + λ

∫
f ′�x�g′�x�dψ1�x�; (3.1)

with λ > 0, normalized by the condition that Sn and L�α�n have the same
leading coefficient. Then, in particular, S0 = L�α�0 .

Lemma 3.1. There exist positive constants an such that

L
�α�
n �x� − L�α�n−1�x� = Sn�x� − an−1Sn−1�x�; n ≥ 1: (3.2)

Proof. Put

L
�α�
n �x� − L�α�n−1�x� = Sn�x� +

n−1∑
i=0

γ
�n�
i Si�x�:

Then, for 0 ≤ i ≤ n− 1, with (2.6)

γ
�n�
i �Si; Si�S =

(
L
�α�
n − L�α�n−1; Si

)
S
=
∫ (
L
�α�
n − L�α�n−1

)
Si dψ0:

If ξ < 0; α > 0 we apply (2.4) and if M > 0; α = 0 we apply (2.1) in order
to obtain∫ (

L
�α�
n − L�α�n−1

)
Si dψ0 =

∫ +∞
0

(
L
�α�
n − L�α�n−1

)
Six

αe−x dx:

For 0 ≤ i ≤ n− 2, the last integral equals zero. For i = n− 1 we have

γ
�n�
n−1�Sn−1; Sn−1�S = −

∫ +∞
0

L
�α�
n−1�x�Sn−1�x�xαe−x dx

= −
∫ +∞

0

(
L
�α�
n−1�x�

)2
xαe−x dx:

Lemma 3.2. The sequence �an�n in (3.2) satisfies the recurrence relation

an =
n+ α

n�2 + λ� + α− ξ − nan−1
; n ≥ 1; (3.3)

with a0 = α
α−ξ if α > 0, a0 = 1

M+1 if α = 0, and a0 = 1 if −1 < α < 0.
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Proof. Write

R0 = S0;

Rn = Sn − an−1Sn−1; n ≥ 1;

then for n ≥ 1,

�Rn+1; Rn�S + an�Rn;Rn�S + anan−1�Rn;Rn−1�S = 0:

On the other hand, by (3.2), Rn = L�α�n − L�α�n−1 and then computing the
Sobolev inner products with (3.1) we obtain

�Rn+1; Rn�S = −
0�n+ α+ 1�

n!
; n ≥ 0;

�Rn;Rn�S =
0�n+ α+ 1�

n!
+ 0�n+ α��n− 1�!

−ξ0�n+ α�
n!

+ λ0�n+ α��n− 1�! ; n ≥ 1:

Therefore, the recurrence relation (3.3) follows.
In order to obtain a0 we use (3.2) with n = 1, S0 = L�α�0 , and �S1; 1�S = 0.

Then ∫
�L�α�1 − L�α�0 � dψ0 = −a0

∫
L
�α�
0 dψ0;

and evaluating the integrals as before we obtain a0.

In order to derive the asymptotic behaviour of Sn we need more infor-
mation about the sequence �an�n.

Lemma 3.3. The sequence �an�n is convergent, and

` = lim
n→∞ an =

λ+ 2 −√λ2 + 4λ
2

< 1:

Moreover, for all p < 1, we have

lim
n→∞ np�an − `� = 0: (3.4)

Proof. First we observe 0 < a0 ≤ 1, and then a simple induction argu-
ment applied on Lemma 3.2 gives 0 < an ≤ 1 for all n ≥ 0.

Suppose that ` = lim
n→∞ an exists, then (3.3) implies

`2 − `�2 + λ� + 1 = 0:

Since 0 < an ≤ 1 for all n ≥ 0, we have 0 < ` ≤ 1. Hence

0 < ` = λ+ 2 −√λ2 + 4λ
2

< 1:
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Now, we prove that (3.4) is satisfied; in particular this implies that �an�
is indeed convergent.

