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We study second-order differential operators 4 with lower-order coefficients in
some L, + L.. We prove the generation of positive, quasi-contractive C, semi-
groups on L, for all p (1,00). If the second-order coefficients are in some
L, + L., we get upper pseudo-Gaussian bounds of the heat kernel. Maximal
regularity, spectral independence on L,, and analyticity of the generated semi-
group on L; are studied for these operators.  © 2001 Academic Press
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0. INTRODUCTION

There is now an extensive literature on Gaussian bounds for heat
kernels associated with strongly elliptic operators (see Davies [8], Robinson
[18] and references therein). The best upper bounds have been derived by
a technique introduced by Davies in [7]. We use this technique and ideas
developed in Stampacchia [19], Daners [6], and Arendt and ter Elst [2] to
analyze the Cauchy problem,

du(t) +Au(t) =0 on Q,forall t € (0,)
u(0) =u;, onQ , (CP)
u(t)y =0 ondQ,forall s € (0,»)
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where () is an open subset of R” and the operator A is associated with the
closure of the second-order form & given by

&(u,v) = Z falj(x)&u(x)&u(x)dx

i,j=1

+ ; /le’j(x)&iu(x)u(x) dx

+ i"l ,/sz,j(x)u(x)ﬁjv(x) dx + /Qc(x)u(x)y(x) de. (1)

This form is well defined for all u,v € W, if the coefficients a; i b
and c are in L, |, and are real valued.

Suppose that c_€ £, ==L, + L, and b, ; € L, for some g > 1. Then
we show that the operator —A4 generates a semigroup 7 on L,. We prove
that in this case T can be extended to consistent, quasi-contractive,
positive C, semigroups on L, for all p € (1,»). If b, ; €L, and c_€ L,
for some p > 2, ¢ > 1, then T(t) is in A(L,,L,) and is quas1 _ultracontrac-
tive, in particular, ||T(t)|| 2, L) < Ct™"/?¢". Of course, in this situation T
is associated with a kernel k such that

T(1)f(x) = [ k(t,x,)f(y) dy forall fEL,. (2)

Assume in addition that a; ; € £, for some p > 2. We then prove a
pseudo-Gaussian bound of order m > 2, explicitly

lk(t,x,y)l < Cr="2exp(w,t — wy(lx —yI" /1)) (3)

for almost all x,y € Q, t € (0,%) and some C, w; > 0. If a; ; € L, then
we show m = 2 and obtain a classical Gaussian kernel as an upper bound.
This extends the result of Aronson [4], Arendt and ter Elst [2], and Daners
[6]. Using estimate (3), we obtain some results about spectral indepen-
dence, maximal regularity, and analyticity.

The plan of this article is as follows. In Section 1 we state the exact
assumptions and the main results. We give some estimates for the coeffi-
cients in Section 2. In Section 3 we derive the key estimate (6) and use it to
show that the form & generates a C,, semigroup on L,. In Section 4, we
prove that & generates quasi-dissipative C, semigroupson L, (1 < p < =)
and also give an L,—L., estimate. We derive the upper Gaussian estimates
in Section 5 and apply these results in Section 6.

In this article we fix the open set () C R” and use the following
notation. By N and R we denote the set of all natural numbers (without 0)
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and the set of all real numbers, respectively. We use R* = [0, «) for short.
We write L, to denote the real Banach space of all functions from () into
R with norm |[Ifll, = (JolfCOI” d)'/?, if 1 <p <o and |fl. =
esssup, ¢ ol f(x)l. We use £, = L, + L, for short. If p =2, then L, is a
Hilbert space with scalar product {u,v) = [ou(x)v(x)dx. By L, . we
denote the set of all real measurable functions that are integrable on every
compact subset of (). The space W, is the subset of L, whose functions
have compact support and (weak) derivatives in L., while & is the set of
all infinitely differentiable functions on ) with compact support. By H' we
denote the Hilbert space of all functions in L, whose first (weak) deriva-
tives are also in L,, with scalar product {u,v)y = {u,v) +
Yi_{du, dv). Finally, Hj denotes the closure of & with respect to H'.

For functions with two arguments like f(z, x), we write f(¢) for the
mapping x — f(¢,x) and f(x) for the mapping ¢ — f(¢, x) if there is no
ambiguity. By f, we denote max{0, + f} for short, while sgn f=
1.ty 0 f/1fl; where 1, is the characteristic function of the set 4. Given
a form & on a Hilbert space H, we write & (u,v) = &(u,v) + alu,v),
where o € R.

A family (Ap)pEH with II c [1, %] and A, L, > L, for all pellis
called consistent if for all p,g €1l, feL,NL, holds A,f=A,f. A
continuous form & on some Hilbert space H is called coercive if there
exists a constant ¢ > 0 such that &(u, u) > cllull} for all u € D(&).

1. CONDITIONS AND MAIN RESULTS

We distinguish three different conditions; each one enables us to state
interesting theorems.

ConbITION 1.1.  The coefficients of the form & satisfy

(a) The growth condition. We have g, ;, ¢ €L, ., b, ; €L, for
iaj = 1""&”? l = 192, and c_€&€ Lq, Where
{1} ifn=1

g € {(1,2) ifn=2
[n/2,0) ifn>2.

(b) The strong ellipticity condition. There exists v € (0, ) such that

n

v €I* < )y a; j(x)&§ (4)

i,j=1

for all ¢ € R" and almost all x € Q.
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(¢) The antisymmetric boundedness condition. For i,j = 1,...,n,
we have a; ; —a;; € L..

These requirements are quite weak. The second-order coefficients are
as arbitrary as possible, and the lower-order ones may still be unbounded.
The boundedness of g .; is only needed in Lemma 3.5 to prove the
continuity of &. The closure of & is associated with a generator 4 and its
generated C, semigroup 7. These weak assumptions are strong enough to
prove the following.

THEOREM 1.2. If Condition 1.1 is satisfied, then there is a consistent
family (T,), c 1., of quasi-contractive, positive C, semigroups T, on L, with
generator —A, and A, =

We cannot expect to always get a quasi-contractive semigroup on L,. A
counterexample has been given by Ouhabaz [17, Remark 4.3.a].

