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Abstract

The Cauchy type mean-value theorems for the Riemann-Liouville fractional derivative are de-
duced here from known mean-value theorems of the Lagrange type. A general method for deducing
these Cauchy type formulas is extracted. Two Cauchy type formulas are then deduced without a priori
knowledge about the Lagrange type mean-value theorems.

0 2004 Elsevier Inc. All rights reserved.

Keywords:Cauchy mean-value theorem; Lagrange mean-value theorem; Riemann-Liouville fractional integral
and fractional derivative; Newton—Cotes quadrature formulas; Jensen’s inequality; Trapezoidal rule

1. Introduction

Mean-value theorems are of great importance in mathematical analysis. In particular, the
Lagrange type and the Cauchy type mean-value theorems are most frequently used. The
usual approach is to prove first the Lagrange type mean-value theorems and then deduce
from them the Cauchy type mean-value theorems. As a typical example of this method,
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in Section 2, we first show how this approach works for the Riemann—Liouville fractional
derivative. Then, in Section 3, we extract a general abstract method which contains the
crucial step in this procedure. Finally, in Section 4, we make use of the perfect symmetry
of the Cauchy type mean-value theorems in order to show that, in many cases, one can
easily guess the form of the Cauchy type mean-value theorem and then deduce from it the
exact form of the Lagrange type mean-value theorem.

2. Generalized Cauchy type formulasfor the Riemann—Liouville
fractional derivative

Let us first consider thRiemann—Liouville fractional integral of order«, that is,
Dy f(x) =1, f(x).

Here theRiemann-Liouville fractional integral operatdf,9 is defined as follows:

)= %ﬂ) / x =P f@ydr

(x>a; aeR; BeR™) (1)
and
Dy f(x)=D"1]"% f(x)

d
(D::d—;n—1§a<n;neN::{1,2,3,...}) 2
X

with, of course,
I2f ()= f(x).
Thesequential fractional derivativis denoted by (see, for example, [5, p. 86 et seq.])
D! := DDV (n e Ng:=NU{0}). ©)

Let £2 be a real interval ana < [0, 1]. Let F(£2) denote the space of Lebesgue mea-
surable functions with domain if? and suppose thay € 2. Then a functionf is called
a-continuous aky if there existsk € [0, 1 — «) for which the functiong given by

g(x) =[x — xo/* f (x)

is continuous atg. Thus, in the present terminology, the functigrs called 1-continuous
atxo if it is continuous atxg. Moreover, the functiory is calleda-continuous o2 if it is
a-continuous for every € £2. We now denote, for convenience, the clasa-aontinuous
functions ons2 by

Co(2):={f: f € F(2) and f is a-continuous on2},
so that
C1(2) =C(R2).



732 J.E. Pearic et al. / J. Math. Anal. Appl. 306 (2005) 730-739

Fora € 2, a functionf is calleda-singular of ordet if

im —/ Yk 02k <o),

x—a |x —a|“—1 o
Leta e RT, a € 2, andE C £2 such thatz < x for everyx € E. Then we write
alo(E):={f: fe F(2)andI? f(x) < oo (Vx € E)}, (4)

where, as beforef (§2) denotes the space of Lebesgue measurable functions with domain
in 2.
Recently, Trujillo et al. [6] proved the following results.

Theorem 1 (A generalized mean-value theorerbgta € [0, 1] and f € C(a, b] such that
D% f € Cla, b]. Then

—[(x —a)t ey pe (9T
f()C)—[()C a) f(X)](a+)(x a)* "+ D, f($)<1"(oe+l)>’ )
for everyx € [a, b] witha < & < x.

Theorem 2 (A generalized Taylor’s formula).eto € [0, 1] andn € N. Let f be a contin-
uous function oria, b] satisfying each of the following conditians

() DI*feC(a,blandDi*f € JIula, b for j=1,...,n.
@iy DIV £ is continuous offa, b].
(i) If « < 1/2, then, for eachj € {1,...,n} such that(; + Da < 1, Dfi”l)"‘f(x) is
y-continuous atr = a for somey (1— (j + D)a < y <1) or a-singular of ordera.

Then, for every € (a, b],

Dé"+1)0t f &) (x — a)(,H_l)a

. _ <g<
Rn(f’x’a) F((n+1)a+1) (azézx)v (6)
where
' _ ~ n cj(x _a)(j+1)ozfl
Ru(f3x,a):=f(x) = ) = G+ D) (7

j=0
and
cj =T @[ —a)* D" f(0)](@+) = I} D}* f (a+)
(jeNg; 0= j=n). 8
In our present investigation, we propose to give some related results by using the
methodology given in [4]. We begin by stating our first result as follows.
Theorem 3. Leta € [0, 1] and let f, g € C(a, b] be such that
DS f, Dy g € Cla, b],
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where
DYg(x)#0 foreveryx € [a, b].
Then, for every € (a, b], there is & (a < & < x) such that

f@ -l - f@laHx —a)*t _ DIfE)
() —[(x =)l g (@) (x —a)* 1 Dg(€)’

9)

Proof. Letx € [a, b] be fixed. Denote byC1 and K, the following functions:
Ki=f@) =[G - f®]@H)E—a)*

and
K2=g@) —[(x —a)* “g)]@H)x —a)* .