With (3.3) and `�2 + λ� = `2 + 1 we have

an − ` =
α− `�α− ξ� + n`�an−1 − `�
n�2 + λ� + α− ξ − nan−1

:

Then, using an−1 ≤ 1,

�an − `� ≤
�α− α`+ `ξ�
n�1+ λ� + α +

n`�an−1 − `�
n�1+ λ� + α: (3.5)

Put tn = np�an − `�, with p < 1, then

tn ≤
np�α− α`+ `ξ�
n�1+ λ� + α + np+1

�n− 1�p�n�1+ λ� + α�`tn−1:

Let ε > 0 and ` < r < 1. Then there exists a positive integer number N
such that

tn < ε+ rtn−1; n ≥ N + 1:

By repeated application, for k ≥ 1 we deduce

tN+k < ε�1+ r + r2 + · · · + rk−1� + rktN <
ε

1− r + r
ktN:

This implies

lim
n→∞ tn = 0:

Remark 3.4. In two special cases,

(i) dψ0�x� = �x− ξ�xα−1e−x dx, with α > 0, ξ < 0 and α = − `
1−`ξ,

(ii) dψ0�x� = e−x dx+Mδ�0�, with M ≥ 0,

relation (3.5) reduces to

�an − `� ≤
`

1+ λ �an−1 − `� ≤
(

`

1+ λ
)n
�a0 − `�:

Then, for every value of p we have

lim
n→∞ np�an − `� = 0:

Now, we are able to derive the asymptotic behaviour of the Sobolev
polynomials for coherent pairs of Laguerre type I.
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Theorem 3.5. Let dψ1�x� = xαe−x dx with α > −1, dψ0�x� =
�x − ξ�xα−1e−x dx +Mδ�0� with ξ = 0 if α ≤ 0, and M = 0 if α 6= 0; the
support of the measures is �0;+∞�. Let �Sn�n denote the sequence of poly-
nomials orthogonal with respect to (3.1), where the leading coefficient of Sn is
equal to the leading coefficient of L�α�n . Put

Sn =
1

1− `L
�α−1�
n − `

1− `Fn:

If x ∈ C \ �0;+∞�, then

lim
n→∞

Fn�x�
L
�α−2�
n �x�

= 1
1− `;

uniformly on compact subsets of C \ �0;+∞�, where ` is given by Lemma 3.3.

Before proving Theorem 3.5 we mention two special cases in which our
method gives the complete asymptotic expansion of Sn.

Theorem 3.6. Suppose

(i) dψ1�x� = xαe−x dx, dψ0�x� = �x − ξ�xα−1e−x dx, with α > 0,
ξ < 0, and α = − `

1−`ξ, or

(ii) dψ1�x� = e−x dx, dψ0�x� = e−x dx+Mδ�0�, with M ≥ 0.

The support of the measures is �0;+∞� and �Sn�n is defined as in Theorem
3.5. Then the complete asymptotic expansion of Sn is

Sn�x� =
∞∑
k=0

�−1�k`k
�1− `�k+1L

�α−k−1�
n �x�;

uniformly on compact subsets of C \ �0;+∞�.
Proof of Theorem 3.6. For k ≥ 0, put

Sn�x� =
k∑
i=0

�−1�i`i
�1− `�i+1L

�α−i−1�
n �x� + �−1�k+1`k+1

�1− `�k+1 Hn�x�: (3.6)

We will prove

lim
n→∞

Hn�x�
L
�α−k−2�
n �x�

= 1
1− `; (3.7)

uniformly on compact subsets of C \ �0;+∞�. This will prove Theorem 3.6.
We start from (3.2) where we write an = `+ rn,

L
�α�
n − L�α�n−1 = Sn − `Sn−1 − rn−1Sn−1: (3.8)
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We have, with (2.4),

L
�α�
n − L�α�n−1 =

1
1− `

{
L
�α−1�
n − `L�α−1�

n−1

}
− `

1− `
{
L
�α−1�
n − L�α−1�

n−1

}
:

By repeated application

L
�α�
n − L�α�n−1 =

k∑
i=0

�−1�i`i
�1− `�i+1

{
L
�α−i−1�
n − `L�α−i−1�

n−1

}
+�−1�k+1`k+1

�1− `�k+1

{
L
�α−k−1�
n − L�α−k−1�

n−1

}
: (3.9)

Substitute (3.6) for n and n− 1 in (3.8) and apply (3.9); then

L
�α−k−1�
n − L�α−k−1�

n−1 = Hn − �`+ rn−1�Hn−1

+rn−1�−1�k �1− `�
k+1

`k+1

k∑
i=0

�−1�i`i
�1− `�i+1L

�α−i−1�
n−1 :