ConpITION 1.3. In addition to Condition 1.1, we assume that the
coefficients of the form & satisty b,’j e Lp1 forall j=1,...,n, [ =12
and c_€ L, , where p; > 2q and p, > g; i.e., any choice of

(2,0] ifn=1 (1,%] ifn=1
S S
Pr=V(ne] itn=2 POT \(n/2,%] ifn=2
is possible if the coefficients are appropriate.
This condition is strong enough to prove the following kernel bound.
THEOREM 1.4. If Condition 1.3 is satisfied, then T is ultracontractive.
Moreover,

IT()lzq, 1) < Ct™" P forallt € (0,)

and some C, B > 0 (see Theorem 3.3 and Remark 4.7).

ConpITION 1.5. The coefficients of the form & satisfy Condition 1.3
and q; ; €L, forall i,j=1,...,n and some p, > 2q.

THEOREM 1.6. If Condition 1.5 is satisfied, then the associated semigroup
T is given by (T()f Xx) = [ok(t, x, y)f(y) dy, and the kernel k: (0,°) X Q
X Q — R satisfies 0 < k(¢, x, y) and a pseudo-Gaussian estimate of order
m, i.e.,

(1., y) = € Pep(wne = ol —1"/0" ) (9)

forallx,y € Q, t € (0,»), some C, w; > 0, and m = 2 + #‘lz—q Ifm =2,

then we have the classical Gaussian estimate (of order 2).
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THEOREM 1.7.  If Condition 1.5 is satisfied, then (A ,) = o(A,) for all
p € (1,). If the semigroup extends to a C, semigroup on L, with generator
A, (see Remark 6.4), then a(A,) = o0(A,) as well.

THEOREM 1.8. If Condition 1.5 is satisfied and a, ; € L,, for all i,] =
1,...,n, then A has maximal L ,—L, regularity for all 1 < p, q < %; i.e., for
every f € L, (R*, L (Q)) there exists an unique solution u € W)(R*, L (Q))
N LP(R+, D(Aq)) of u'(t) = Au(t) + f(¢t) for t € R* and
u(0) = 0.

THEOREM 1.9. If Condition 1.5 is satisfied and the associated semigroup
T: 3, > AL,) is analyic with 3, ={re'®; r > 0, |o| < 0}, where 0 €
(0, 7/2], then forall 0 < 6, < 0 there is an analytic mapping T: %, — Z(L,)
such that T(z) and T|(z) are consistent for all z € 3, .

If we have a classical Gaussian estimate of the kernel, then we obtain an
analytic semigroup on L, in particular at 0.

2. COEFFICIENTS
As we are discussing quite general forms &, we introduce L, a larger
space than L, as the space from which the coefficients are taken.

DEFINITION 2.1. For 1 <p <, let £, = L, + L... Moreover, for 0 <
e<wand fe L, let

[fle,, =inf{k € [0,=]; 3f, €k, : f=Fi + o, Ifill, < & If,lle <k}
and

I£lle, = inf{e + [£]e,p5 0 < € < =0},

Remark 2.2. Clearly, (Lp, I| - ”Lp) is a Banach space and [f], , is nonin-

creasing in €. For all f,g € £, with 0 < f <g, we have [f], , <[g]. ,.
Some other properties of the spaces L., are collected in the following.
LEMMA 2.3. Letlspsw,ﬁeLP,geLw and 0 < € < o, Then
0 [gl.., <lgl-
(i) for all 0 € [0,1], we have [ f, +f2]€,p < [fl]ee,p + [f2](1—0)e,]7

(i) forall p € R, we have [ pf\1,,., =1pllfil,

(iv) If p<q<e, e€+0 and fEL,, then fE€ L, and [f]. , <
| fl|8/ P /a=py, ’
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Proof. Parts (i) and (ii) are clear by the definition of [f].. We show
part (iii):

[pfl]e\pl,p
inf{k € [0,]; 3g, €L, : f =g, + g, I pgill, < €l pl, Il pg, Il < k}

|p|inf{k € [0,]; 3g; € L,:f=g +8,lgl,<e lgl < k}
= |p|[f1]e,p'

To prove part (iv), let k = ||fl|{/“ Pe®/@=P) and set f, =
min{k, max{—k, f}}, g, = f — f,. Then we have ||f,|l. < k and

qd/p—1/9)

£]
Kl

1/p—1
Igilly < 1FLps illp < Il s o774 < NI,
< ||f||§1]/17k7((q/p)71) = €.

Thus, [f]. , <k. 1

To estimate terms in which the coefficients appear, we need the follow-
ing well-known result.

LEMMA 2.4 (Sobolev embedding). Let n € N and

{0} ifn=1
q < [2’00) ifn=2,
[2 2 ] ifn>2

>n—2

Then there exists a constant C € R" such that
lully, < C(IVullz + llully)
for all functions u €. We call the infimum of such constants C the Sobolev
embedding constant for n and q.
See, for example, Adams [1, Theorem 5.4].
LEMMA 2.5. Let
{2} ifn=1
ge {(2,°] ifn=2.
[n,] ifn>2
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Foralla; € L., v,u € W/

0, ¢

€ € (0, ), we have

n
Z ||aiut9iU||1

i=1

IA

. 1/2
e(IIVully + llull)[IVoll, + | X2 [a,-]zwzcl,q) llull2[IVoll

i=1

IA

1
ellVull,IVoll, + €llVoll5 + —
2€

n
e+ ) [ai]2e/‘/rTC1,q)“u”%a
i=1

with C, the Sobolev embedding constant for n and q.

Proof.  For all > 0, there are b;, ¢; € £, such that a;, = b, + ¢;, b/,
<e/(WnC)) and llc,|l.. < [ai]e/(‘/rTC,),q + n. Let 1/2=1/p + 1/q. Then,
by Lemma 2.4,

la,udvlly < |lbudvlly + llc;udvlly < llbullallovlly + llelllludvll

< bllglluli,llgoll + ([a;]e/mcy.q + m)lludvlly
€

< W(HVMHz +llull) gl + ([a;]e/icp.q + m)ludoll.

Letting n v 0, we obtain
€
laudvll; < W(HVMHZ + llull) Il + [a;]e /ey, ludplls.
Summing up and using that /_,1|4,fll, < Va|IVfll,, we obtain
n

lla,udvll
1

=

IA

€ n n
W(IIVMIIZ +llull) XMl + 3 [a;]e/ep.qlluldvllh

i=1 i=1

IA

n 1/2
2
e(IIVully + llull)IVoll, + | X2 [ai]e/w,;cl),q) l[ull Vol

i=1

A

< elVull,IVoll, + €llVoll3 + (2¢€) '

n
e+ 2 [“i]ze/(‘/rTcl),q)||u||§
i-1

by xy < ex? + (4e)"'y? forall e > 0. |
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LEMMA 2.6. Let

{1} ifn=1
g e {(1,] ifn=2.
[n/2,%] ifn>2

Foral f € L,v,u € W}, e € R", we have

,C?