We consider the functiof' () given by
F(1)=Kaf (1) = K1g(t) (t €la,b]).

Since f andg satisfy the conditions in Theorem 1, the same is validApso we have

F(x)—[(x —a) " *F@)]@+) (x —a)* * = D F(@(%) (10)

for someg (a £ & < x). This gives us
0=Ko[f(x) = [(x =)' f(0)](@H) (x —a)* ]
— Ka[gx) = [(x =) g ()] (@H) (x —a)* 7]

_ (x _a)a o _ o
= T@tD (K2D§ f(§) — K1D{ g(8)), (11)

from which the assertion (9) of Theorem 3 follows easily

Corollary 1. Leta € [0, 1] and let f, g € C(a, b] be such that
DY[(x —a)* 1 f()]. DE[(x —a)* tg(x)] € Cla, b,
where
DZ[(x —a)*g(x)] #0 for everyx € [a, b].
Then, for every € (a, b], there is & (a < & < x) such that

f@) = fat) _ [DE(x —a)* )] @)
gx) —gla+)  [DI((x —a)*1g(x))]E)

(12)

Proof. Upon replacingf (x) by (x —a)*~1 f(x), andg(x) by (x —a)*~1g(x), Theorem 3
readily yields Corollary 1. O
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Theorem 4. Suppose that the functiorfsand g satisfy the conditions in TheoreZnwhere
DI Ve(x)£0 for everyx € [a, b).

Then, for every € (a, b], there is a¢ (a < & < 7) such that
Ru(f:x,a) DYV r(e)
Ru(gix,a)  pUibeg)’

whereR,, is defined by(7).

(13)

Proof. Letx € (a, b] be fixed. In terms ofk,, defined by (7), we denote bg; andC, the
following functions:

Ki=Ru(g;x,a) and Kz=R,(f;x,a),
and consider the functiofl defined by

F(t)=K1f(®) = K2g(t) (t €la,bl).
Using the linearity property oR,, defined by (7), the rest of the proof of Theorem 4 is as
in the proof of Theorem 3. O

A simple consequence of Theorem 4 is given by the following corollary.

Corollary 2. Let F and G be functions defined o, b] such that the functions
f)=@=-a)*'Fx) and g(x)=(x—a)* 'Gx)

satisfy the conditions of Theorefn Then, for every € (a, b], there is a¢ (a £ & < x)
such that

Ru(F;x,a)  [DYD%(x — a)* F (0)](§)

- — , 14
Ry(Gix,a)  [D{™%(x — a)*=1G(x)](&) -
where
- " ci(x —a)le
Ry(Fix,a)=F(x) =)  —Tr—— 15
(Fix.a)=F(x) ;r((j +1)a) (19)

and
¢j=[1;7Di"(x = a)* 'F(0)](a+) (jeNo; 0= j<n).

3. An outline of the general method

Let & be a set and leFF be some appropriately chosen vector space of real-valued
functions defined o®' . Let @ be a functional ot and letA : 7 — R be alinear operator,
whereR is the vector space @l real-valued functions defined d.

Suppose that, for eache F, there is & € & such that

Q(f) =Af)E). (16)
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Theorem 5. For everyf, g € F, there is a¢ € & such that

AQE)P(f)=A(NHE)P(g), 17)
where® is given by(16) in terms of the linear operatod : 7 — R.

Proof. Consider the following linear combination:
h=®(@g)f—P(f)g.

Obviously, we have
@ (h) =0.

On the other hand, there issae = such that
A(h)(§) =@ (h) =0,

which completes the proof of Theorem 5 by using the linearity property of the operator
O

In order to obtain Theorem 3 from Theorem 5 (using Theorem 1), we set

E =[a,x], D(f)=f(x)—[(x— a)l_“f(x)](a+)(x —a)*
and

A(f)=Dgf,

and let¥ contain continuous functions on (a, b] for which D f is continuous offia, b].

In exactly the same way, we can obtain results of this kind from Meyton—Cotes
quadrature formula provided that we know its error term. For example, in the case of
Simpson’s rule, we set

b
1 1 b
E=labl, @)=, f FOoydx — é[f(a) +4f(%> + f(b)]

and

__b-af

and then letF contain functions with continuous fourth derivative [on b].