On the left hand side we apply (2.4). Then we rewrite the relation as

An = 1+ bn−1An−1 + ρn−1; (3.10)

with

An =
Hn

L
�α−k−2�
n

;

bn−1 = �`+ rn−1�
L
�α−k−2�
n−1

L
�α−k−2�
n

;

ρn−1 = rn−1�−1�k+1
k∑
i=0

�−1�i`i−k−1

�1− `�i−k
L
�α−i−1�
n−1

L
�α−k−2�
n

:

By Remark 3.4, for every value of p, we have

lim
n→∞ nprn−1 = 0:

Then, with (2.7) and (2.8),

lim
n→∞ ρn−1 = 0;

uniformly on compact subsets of C \ �0;+∞�. Moreover, by (2.7),

lim
n→∞ bn−1 = `;

again uniformly on compact subsets of C \ �0;+∞�.
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It is our intention to prove (3.7), i.e.,

lim
n→∞ An =

1
1− `;

uniformly on compact subsets of C \ �0;∞�.
Put

A∗n = An −
1

1− ` :

Then (3.10) implies

A∗n =
bn−1 − `

1− ` + ρn−1 + bn−1A
∗
n−1:

Let K denote a compact subset of C \ �0;∞�. Let ε > 0 and ` < r < 1.
Then there exists an N , such that, if n ≥ N + 1 and x ∈ K, we have∣∣A∗n∣∣ < ε+ r ∣∣A∗n−1

∣∣ :
By repeated application, for k ≥ 1 and x ∈ K, we deduce∣∣A∗N+k∣∣ < ε�1+ r + · · · + rk−1� + rk ∣∣A∗N ∣∣ < ε

1− r + r
k
∣∣A∗N ∣∣ :

This implies

lim
n→∞ A∗n = 0;

uniformly on K. This proves (3.7); thus Theorem 3.6 follows.

Proof of Theorem 3.5. The proof of Theorem 3.5 is just the proof of
Theorem 3.6 with k = 0. Observe that, by Lemma 3.3,

lim
n→∞ nprn−1 = 0;

but only for p < 1. Hence

lim
n→∞ ρn−1 = 0;

only for k = 0, and we can give by our method only two terms of the
asymptotic expansion of Sn.



538 meijer, pérez, and piñar

4. COHERENT PAIRS OF LAGUERRE TYPE II

In this section we consider the coherent pair

dψ0�x� = xαe−x dx; dψ1�x� =
xα+1e−x

x− ξ dx+Mδ�ξ�;

where the absolutely continuous part of the measures are defined on
�0;+∞�, α > −1; ξ ≤ 0;M ≥ 0.

Let �Tn�n denote the sequence of polynomials orthogonal with respect
to dψ1, normalized by the condition that the leading coefficients of Tn and
L
�α�
n are equal. The aim of this section is to derive the asymptotic behaviour

of the sequence of Sobolev polynomials �Sn�n orthogonal with respect to
the inner product

�f; g�S =
∫
f �x�g�x�dψ0�x� + λ

∫
f ′�x�g′�x�dψ1�x�; (4.1)

with λ > 0, outside the supports of the measures. As before the leading
coefficient of Sn is taken equal to the leading coefficient of L�α�n . Observe
that

T0 = S0 = L�α�0 ; S1 = L�α�1 :

We start with a study of �Tn�n.

Lemma 4.1. The polynomials Tn satisfy

Tn = L�α+1�
n − cnL�α+1�

n−1 ; n ≥ 1; (4.2)

with

cn =
n!
∫
T 2
n dψ1

0�n+ α+ 1� : (4.3)

Proof. For 0 ≤ i ≤ n− 1, we have∫ +∞
0

TnL
�α+1�
i xα+1e−x dx =

∫
TnL

�α+1�
i �x− ξ�dψ1:

For 0 ≤ i ≤ n− 2, the last integral is zero. For i = n− 1 we have∫
TnL

�α+1�
n−1 �x− ξ�dψ1 = −n

∫
T 2
n dψ1

and the Lemma follows from (2.3).