2 2
Il fuvlly < e(IVullIVolly + IVull; + [IVoll; + llull:lloll;)

+—(lull3 + 10l2) + [flescz glluvlh,

-J>|m

with C, the Sobolev embedding constant for n and q.

Proof. For all p > 0, there are g,h € L, such that f =g + h, llgll, <
e/C; and llhll <[fl.,c2,+m Let 1= 2/p + 1/q. Then, by Lemma
2.4,

I fuvll < llguoll + llhuvll < llgull, /p-vllvll, + lAllluvll;
< llgllglluli llvll, + ([fIe/cz.q + m)lluvlly
< e(IIVully + llull) (IIVollz + llvll) + ([f]e/czq + m)lluvlls.

Letting 1 \v 0, we obtain

IA

Il fuvlly < e(IVully + llull) (IVollz + 110ll2) + [f ]e/c3.qlluvlh

2 2
e(IVullIVolly + 1Vull; + [IVolly + llullzllvll;)

IA

(lll3 + 1013) + [£]ese. ool

-blm

by xy <x*+y?/4. 1

3. APPROXIMATION

In this section we prove the key to this article, Theorem 3.3. We use this
to prove that & is a closable, coercive, continuous form. Since we need
estimates about L, in the next section, we use a substitution and the L,
norm. This enables us to approximate the L, norm using a technique of
Daners [6].
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DEFINITION 3.1. Forany x € Q, u: Q - R, k € [1,%), p € [2,), let

fo = [ it 12l < k
kp kP72 + ZkP/27 (x| — k) if x| >k

gk,p(x) =fk,p(x)afk,p(x)’
Wk,p u('x) =fk p(M(X)),
Uk p.u X) gk p(u(x))

We put together some properties of these functions.

LEMMA 3.2. Letu € W), k € [1,), p € [2,%); then

£ () |x|?/* if x| <k

k, X = — — . s

g Bk /27 (x| = 252k) if x> k
, §|x|(p/2)72x if x| <k
fk,p(x) = 21(p/2)—1 -1 . ’
Lk IxI”"x  if |x| >k

fep(x) =

pLZ| |(17/2) 2 if lesk
if lx| >k’

fi.ps 8k, p € LuAR),

w2 o <uw < £w2
k,p,u = "%k, p,u = 2 k,p,u>

UV w = Wi p uOiWi pu  G-€.

ludvp , 0 < (p—Dwy , Jdwe , | ae.

Proof.  We obtain the derivatives of f, , by simple differentiation and
see that f; , g , € LR). Now we fix k, p, and u and write w =w,_,,

and v =y, for short. Then we have w? = |u|” and wv = ”Iulz
lu(x)| < k, whlle wo_ ] — ;2 ke [2/p, 11if lu(x)| = k. This leads to
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The next identity is shown using g,uv = d,uwf; ,(u) = wd,w a.e. by Gilbarg
and Trudinger [10, Theorem 7.8]. Again by [10], we have for |u(x)| < k,

(P P—2
udv = udju— Iul” 2(54— 5 )=(p—1)w&iw a.e.
and
uﬂu—u&u(z) kP2 = 2k"/z’]Iulﬁiw a.e.

if lu(x)l>k. As kP> Nul =kP/? + k?/> Y(|lul— k) <w and L <p — 1,
the last inequality of the Lemma is proved. ||

In Section 5 we need to control 6. Hence we provide its value in the
following theorem.

THEOREM 33. Let k> 1,m,y€[0,1), 2<p < and ueW,,.
Assume that Condition 1.1 is satisfied. Then

g(u’ Uk,p,u) + 6(p7 n, ’y)”wk,p,u”iz

= ’yg/(uﬂjk,p,u) + V”?(l - ’Y)vak,p,u“iz (6)
with
S(pmy) = LA =) 2p - 1)’
o 8 (I=y)(1—=m)v

n

21 [blf](v(l (1 —y)/@GJaCp-1),2¢q
=

1=1,2

p

[c—](V(l*ﬂ)(l*y))/(B)C%p),qs (7

&' (u,v) = 2[ a; (x)du(x)ap(x) dx,

i,j=1

and C, (resp. C,) the Sobolev constant for n and q (resp. 2q). Let
o(p) = 8(p,1/2,0) for short.

Proof. Let E, = {x € Q; |u(x)| < k}, F, = Q\ E,. Fix the constants k
and p and the functions u,w =w, ,, and v =v, ,, in the rest of the
proof. Note that w,v € WO} (cf. Gllbarg and Trudlnger [10, Theorem
7.8]). This is the reason why we do not use Z to define the form &,
although the closure would be the same.
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On E,, we have

Iwaw = diudv a.e.

I
2Ap-1)
Applying this and Lemma 3.2 to (4), we obtain a.e.

(1—y)vlVwl®

u (L=v)p &
1-v) X a; [ Gwow < —————— Y a; ;jo;ud;v
ij=1 ! ! 2(p—-1 ij=1 ! !
n
_Ya’(-,u,l)) + a(-,u,U) + Z (|b1’j(?juv| + |b2,ju(?ju|) + ¢_|uv|
j=1

IA

IA

n
—vya'(-,u,v) +a(-,u,v) + Y (Ibl,jwﬁjwl +(p— 1)|b2’jwé’jw|)
j=1

IA

p 2
+—c_w”,
2

where a'(x,u,v) =X}, ; a; (x)d;u(x)dv(x) and a(-,u,v) is the inte-
grand of (1).

On F,, we have dwdw = dud,v a.e. Applying this and Lemma 3.2 to
(4), we obtain a.e.

n
(1—y)wlWwlP<(1-7v) ¥ a; ;dwa,w
ij=1

n
(1-7v) X a dudp
ij=1

IA

IA

—ya'(+,u,v) +a(-,u,v)

n
+ Y (Ibl,jo'?juvl + Ibz’ju&jul) + c_|uvl
i=1

IA

—ya'(+,u,v) +a(-,u,v)

™M=

—+

p p
(Ibl’jw&jwl + Elbzijﬁjwl) + —c_w?
j

S -

Il
—_
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As2 <p and E, U F, =, the inequality for E, holds on (). Integra-
tion over () gives

(1= y)vlIvwli,
p
< —y&'(u,v) + &(u,v) + (p—1) Z b, wowllL, + —||C_W2||L1
j=

=1, b
< —v&'(u,v) +&(u,v)

p e,
+3 36,IVwiii, + TIIWII%2 + [C]ez/sz”W”%)

2
+(p— 1)2¢lIVwlL, + 2e,

2
Iwllz,

! 2
e+ X [bl,j]el/wn—co)’

where we used Lemma 2.5, 2.6, and 2.3. By choosing €, = ﬂl—](’}xf)—’u and
e, = "0 the Theorem is proved. |l

We deduce from this the following corollary.

