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Abstract

The Cauchy type mean-value theorems for the Riemann–Liouville fractional derivative a
duced here from known mean-value theorems of the Lagrange type. A general method for de
these Cauchy type formulas is extracted. Two Cauchy type formulas are then deduced without
knowledge about the Lagrange type mean-value theorems.
 2004 Elsevier Inc. All rights reserved.

Keywords:Cauchy mean-value theorem; Lagrange mean-value theorem; Riemann–Liouville fractional in
and fractional derivative; Newton–Cotes quadrature formulas; Jensen’s inequality; Trapezoidal rule

1. Introduction

Mean-value theorems are of great importance in mathematical analysis. In particu
Lagrange type and the Cauchy type mean-value theorems are most frequently us
usual approach is to prove first the Lagrange type mean-value theorems and then
from them the Cauchy type mean-value theorems. As a typical example of this m
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in Section 2, we first show how this approach works for the Riemann–Liouville fract
derivative. Then, in Section 3, we extract a general abstract method which conta
crucial step in this procedure. Finally, in Section 4, we make use of the perfect sym
of the Cauchy type mean-value theorems in order to show that, in many cases, o
easily guess the form of the Cauchy type mean-value theorem and then deduce fro
exact form of the Lagrange type mean-value theorem.

2. Generalized Cauchy type formulas for the Riemann–Liouville
fractional derivative

Let us first consider theRiemann–Liouville fractional integral of order−α, that is,

Dα
a f (x) = I−α

a f (x).

Here theRiemann–Liouville fractional integral operatorIβ
a is defined as follows:

Iβ
a f (x) := 1

Γ (β)

x∫
a

(x − t)β−1f (t) dt

(x > a; a ∈ R; β ∈ R
+) (1)

and

Dα
a f (x) = DnIn−α

a f (x)(
D := d

dx
; n − 1� α < n; n ∈ N := {1,2,3, . . .}

)
(2)

with, of course,

I0
a f (x) = f (x).

Thesequential fractional derivativeis denoted by (see, for example, [5, p. 86 et seq

Dnα
a := Dα

a D(n−1)α
a

(
n ∈ N0 := N ∪ {0}). (3)

Let Ω be a real interval andα ∈ [0,1]. Let F(Ω) denote the space of Lebesgue m
surable functions with domain inΩ and suppose thatx0 ∈ Ω . Then a functionf is called
α-continuous atx0 if there existsλ ∈ [0,1− α) for which the functiong given by

g(x) = |x − x0|λf (x)

is continuous atx0. Thus, in the present terminology, the functionf is called 1-continuous
atx0 if it is continuous atx0. Moreover, the functionf is calledα-continuous onΩ if it is
α-continuous for everyx ∈ Ω . We now denote, for convenience, the class ofα-continuous
functions onΩ by

Cα(Ω) := {
f : f ∈ F(Ω) andf is α-continuous onΩ

}
,

so that
C1(Ω) = C(Ω).
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Fora ∈ Ω , a functionf is calleda-singular of orderα if

lim
x→a

f (x)

|x − a|α−1
= k (0 �= k < ∞).

Let α ∈ R
+, a ∈ Ω , andE ⊂ Ω such thata � x for everyx ∈ E. Then we write

aIα(E) := {
f : f ∈ F(Ω) andIα

a f (x) < ∞ (∀x ∈ E)
}
, (4)

where, as before,F(Ω) denotes the space of Lebesgue measurable functions with do
in Ω .

Recently, Trujillo et al. [6] proved the following results.

Theorem 1 (A generalized mean-value theorem). Letα ∈ [0,1] andf ∈ C(a, b] such that
Dα

a f ∈ C[a, b]. Then

f (x) = [
(x − a)1−αf (x)

]
(a+)(x − a)α−1 + Dα

a f (ξ)

(
(x − a)α

Γ (α + 1)

)
, (5)

for everyx ∈ [a, b] with a � ξ � x.

Theorem 2 (A generalized Taylor’s formula). Letα ∈ [0,1] andn ∈ N. Letf be a contin-
uous function on(a, b] satisfying each of the following conditions:

(i) D
jα
a f ∈ C(a, b] andD

jα
a f ∈ aIα[a, b] for j = 1, . . . , n.