Observe that (4.2) with (2.5) implies that �dψ0; dψ1� is indeed a coher-
ent pair as defined by (1.2).
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Lemma 4.2. Let �cn�n denote the sequence of coefficients in (4.2). Put
dn = cn − 1 (n ≥ 1). Then

dn =
ξ
∫ +∞

0 L
�α�
n

xαe−x
x−ξ dx+ML

�α�
n �ξ�∫ +∞

0 L
�α+1�
n−1

xα+1e−x
x−ξ dx+ML�α+1�

n−1 �ξ�
; n ≥ 1: (4.4)

Proof. For n ≥ 1 we have ∫
Tn dψ1 = 0:

Substituting (4.2) we obtain

cn

{∫ +∞
0

L
�α+1�
n−1

xα+1e−x

x− ξ dx+ML�α+1�
n−1 �ξ�

}
=
∫ +∞

0
L
�α+1�
n

xα+1e−x

x− ξ dx+ML�α+1�
n �ξ�:

Then the lemma follows with (2.4).

Lemma 4.3. Let ξ < 0. Then

I
�α�
n =

∫ +∞
0

L
�α+1�
n−1

xα+1e−x

x− ξ dx ∼ �−ξ�α/2+1/4nα/2+1/4e−2
√−nξe�−�1/2�ξ�

√
π

if n→∞.

Proof. Using Rodrigues’ formula (2.2) we obtain

I
�α�
n =

∫ +∞
0

L
�α+1�
n−1

xα+1e−x

x− ξ dx = 1
�n− 1�!

∫ +∞
0

1
x− ξD

n−1�e−xxn+α�dx:

After integration by parts n− 1 times, we have

I
�α�
n =

∫ +∞
0

xn+αe−x

�x− ξ�n dx: (4.5)

Substitution of x = −ξt gives

I
�α�
n = �−ξ�α+1

∫ +∞
0

eξt
(

t

t + 1

)n
tα dt:

The function eξt�t/�t + 1��n has a maximum in

tm = −
1
2
+
√

1
4
− n
ξ
> 0:
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Substitute t = tm�1+ τ�. Then

I
�α�
n = �−ξ�α+1eξtm

tn+α+1
m

�tm + 1�n
∫ +∞
−1

eξτtm

(
1+ τ

1+ tmτ
tm+1

)n
�1+ τ�α dτ:

Put

h�τ� = ξτtm + n log�1+ τ� − n log
(

1+ tmτ

tm + 1

)
:

We divide the interval of integration in three parts: �−1;− 1
2 �, �− 1

2 ;
1
2 �

and � 1
2 ;∞�. We determine the asymptotic behaviour of the integral over

�− 1
2 ;

1
2 �.

We have

log�1+ τ� − log
(

1+ tmτ

tm + 1

)
= − log

(
1− τ

�1+ τ��tm + 1�
)

= τ

�1+ τ��tm + 1� +
1
2

τ2

�1+ τ�2�tm + 1�2 +
R�τ�
�tm + 1�3 ;

where the remainder R�τ� is uniformly bounded in �− 1
2 ;

1
2 �. Then, with

ξt2m + ξtm + n = 0,

h�τ� = ξτtm +
nτ

�1+ τ��tm + 1� −
1
2

ξτ2

�1+ τ�2 + ρn;

where �ρn� < ε, if n is sufficiently large, uniformly on �− 1
2 ;

1
2 �.

We obtain

h�τ� = − n

tm + 1
τ2

1+ τ −
1
2

ξτ2

�1+ τ�2 + ρn:

Then Laplace’s method (see, e.g., [9, p. 81]) gives∫ 1/2

−�1/2�
eh�τ��1+ τ�α dτ ∼

√
tm + 1
n

π

if n→∞.
It is easy to see that the other intervals of integration have a contribution

of lower order. Hence

I
�α�
n ∼ �−ξ�α+1eξtmtα+1

m

(
tm

tm + 1

)n√ tm
n
π:

From this result the lemma follows.
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Lemma 4.4. Let �dn�n denote the constants in (4.4). Then

lim
n→∞ n1/2dn =

{ −�−ξ�1/2 if M = 0;
�−ξ�1/2 if M > 0:

Proof. (i) Suppose M = 0. If ξ = 0, then (4.4) implies dn = 0
for all n ≥ 1. If ξ < 0, then the result follows from Lemma 4.3.