COROLLARY 3.4. The form &;, , ., is positive for all m,y € [0,1) if
Condition 1.1 is satisfied.

Proof. Choose p = 2in (6) and use u = v, , , = w; , , Sgn u to see the
positivity.
LemMmMmA 3.5. If Condition 1.1 is satzsfzed then the form &, ,

continuous with respect to its graph norm ||Ll||g5(7 =0+ 82, y))llullz
+ &(u,u) for all m €10,1) and y € (0, 1).

Proof. By Lemma 3.3 and Eq. (4) we know that 0 < yrlIVull3 <
&' (u,u) < &, u) + 82, m, yllull3. Fix n,y<[0,1) and let &=
8(2, 7, y) in the following.

Let &(u,v) = 1(&w, v) — &, u)) and &'(u, v) = (& (u, v) —
&'(v,u)) be the antlsymmetrlc parts of & (resp. &’). Choose M > 0 such
that |a; ¥ | < Mv? for all i, j=1,...,n. Then the Holder inequality
and (4) lead to

n 2 2
4|23'(u,u)|2s( )y vazlﬁiuﬁivl) st(f V2|vu||vu|)
ij=1 Q Q

< M?|[vVull3 lvVoll3 < M2&" (u,u) &' (v,v)
<My &, (u,u) &, (v, 0)
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for any u,v € W/ .. Now we can estimate, by Lemma 2.5,

21€(u,v) — &' (u,v)|

Y (by; = by ) (vdu — ud)

IA

j=1
Y (I(by ;= by ) oduully +1I(by ;= by Judll)
j=1

IA

e(IVully + llull2)IVoll,

™M=

1/2
+ [bl,j - bz,;]é/(‘/;cl),zq) lull. VoIl

1

j
+ e(IVollz + lloll) [IVull,

M=

1/2
+ [bl,j - b2,j]e/(,/zcl),zq) ol MIVull,.

j=1

As wllVulli < y&'(u, u) < &, (u, u) and yllulli < y&)(u, u) <
&, (u,u) by (4) and Lemma 3.3, we can continue the estimate by
ZIé;(u,U) - c%;’(u, v)|
<28, (u,u) &, (0,0)
-1

Y

1/2
€ € 1 n
PRIV ﬁ( X [by; - bz,/]e/wn—co,zq) )

j=1

Using these inequalities, we obtain
1€ (u,v)|
<& (u,0)| + & (u,v) — &' (u,v)l

1/2 12
<&, i(u,u) / &s+1(v,0) /

1/2
-1

vy

+ M/2).

€ € 1 2”: b b
v ‘/; ‘/; j:l[ 1,j 2,]]6/(‘/nC1),2q

Together with the Cauchy—Schwarz inequality for the symmetric part of
&, this implies

& (u,0)| < K&, (u,u)* &, (v,0)"*
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with

2y
+ JE—
2

€ 1 n
K=1+6+y'|—+—=+— by ;=by il m
Y NN El[ 1,j 2,1]6/(\/nC|),2q

for all € > 0. This completes the proof. |

LemmMA 3.6. If Condition 1.1 is satisfied, then the form &y, , ., is
closable for all n € [0,1) and y € (0,1). The closure is a coercive form. The
forms &, .\ and &' define equivalent norms.

Proof. Let &'(u,v) = %(%”’(u, v) + &'(v,u)) be the symmetric part of
&'.Fix n,y < [0,1) and let 6 = 8(2, n, y) in the following. Using Lemmas
2.5 and 2.6, we see that

|& (u,u)l

<& (u,u)l + Eflblj+b2,||u&u|+f|6|u

j=1

1 n
2 2
< &' (u,u) + 2€llVull3 + Jcl€ + 2 [by; + bz,j]e/(‘/rTcl),zq)”””z

j=1

1
+ 3el|Vull3 + (e oo [c]e/cg,q)llulli

S5e 3e 1
Tt

<& (u,u)|l 5 e

1 n
2_ ; [ 1T be J]e/wnc)zq + [cleses, q)’

by (4) and the inequality &(u,u) + Sllull3 > yég’(u,u) > yvlquII% >0
derived from Theorem 3.3. Using these inequalities, we obtain

c & (u,u) <&, (u,u) <&, (u,u) <c&(u,u),
with
S5e e 1

c=y ' H+5+2+ —+ — + —
v 2 2€

n
Z [ 1,j T b2,j]e/(\/rTC1),2q + [C]e/C%q-

1
T 2e =
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Thus the associated norms are equivalent. By Ma and Rockner [14, 1.3,
Proposition 3.5] the form &, , is closable since & is closable (see [14,
I1.2d, Case 1)).

Since &, is continuous, we have |&;(u, v)* < K2&;, (u, w)&;, (v, v) for
some K > (. Thus

5 R
|g§+](u,1))|2 = (K + 1) g$+1(u,u)%§+](U,L’)
< (K + 1)°2&(u,u)&](v,v).

Together with Ma and Rockner [14, 1.3, Proposition 3.5], this shows that
the closure of &; is a closed coercive form. |

DerFiNiTiON 3.7, If Condition 1.1 is satisfied, then &, , , has a
unique, positive, closed, coercive, continuous extension to the real Hilbert
space

N 1

V' =W/ _ withrespectto {u,v)y = u,v) + E(%’(u, v) +&'(v,u))
for all n €[0,1), v € (0,1). This extension is the well-known Friedrichs
extension and is denoted by &, , ., Using this extension, we can extend
& to V by setting &(u,v) = &, ,u,0) = 82, v, y)u,v).

It is well known that in this situation & is associated with an unique
operator A with D(A)={u e V; Iw e L,Vv € V:{w,v) = &u,v)}
and Au = w for all u € D(A), where {(w,v) = &(u,v) for all v € V. The
operator —A is the generator of a C,, semigroup 7 on L,.

LEMMA 3.8. Suppose that f € €(R) is piecewise in ' with f' € L(R)
and f(0) = 0. The substitution u — f o u is continuous on V and on L,.