4, Derivation of thereversed results

In the preceding sections, the mean-value theorems of the Lagrange type were known
and the mean-value theorems of the Cauchy type were deduced from them. In this sec-
tion, we prove some new Cauchy type mean-value theorems and deduce therefrom some
(possibly new and useful) Lagrange type mean-value theorems.

The following result is connected with Jensen’s inequality and its discrete form was
proved by Mercer [2] (see also [3]).
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Theorem 6. Let 7 be a compact real interval and let, v € C%(Z). Also leth be an
integrable function with respect to a normalized weighon [a, b] C R such that the
range ofx is a subset of . Then, for somé € Z,

Ji #(h@)o () dx = ¢(f; o) dx) _ ¢"(€)
[Py (h@)oe)dx =y ([P ok dx)  ¥'E)
provided that the denominator on the left-hand sidél&) is non-zero.

(18)

Proof. DefineA := fabh(x)a)(x)dx and (analogously as in [2]) write

b
(Q¢)(1) Zfd)(th(X) + (1 -nA)wx)dx —p(A),

so that
b

(0) (1) = /(h(x) — A)¢' (th(x) + 1 — D A)w(x) dx

a

and
b

(09)" (1) =f(h(X) - A)2¢”(th(x) + (1 -nA)w(x)dx.

a

We now consider the functioW (¢) given by
W) = (Q¥)(D(Q¢) (1) — () (D(QY)(1),
which immediately yields
W(©0)=W'(0)=W(1) =0,
so that two applications of the mean-value theorem give us
W”(u) =0 for someu € (0, 1).
This implies that

b

f (h(o) — A)[(QVI D" (1h(x) + (L — w)A)
— (D) DY (1h(x) + (L = wA)]w(x)dx =0.

For any fixedu, the expression in the square brackets is a continuous functioaiod
hence it vanishes for some valuexofn (a, b). Corresponding to this value afe (a, b),
we get a numbef € 7 such that

Q)" () — (0P (V)Y (§) =0,
which completes the proof of Theorem 60
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As our first application of Theorem 6, let us consider the integral power meas)
(h = 0), which are defined as follows:

b

1/r
M, (h) = (/[h(x)]rw(x)dx> (r #0)

a

and
b

Mo(h) =exp(fw(x)log(h(x))dx>.

a

Choose

dpx)=x"" and y)=x"*
in (18) and then puk(x) = [u(x)]® . We thus find that
M) — M)
~ I M) — Ml

r(r—s)
I(l—ys)

r(r—s)
I(l—s)

<

m

(19)

whereM andm denote the maximum and minimum ©f~ over the range ofi(x). The
estimation in (19) is also meaningful in their limiting cases wher 0, s — oo, and
s —> —OQ.

As our second application of Theorem 6, we pui) = x2 in Theorem 6. Upon rear-
ranging (18), we get

b

b
/¢(h(x))w(x)dx —¢(/h(x)w(x)dx)

a
b

b 2
= %¢”(§)/|:h(x) —/h(x)a)(x)dx:| w(x)dx,

a

which immediately gives Jensen’s inequality for a convex (concave) fungtion
Finally, we give a Cauchy type mean-value theorem which is a generalization of the
classicakrapezoid rule(see, for details, [1]).

Theorem 7. Let f, g:[a, b] — R be two functions, each of which possesses a continuous
derivative of ordem = 2. If

fPay=g®P@y=0 (k=2..n-2),
then

(b—a) L3O _ [P fydx _ fOEE—a)+ -V E) 0
(b—a)2@5®) _ boyge — gMWEE —a)+ (-2 V@)

for somet € (a, b).
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Proof. Consider the function
(Qﬁ@%—ﬂﬂ+fm) /f@Ms

so that

1 1
N0 = Ef/(t)(t —a)— E(f(t) ~ f(@)

and

@nwngwwma—m+w—aﬂ“WM 2<k=n).
We note that
(@) (@) =(Qf) (@)= (Qf)"(a)=0.
We now consider the functioW (¢) given by
W) = (Q8)(b)(Qf) (1) — (Qf)(b)(Qg) (1),
which readily yields
Wa)=Wa)=---=W*D@)=whm)=0,
so thatr successive applications of the mean-value theorem give us
W™ (&) =0 for somet € (a, b).
This evidently completes the proof of Theorem 71
By settingg(x) = x2 andn = 2 (in which case we do not have any boundary condi-

tions), our assertion (20) of Theorem 7 reduces to the clagsagszoidal rule Further-
more, by letting

gx)=(x —a)"
and assuming that
" D@ =0

in Theorem 7, the following estimation would result from the assertion (20) of Theorem 7:

f(a) + f) =D —ay - —-a)
t/f()d e,
where
_ (n)
M, = XQE%] ().
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