(ii) Suppose M > 0 and ξ < 0. By Lemma 4.3 and Perron’s result
(Lemma 2.1), we have

lim
n→∞

I
�α�
n

L
�α+1�
n−1 �ξ�

= 0:

Then the result follows from (2.8).

(iii) Finally suppose M > 0, ξ = 0. From (4.5) we see∫ +∞
0

L
�α+1�
n−1 xαe−x dx = 0�α+ 1�:

Then (2.1) gives

dn ∼

(
n+ α
n

)
(
n+ α
n− 1

) ;
and the result follows.

Theorem 4.5. Let �Tn�n denote the sequence of polynomials orthogonal
with respect to the measure

dψ1�x� =
xα+1e−x

x− ξ dx+Mδ�ξ�; α > −1; ξ ≤ 0; M ≥ 0;

where the support of the absolutely continuous part of the measure is �0;∞�,
and the leading coefficient of Tn is equal to the leading coefficient of L�α�n .
Then, if x ∈ C \ �0;∞�,

lim
n→∞

Tn�x�
L
�α�
n �x�

=
 1+ �−ξ�1/2�−x�1/2 if M = 0;

1− �−ξ�1/2�−x�1/2 if M > 0y

the convergence is uniform on compact subsets of C \ �0;∞�.
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Proof. Relation (4.2) with cn = 1+ dn reads

Tn = L�α+1�
n − L�α+1�

n−1 − dnL�α+1�
n−1 :

Then with (2.4),

Tn

L
�α�
n

= 1− n1/2dn
L
�α+1�
n−1

L
�α�
n n1/2

:

The theorem follows from (2.7), (2.8), and Lemma 4.4.

Remark 4.6. Observe that the limit in Theorem 4.5 becomes zero if M >
0, x = ξ < 0. However, in that case, x is in the support of dψ1. If x is
outside the support of dψ1, then the limit is different from zero.

We now return to the study of �Sn�n, the sequence of orthogonal poly-
nomials with respect to the inner product (4.1). Define c0 by

c0 =
∫
T 2

0 dψ1

0�α+ 1� ;

in such a way that (4.3) holds for all n ≥ 0.

Lemma 4.7. There exist positive constants an such that

L
�α�
n − cn−1L

�α�
n−1 = Sn − an−1Sn−1; n ≥ 1; (4.6)

where the coefficients cn are defined by (4.3).

Proof. By (2.5) and (4.2) we have

d

dx

{
L
�α�
n �x� − cn−1L

�α�
n−1�x�

}
= −Tn−1�x�; n ≥ 1:

Write

L
�α�
n − cn−1L

�α�
n−1 = Sn +

n−1∑
i=0

γ
�n�
i Si:

Then, for 0 ≤ i ≤ n− 1,

γ
�n�
i �Si; Si�S = �L�α�n − cn−1L

�α�
n−1; Si�S =

∫ +∞
0

(
L
�α�
n − cn−1L

�α�
n−1

)
Six

αe−x dx:

For 0 ≤ i ≤ n− 2, the last integral is zero. For i = n− 1 we have

γ
�n�
n−1�Sn−1; Sn−1�S =

∫ +∞
0

(
L
�α�
n − cn−1L

�α�
n−1

)
Sn−1x

αe−x dx

= −cn−1

∫ +∞
0

(
L
�α�
n−1

)2
xαe−x dx;

and the lemma follows.
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Lemma 4.8. The sequence �an�n in (4.6) satisfies the recurrence relation

an =
cn�n+ α�

n+ α+ nc2
n−1 + λncn−1 − ncn−1an−1

; n ≥ 1; (4.7)

with a0 = c0.

Proof. As in Section 3, we write R0 = S0, Rn = Sn − an−1Sn−1; n ≥ 1.
Then, for n ≥ 1,

�Rn+1; Rn�S + an�Rn;Rn�S + anan−1�Rn;Rn−1�S = 0:

With Rn = L�α�n − cn−1L
�α�
n−1 we evaluate the Sobolev inner products. Then

�Rn+1; Rn�S = −cn
0�n+ α+ 1�

n!
; n ≥ 0:

With (4.3),

�Rn;Rn�S =
0�n+ α+ 1�

n!
+ c2

n−1
0�n+ α�
�n− 1�! + λcn−1

0�n+ α�
�n− 1�! ; n ≥ 1:

Now, the recurrence relation (4.7) follows. With S0 = L�α�0 , S1 = L�α�1 we
obtain from (4.6) a0 = c0.