Proof.  First, we must show that the range of the substitution is in V.
Let u € V and choose u,, € W, _ such that u, — u in V. Then, by Eq. (4),

0<sup&'(fou, fou,)=sup [ ¥ a du,(x)ou,(x)(f u,)’

neN neN Qi,j=1
2
< supllf'll=&’'(u,,u,) <o,
neN

since &'(u,,u,) = &'(u,u) for n - © and J,fou, =fou,du, (see
Gilbarg and Trudinger [10, Theorem 7.8]). By the Banach—Alaoglu theo-
rem, fou, — v weakly in ' for some subsequence u, of u, and some

v e V. Since fou, > fou in L,, we obtain feu =v € V.
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Second, let u, € V such that u, — u € V. Then, again by Eq. (4) and
Gilbarg and Trudinger [10, Theorem 7.8], we have

0<& (foufou,) = [ Y a,,00,(x) du, () o 1,)’

l]—l
<|f2&" (u,,u,) = If 128" (u,u)

for n — . Thus there exists a subsequence u, and a function g € L,
such that

0< (fou, ) ¥ a0, (x)du,(x) <8

i,j=1

a.e. By the dominated convergence theorem, &'(f o U,,fe unk) converges
to &'(fou, fou) for n —» . This implies continuity, since there is such a
dominated subsequence for all subsequences of u,,.

Third, foeu € L, whenever u € L, as |feoul <|f'llxlul a.e. Finally,
[feu —fovl <|f'llelu — vl a.e. for all u,v € L,. Thus we have |[fou —

fevly <llf'llellu = ovll2. N

CoROLLARY 3.9. [If Condition 1.1 is satisfied, then the semigroup T
associated with & is positive. The mapping u — |ul is continuous on V.

Proof. Fix m,y<€[0,1) and 8 = 82,7, v) in the proof. Lemma 3.8
implies that 7 is a lattice and u — |u| is continuous on V, since x — |x]| is
smooth on R\ {0} with essentially bounded derivative. Thus we can apply
the Beurling—Deny criteria for nonsymmetric forms (see Ouhabaz [17,
Theorem 2.4]). Since J;u, = 7, Ul e 0; uin > op WE have &,(u,,u_) = 0 for
any u € V, and we obtain the positivity of 7 immediately. |

4. UPPER BOUNDS

From the previous section, we know that there are unique solutions of
(CP). In this section we derive upper bounds of these solutions. To do this,
we need a simple generalization of Theorem 3.3.

Remark 4.1. Since f; , and g, , are piecewise smooth with bounded
derivative, (see Lemma 3.2), w; , ,,0; , , € V for all u € V, by Lemma
3.8.

Obviously Theorem 3.3 holds for all u € V. Since all terms of (6) are
defined and the first part of the proof is a pointwise calculation, while the
second part only uses that w, , , € H' DV, the proof carries over to this
more general situation.
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LemMA 4.2, If Condition 1.1 is satisfied and u is an orbit with initial value
u(0) € D(A), then

d g (D2 < =vIVwe , (OIF +28(p,m,7)lwe W (1)]2

forallt > 0,7m,vy <€ [0,1).

Proof. Since u(0) € D(A), we have u € Z(R*, D(A4)) N #'(R*,L,).
Thus the mapping ¢ — f, ,cu(¢): R"—> L, has the derivative
fi, pou(®)d,u(t) ae. by Gilbarg and Trudinger [10, Theorem 7.8]. Now we
see that

dt”Wk,p,u(t)H% = 2<f/é,p ° u(t)&tu(t)’wk,p,u(t)> = 2< é)tu(t)7vk,p,u(t)>
—2( Au(t), v, , (1) = —2&(u(t), v ,..(1))
—vlIVwy , (D15 +28(p,m, v)lwe, (D113

as in Remark 4.1. |}

IA

Proof (Proof of Theorem 1.2). By Corollary 3.9, we have the positivity
of the semigroup. Thus we need only show the quasi-contractivity on L.

If u is an orbit with initial value u(0) € D(A), then by Lemma 4.2, we
have

dlwe , ()13

IA

- VHVWk,p,u(t)”% + 26(p)||wk,p,u(t)”%

28(p)lwi W (D12

From this differential inequality, it follows that

IA

Iy o(OIF < Iwy, (0) 322007,

Since D(A) is dense in L,, we can choose any initial value in L,(Q) N
L,(Q) by approximation; see Lemma 3.8. Since w, , (¢, x) / |u(t, x)|P?
as k — o, we have

Hu() 1772115 < 1 u(0) 177> [3 25
and
lu(o)l, < lu(0)ll, e/ ».
The proposition is finished by a limiting argument. [l

The subsequent L, estimates of semigroup kernels are based on an
inequality first derived by Nash. See [16] for a discussion of parabolic
partial differential equations on L,(R").
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ProposITION 4.3 (Nash inequality). There exists a constant M, > 0 such
that

2+ 4 2 4
3" < My IVullzluli”"

forallu € Hy N L. We call My = /75 (F522)> " the Nash constant.

n+2

Proof. Extend the function u by 0 to R” and use Nash’s result [16,
p. 936]; or see Davies [8, Theorem 2.4.6]. |

LeEMMA 4.4.  If Condition 1.1 is satisfied and u is an orbit with initial value
u(0) € D(A), then we have

(I 2y, ()1 Pem 0@ ) 20"

=

2v ~4p/n
llw s ||2/Pe—(3(2p)/p)s) ds
lel j(;( k,p,u( ) 2

for all t €J = {t € R*; inf
Nash constant.

lu()Hll, >0}, p =2, k> 1 and M, the

0<s<t
Proof. By Lemma 4.2 and Proposition 4.3, we have

d Wy 2. (D113

= - y”VWk,Zp,u(t)”% + 25(2p)||wk,2p,u(t)”%
14

< = Wy (DI I 2y (O +28(20) I oy (1)1
1
v -8/n

< _ﬁ”wk,Zp,u(t)||%+4/n||wk,p,u(t)”28/ + 26(2p)||wk,2p,u(t)”§'
1

The last inequality holds by the definition of wy_, .
For positive functions f with f' < g + ¢f on R", we have

()M = =M [ (s)g(s)e M ds

for all M > 0. Choosing M = 2/n, we obtain

2v

4/n,482p)/ it -
~ Mn

_ t -8
”Wk,Zp,u(t)”z j(;||wk,p,14(s)||2 /1482 p)/ n)s ds,

which implies the claim. [
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LEMMA 4.5. If Condition 1.3 is satisfied and r > max{2 + —7‘12—61,1

+ 555}, then there exists 8, > 0 such that 8(p) < f(p)8, for all p =2
with f(p) = (p — 1)". Further, we have ¥7_,27'log f(2/*') < 3r log2.