Remark 4.9. From an−1 ≤ cn−1 it follows with (4.7) that an < cn. Since
a0 = c0, by induction an < cn for n ≥ 1. In particular we have for the
denominator in (4.7)

n+ α+ nc2
n−1 + λncn−1 − ncn−1an−1 > n+ α: (4.8)

Lemma 4.10. The sequence �an�n in (4.7) is convergent, and

` = lim
n→∞ an =

λ+ 2 −√λ2 + 4λ
2

< 1:

Proof. Write cn = 1+ dn, with, by Lemma 4.4,

lim
n→∞ dn = 0:

We can rewrite (4.7) as

an =
n+ nrn

n�2 + λ� + nsn − nan−1
;

with

lim
n→∞ rn = lim

n→∞ sn = 0:
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Then, with `�2 + λ� = `2 + 1 we have

an − ` =
nrn − n`sn + n`�an−1 − `�
n�2 + λ� + nsn − nan−1

:

With (4.8), we have

�an − `� ≤
n

n+ α �rn� +
n`

n+ α �sn� +
n

n+ α`�an−1 − `�:

Let ε > 0 and ` < r < 1. Then there exists a positive integer number N
such that

�an − `� < ε+ r�an−1 − `�; n ≥ N + 1:

Proceeding as in the proof of Lemma 3.3, this implies

lim
n→∞ �an − `� = 0:

Theorem 4.11. Let

dψ0�x� = xαe−x dx;

dψ1�x� =
xα+1e−x

x− ξ dx+Mδ�ξ�; α > −1; ξ ≤ 0; M ≥ 0;

where the support of the absolutely continuous part of the measures is �0;∞�.
Let �Sn�n denote the sequence of polynomials orthogonal with respect to (4.1),
with the leading coefficient of Sn equal to the leading coefficient of L�α�n .

If x ∈ C \ �0;∞�, then

lim
n→∞

Sn�x�
L
�α−1�
n �x�

=


1

1−`
{

1+ �−ξ�1/2�−x�1/2
}

if M = 0;

1
1−`

{
1− �−ξ�1/2�−x�1/2

}
if M > 0y

the convergence is uniform on compact subsets of C \ �0;∞�.
Proof. With cn = 1+ dn (4.6) becomes

L
�α�
n − L�α�n−1 − dn−1L

�α�
n−1 = Sn − an−1Sn−1:

Then, using (2.4),

1− dn−1n
1/2 L

�α�
n−1

L
�α−1�
n n1/2

= Sn

L
�α−1�
n

− an−1
Sn−1

L
�α−1�
n−1

L
�α−1�
n−1

L
�α−1�
n

: (4.9)
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In the sequel the upper sign in the symbols ± and ∓ is connected with
M > 0 and the lower one with M = 0. With (2.7), (2.8), and Lemma 4.4,
we have

lim
n→∞ dn−1n

1/2 L
�α�
n−1

L
�α−1�
n n1/2

= ±�−ξ�
1/2

�−x�1/2 :

Then we can rewrite (4.9) as

An = 1∓ �−ξ�
1/2

�−x�1/2 + bn−1An−1 + ρn−1;

with

An =
Sn

L
�α−1�
n

;

bn−1 = an−1
L
�α−1�
n−1

L
�α−1�
n

;

ρn−1 = −dn−1
L
�α�
n−1

L
�α−1�
n

+ lim
n→∞ dn−1

L
�α�
n−1

L
�α−1�
n

:

Here

lim
n→∞ bn−1 = `;

lim
n→∞ ρn−1 = 0;

the convergence is uniform on compact subsets of C \ �0;∞�. Proceeding
as in the proof of Theorem 3.6 we arrive at the desired result.

Remark 4.12. If x is outside the support of the measures, then the limit
in Theorem 4.11 is not zero. However, if M > 0, x = ξ < 0, then x is in
the support of dψ1 and the limit becomes zero.
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structive Theory of Functions,” (G. Alexits and S. B. Stechkin, Eds.) pp. 77–83, Akadémiai
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