Proof. Choose b, i ¢eL,, b,] €L, ,and ¢ € L, such that c_=¢ +

¢ and b, ; b, it b, j- By direct estlmate using Theorern 3.3 and Lemma
2.3(iv), we obtain

3 45 7 Loo1p/(pi—29)
50 = —v+ ; Z ||b1’j||oc + ”b],j“pll !

j=1
1=1,2

B 2
8\/;C1 2q/(p1—2q)
v

6 q/(po—q)
2

U e e q>(—) :
v

which satisfies the inequality.
The last inequality of this lemma is quite easy, since

Y 27 log f(27) = ¥ 277 log(2/"Y) < ¥ 27(j + 1)log2
j=1

j=1 j=1

=rlog2 ) 27(j+ 1) =3rlog2,
j=1
using the derivative of the geometric series at 1/2. |

LEMMA 4.6. Letk > 1,1 €N, p = 2! and let u be an orbit. Then there
exists C,y > 0 such that

Wy p ((OIF7 < 271/4YC e /G De P lu(0)ll (8)

holds for all t € (0, ) if Condition 1.3 is satisfied.

Remark 4.7. Taking &, f,r as in Lemma 4.5 and choosing € € (0, 1),
the constants in Lemma 4.6 are given by

Mn127 \"?
B=€6,6(2) and C=

ve(3" — €)
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Proof. Let u be an orbit with initial value u(0) € D(A), € € (0, 1), the
function h,(¢) = ¢®@", and

Mn

2v3e(3" — €)

n/(4p)
| wen - o,

th(t) = hp(t)ea(ZP)f/(Ppr))t(

Then £,(t) < 27"/%/C e holds, by Lemma 4.5, and h, is nondecreasing.
To prove the claim, we do an induction over / = log, p. We see that
Iwg (N2 = llu®ll; < hy(Ollu(0)l,. By Lemma 4.4 and the uniqueness of
the zero solution, we obtain

”Wk,zp,u(t)”]Z/p

\ n/(4p) . p/n) —n/(4p)
52 t 2/p,— (82 o\
< el (p)/p)(z—y) (/ (||Wk,p,u(s)||2 e (p)/P)A) dS)

0

Mn \"/“P
Se(aam/mt( ! )

2v
—n/(4p)
teo_ 1_1 _ N\ —Wp/n) 8
x(fo(s /D:70p(s)e (3(2p)/p)o) ds) lu(0)ll,
n/(4p) —n/(4p)
< 6(6(2p)/p)t(_1) hp(t)(/t gp2 ds)
2v t(1—e/f2p))

X e~ (3CP)/ Pu=e/fCPY||(0)],

6@pye/(pfepme| 1
< e®@p)e/(pf2p ( hp(t)

n n/(4p)
2v )

—-n/(4p)

! tpl(l— - < H)) le(0) I
FER ( f(2p)) 4Ol

< hy, (1)t~ /PC7 D u(0)l,,

X

since 1 — (1 — €/fQp)r~" > W=2-1(e/f(4)), which can be seen
by the following elementary calculus. First, g(x) = “-' is increasing
on R. Second, the function y(p) = —(p — Dlog(l1 — €/f2p)) =
e/f(z_pl) 00 ,):(zp))/ is decreasing, since f(p) = (p — 1)" and r > 2. Third,
Y(x) = —(x — e)log(1 — €/x) is increasing for x > €, as its derivative is
¥'(x) = —log(l — €/x) — €/x > 0. Finally, y(f2p)g(—vy(p))
= len=e(1 — (1 — €/f(2p)P~ ") is nondecreasing.

et —
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Lemma 3.8, with regard to f; ,, shows that we can approximate any
initial value in L,. 1

COROLLARY 4.8. If Condition 1.3 is satisfied, then there exists C, 8 > 0
such that

||T(t)||y(L2ny) < /4 \/Eti(n/z‘)eﬁ[ fOl’ allt > 0.

The constants are given in Remark 4.7.

Proof. Let h(t) = 27"/%/C eP'. By definition, we have

IT()lew, )= sup [IT()uyll. < sup limsup||T(t)uyll
llugllz=1 llugllz=1  j—°

sup limsup Lim || f; ,/ o T(t)uyll3’*
luglla=1  j—oo k==

IA

sup limsup lim 1~ "/2G=2Dp(1)]uyll,

lugla=1  j—o°

=1~/ Dp(r).

Proof (Proof of Theorem 1.4). By duality, we obtain

IT(O)ew, L) <IT(t/2)lgw,, )T (t/2Qlew, L,y < CtT" /2032 + )t

5. GAUSSIAN ESTIMATES

In this section we use a technique developed by Davies [7] to obtain
pseudo-Gaussian upper bounds of the kernel of 7. We assume Condition
1.5 in this section.

DEFINITION 5.1. Let ¥ = {yf € 2(R"); |Viy| < 1}. For all real numbers
pand ¢ €V, let

(B, 4 f)(x) = e f(x)

7;,1/,(1‘) = Bp,illT(t)B*P,lﬁ'
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LEMMA 5.2.  For any real p and i € "V, the semigroup T, , is associated
with the form &, , given by

n n
g J(u,0)= Y fai,j(9,.ué?ju+ Zf (b1, oy duv + by, 030)
i,j=1"9 j=1"Q

+ fﬂ Cpy UL,

where

n n
bl,j,p,¢l = bl,j + szlaj,k‘?k‘pa b2,j,p,a,// = b2,j - szlak,jak‘ﬁa

Coy = C— Pz Z ai,j&jwaid’ - p Z (bl,j - bz,,‘)f?/‘»[f

ij=1 j=1
forallu,v €V.
Proof. For every u € D(A), v € W, , we have

(T, ,(u,v) = d{T(t)e "u,ev) =(AT(t)e ""u,e""v)

g(T(1)e *u,e”v) =& (e T, ,(t)u,ev)

=&,(T,u(Du,v).

By approximation, this holds actually for all u € V, from which the lemma
follows by a direct calculation. [

THEOREM 5.3. If pe R,y € ¥, t € (0,), then there exists Cd, §; > 0
such that

||7—‘p,l/j(t)||-7(L]aLx) < Ct’”/zexp((ézl p|m + Sl)t), (9)
where

24— o) (10)
m=2+ —— €[2,%).
P2~ 2q

Remark 5.4. The exact values of the constants are not needed in the
following, but are given here for completeness. Choosing € € (0,1) and
analyzing the proof provides

M,n12"
C =

n/2
—L " | e =(1+e€),
V(3r _ E)E) i ( 6) i
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, 4q q
f(p)=(p—1),r=max{2+ - , 1+ },
min{ p,, p;} — 2q Po—4q
2q/(py—29)\ °
. . 120 16vVn C
5] = 52 + — Z ”bl ]||w + ”bz ]||p1/(p1—2q)( 1 )
v v

1=1,2

18C22)q/(po—q) 3

+ 1€l + (&[5 Po™ ’”( ETiL
2
nol S e, VP
'* A v N 2 1
= — Z ( Z ||ai’j||oc + Z “a, ]”p /(pa— q)( )
Voji=1{\i=1 i=1 v
2
n 2 n 2q/(py—2q)
Z la. i + Z lld. .”pz/(PzZq)(Szn—\/;Cl)
J il J,illp2
i=1 i=1 4

2,2\ 4/(P2—q)
18n°C; ?
v

n
+ X (||a”||m+||al]||')z/<” ‘”(

ij=1

n

18n CZ)‘I/(Zpl q))

N A v v P _
”bl,j - bz,j”oc + ”bl,]’ - bz,j”p[])]/(pl q)(

j=1
for any choice of 4; i b, j,c eL,, d 4/ L,, b,j €L, , and ¢ e L, such
that p, >2q or p; = and a;,;=d,; + 4, b,,] blj + bl/ for all

,j=1,. .,nl—lZandc —c+cIfa Ewaorallz]—l Ln,
then choose ai’j 0, p, =, and m = 2.

Proof.  Since the form &, , satisfies Condition 1.3, Theorem 1.4 holds
with &, , correspondmg to (7) To estimate &, ,, we choose functions
,],b,j,c IS Lw, blj €L,, and ¢ e L, such that g, avl’j
+a”,b b +b,,andc—c+cIfa eLw,thenchoosea =
0, p, =, and m = 2. With the help of these decomposmons and Lemma
2.3(11),(1V), we obtain

n
[bl,j,p,l/f]e = [bl,j]e/z + |p| Z ”dj,ka
k=1

( 21| pl )211/(172—24)

n
v -2
1ol Xl g0 =
1

k=
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n
= [bl,j]e/z + |P|k¥1||ﬁj,k||m

2n| pl

2q/(py—29)
0 )

+ | pl Z lld; (272" 2q)(
2 2 m . ’
[bl,j,p,w]e = S[bl,j]e + 3(1 + |p| ) E ”aj,k““’
k=1
n 20 \24/(P2=29) 2
Z |a, k”Pz/(Pz Zq)( - )
k=1
2 2 m A ?
ol =300, 13+ 30+ 1) 11
k=1

2q/(p2—29)
Z “ak |P2/(P2 2q) 2n
i 0

n
[epu-1, <[c Tz +p° X lla; I
ij=1

+3(1 + | pl™)

2
+3(1 + | pl™)

11%92 q9/(p2—q)
+p Z ||alj||[77/(!72 q)( )
i,j=1 0

n
+ |P| Z ||b1,]‘ - bz’j”oo
j=1

+ 1 pl Z 15, = b, /o
j=1
= [67]9/3 + (1 +1pl™)
(p7—l[)
u 3112 q/(p;
P2/(P2—q)
“|.x (”a k=l 152 ( o )

ij=1

a/(p1=q)
1By, = byl + 115 el
Lj 2,1 Lj 21 rl 0

n

+ 2

j=1

Together with (7), we obtain the estimate &, ,(p) < (8, + 1 pI"8,)f(p).
Then, by Theorem 1.4 and the values of the constants given in Remark 4.7,

H];;,l/;(t)Hf(Ll,Lx) < Ct‘”/zexp((ﬁzl p|m + Sl)t)
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Proof (Proof of Theorem 1.6). Let p € R, y € ¥, k and k, , be the
kernel associated with 7 and T, ,, respectively. Then k(z,x,y) =
e POV (x,y,t) = 0 for all £ > 0 and almost all x,y € Q, since
the semigroup 7 is positive. By Theorem 5.3, we obtain

k(t,x,y) < Ct"/2exp((8,] pl™ + 8,)t — p(¢(x) = ¥(¥)))-
Replacing p by —p, it follows that
k(t,x,y) < Ct="2exp((8,] pI™ + 8,)t = plyr(x) = ¥(»))).
Since supd,eq,ldf(x) — y(y)| = |x — yl, we have
k(t,x,y) < Ct™"?exp((8,lp|™ + 8,)t — plx — yl).

Choosing p™ ! = (§,mt)"'|x — y| proves the claim with o, =8, and
wy = (8,m)~m/tm=i(1 — L) ]

6. APPLICATIONS

Here we can use the results in the literature about kernel estimates.
First, we get p-independence of the spectrum o (A) using the following.

THEOREM 6.1 (Kunstmann [13, Theorem 1.1]). Let Q be an integral
operator on L,(Q) given by a kernel k which satisfies

k(x, y)l <g(x —y) Vx,y € Q,
where g is a function satisfying
x = exp( p(lxl))g(x) € Li(R") N L, (R")

for some p,, € (1,°] and some Q-admissible function p (i.e., p: R* = R" is
nondecreasing and subadditive, lim, _, , p(t) = 0, and x — exp(—p(|x[) €
L(Q), where O = {x — y; x,y € Q}). Then Q extends to consistent opera-
tors Q, on all L (Q), p € [1,], and the spectrum o(Q,) does not depend
on p.

COROLLARY 6.2. Let m > 1 and d € R such that n > m(d — 1). Let
R, € Z(L,) be given by the formula

Rof(x) = [ Kk(x,9)f(y) de Vf € Ly(9)
with some measurable kernel k: Q) X ) — C. Assume

k()] < g, p(r =) = €[ 1-dembtnr 10 gy
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for some p, b,C > 0. Then there is a consistent family (R, € Z(L,)), <1 >
and the spectrum (R ,) = o (R,) is independent of p € [1,%].

Proof.  Using the continuous Minkowski inequality and the substitution
x = yt'/™ we obtain lg, sll, <o if p~'> 2(d — 1). Observe that the
range of p does not depend on b. For any ¢ € (0, b) and a > 0, we have

m m—1
ol m-1 [ @ m—1 B
supas — ¢(s™/t) =t — =:ty(a,m,c).
s>0 m c

Thus, choosing @ > 0 and ¢ € (0, b) such that y(a, m,c) < u, we have

e85 (O < 8 ytam,e0.5-c(¥)

for all x € R". Now choose p(r) = ar and p, > 1 such that p;' > “(d —
1). Then the assumptions of Theorem 6.1 are given. Therefore, R, extends
to a consistent family (R,), <, ., and the spectrum of R, is independent
of pell,»]. 1

LEMMA 6.3. Letn € N, M; C {z € C; Re z < w} for some w € R and
N, ={x = 2)"; z € M}, where i = 1,2. If N; , =N, , for all X >w,
then M, = M,.

Proof. First, let B(x,r) ={y € C; [x —yl <r}, §;, =M N
B(), oiiovmy)» and T ={x-2" z€S,,}. Then T,, =N,, N
B(O () A= 8, = (A = M) N B(O, i-7ny) s a subset of Ew/n

={re'*; r>0, lo| < 7T/n} and T, , =T, A Of course the mapping z —
z”: 3, ,, = Cis injective. Thus A — S, , = A — S, , and then also §, , =
Sy ), forall A > w.

Now we finish the proof by the equations

A—w
M =M,n U B(/\,—) = UM nNnB
A>w COS(7T/I1) A>w

USi,= US..,= UMnB|A

A>w A>w A>w

M Bl 27" M
= N N = 5
2 /\L;JW cos (m/n) 2

A—w
A, cos (m/n) )

A—w
" cos (m/n) )

since C = U,., BOA, 225). 1

> cos(m/n)

Proof (Proof of Theorem 1.7). If T generates a C, semigroup on L,
then let P = [1, %), otherwise P = (1, ).
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Using the resolvent identity and Theorem 1.6, we have

(R(A, A,))" f(x) = ~— cy R(A A,)f(x)

n!

w1
|| e ™ k(t,x, y) dif(y) dy
0’0 n:

for all feL, and A > ;. Applying Corollary 6.2, we obtain
o ((R(A, 4" = o((R(A, 4,))" 1) for all A > @, and p € P.
Using the spectral mapping theorem for the resolvent, i.e.,

1 1
A= o(A) ={A—M’MEU(A)}’

and for bounded operators S and polynomials g(a(g($)) = g(o(S))), we
obtain

{120z € o((ROL4,)" N (O) = {(A - w)" s we a(4,))

forall p € P and A > o,. Applying Lemma 6.3to N, , = (A — o(A4,))""!
finishes the proof. |

a(R(A, 4)) \ {0} =

Remark 6.4. If a, j € Lo, then, by Theorem 1.6, the kernel associated
with the semigroup satlsfles a classical Gaussian estimate. Thus the semi-
group extends to a C, semigroup on L.

Another way to show that we have a C, semigroup on L, uses the L,
contractivity of S(¢#) = e *'T(¢). The semigroup S is L, contractive if
k + ¢ —Xi_19;b, ; = 0 as a distribution. In fact, by Lemma 3.8, minfu ,, 1}
eV whenever u € V. Now direct calculation shows that &(u —
min{u ,, 1}, min{u ,, 1}) > 0 for all u €2. This remains true for all u € V,
as 9 is dense in V. By Ma and Rdckner [14, Proposition 1.4.3, Theorem
1.4.4], T is L, contractive.

The same arguments show that T is quasi-L,, contractive if there is an
k € R such that k + ¢ — X7_,d,b, ; > 0 as a distribution. In general, & is
not quasi-L,, contractive (see Ouhabaz [17, Remark 4.3.a]), even though
Condition 1.5 is satisfied.

Second, we have maximal L ,—L, regularity if Condition 1.5 is satisfied
and a; ; € L, for all i,j =1,...,n. Since we get classical Gaussian esti-
mates by Theorem 1.6, we can use the result of Hieber and Pruess [11,
Theorem 3.1] to prove Theorem 1.8. Moreover, there exists a constant
M > 0 such that

fonu(z)ugdH/O ||u'(t)||5dt+f0 IIAqu(t)IqudtstO IF(eN? de
for all f€ L,(R",L, ().
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Third, we can prove Theorem 1.9, getting an analytic mapping on L, in
an open sector.

Proof (Proof of Theorem 1.9). This proof uses Theorem 1.6 and a
technique of Arendt [3]. Let 0 < (m — 16, <(m — 10, < 6, < 6, < 6.
Replacing T by (e ™"'T(¢)),. , for some w > w,, we can assume that

”T(Z)”g(Lz) < Ml forall z 294,
0 < k(t,x,y) < Ct™"/2e=bG="/0"" 1 forallt > 0, x,y € Q.
By Corollary 4.8 and duality, we know that if w is sufficiently large, then

IT()lza, L,y < Myt/4
and

||T(l’)||_gﬂ(Ll’L2) < M3t_n/4 forall t > 0.

Now choose 8 € (0, 1) such that &t + is € 5, whenever ¢ + is € 3, . For
any z =t + is € X, , we have

IT(2) e, 1y
<IT((1 = 8)t/2)lzq, LyllT (8t + is)llza T ((1 = 8)t/2)l 2,1,

-n/2
< M1M2M3t‘”/2(T) = M,(Re z) "%

Applying [3, Theorem 4.2], obtain the analyticity of 7: 3, —Z(L,,L,) ~
L.(Q X Q). By [3, Lemma 4.1], there exists K: %, X QX Q - C such
that K(-, x, y) is analytic for all x,y € Q, K(z, -, JeL LQ x Q) for all
z €3, and T(2)f(x) = [oK(z, x,y)f(y)dy for all f€ L; N L,. As L(Q
X Q) is an isometric isomorph to %(L,, L, by k — (f—
JokC, y)f(y) dy), we obtain |K(z, x, )l < M(Re z)™"/? for all z €3,
and almost all x, y € Q and K(¢, x, y) = k(¢, x, y) for all £ > 0 and almost
all x,y € Q.

Applying [3, Lemma 4.4] to H(z,x,y) = K(z" 1 x,y)z" " D"/2 we
obtain the estimate |K(z, x, y)| < M,|z|~ "/2 —B(x—yl™ /'Z‘)wm " forall z €
3, and almost all x,y € O, where MO = sup{M4,C} and B = b,

Thus sup. e, |Z‘>,|IT (2, <o for all r>0, pel[l,). Since the
operators 7, are consistent, we can finish the proof by applying [3,
Theorem 4.2] again. ||

We cannot prove the boundedness of the semigroup 7 on L, near 0
using only a pseudo-Gaussian estimate of order m # 2.
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