(ii) D
(n+1)α
a f is continuous on[a, b].

(iii) If α < 1/2, then, for eachj ∈ {1, . . . , n} such that(j + 1)α � 1, D
(j+1)α
a f (x) is

γ -continuous atx = a for someγ (1− (j + 1)α � γ � 1) or a-singular of orderα.

Then, for everyx ∈ (a, b],

Rn(f ;x, a) = D
(n+1)α
a f (ξ)

Γ
(
(n + 1)α + 1

) (x − a)(n+1)α (a � ξ � x), (6)

where

Rn(f ;x, a) := f (x) −
n∑

j=0

cj (x − a)(j+1)α−1

Γ
(
(j + 1)α

) (7)

and

cj = Γ (α)
[
(x − a)1−αD

jα
a f (x)

]
(a+) = I1−α

a D
jα
a f (a+)

(j ∈ N0; 0� j � n). (8)

In our present investigation, we propose to give some related results by usin
methodology given in [4]. We begin by stating our first result as follows.

Theorem 3. Letα ∈ [0,1] and letf,g ∈ C(a, b] be such that
Dα
a f,Dα

a g ∈ C[a, b],
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where

Dα
a g(x) �= 0 for everyx ∈ [a, b].

Then, for everyx ∈ (a, b], there is aξ (a � ξ � x) such that

f (x) − [(x − a)1−αf (x)](a+)(x − a)α−1

g(x) − [(x − a)1−αg(x)](a+)(x − a)α−1
= Dα

a f (ξ)

Dα
a g(ξ)

. (9)

Proof. Let x ∈ [a, b] be fixed. Denote byK1 andK2 the following functions:

K1 = f (x) − [
(x − a)1−αf (x)

]
(a+)(x − a)α−1

and

K2 = g(x) − [
(x − a)1−αg(x)

]
(a+)(x − a)α−1.

We consider the functionF(t) given by

F(t) = K2f (t) −K1g(t)
(
t ∈ [a, b]).

Sincef andg satisfy the conditions in Theorem 1, the same is valid forF , so we have

F(x) − [
(x − a)1−αF (x)

]
(a+)(x − a)α−1 = Dα

a F(ξ)

(
(x − a)α

Γ (α + 1)

)
(10)

for someξ (a � ξ � x). This gives us

0= K2
[
f (x) − [

(x − a)1−αf (x)
]
(a+)(x − a)α−1]

−K1
[
g(x) − [

(x − a)1−αg(x)
]
(a+)(x − a)α−1]

= (x − a)α

Γ (α + 1)

(
K2D

α
a f (ξ) −K1D

α
a g(ξ)

)
, (11)

from which the assertion (9) of Theorem 3 follows easily.�
Corollary 1. Letα ∈ [0,1] and letf,g ∈ C(a, b] be such that

Dα
a

[
(x − a)α−1f (x)

]
,Dα

a

[
(x − a)α−1g(x)

] ∈ C[a, b],
where

Dα
a

[
(x − a)α−1g(x)

] �= 0 for everyx ∈ [a, b].
Then, for everyx ∈ (a, b], there is aξ (a � ξ � x) such that

f (x) − f (a+)

g(x) − g(a+)
=

[
Dα

a

(
(x − a)α−1f (x)

)]
(ξ)[

Dα
a

(
(x − a)α−1g(x)

)]
(ξ)

. (12)

Proof. Upon replacingf (x) by (x −a)α−1f (x), andg(x) by (x −a)α−1g(x), Theorem 3

readily yields Corollary 1. �
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Theorem 4. Suppose that the functionsf andg satisfy the conditions in Theorem2, where

D(n+1)α
a g(x) �= 0 for everyx ∈ [a, b].

Then, for everyx ∈ (a, b], there is aξ (a � ξ � z) such that

Rn(f ;x, a)

Rn(g;x, a)
= D

(n+1)α
a f (ξ)

D
(n+1)α
a g(ξ)

, (13)

whereRn is defined by(7).

Proof. Let x ∈ (a, b] be fixed. In terms ofRn defined by (7), we denote byK1 andK2 the
following functions:

K1 = Rn(g;x, a) and K2 = Rn(f ;x, a),

and consider the functionF defined by

F(t) = K1f (t) −K2g(t)
(
t ∈ [a, b]).

Using the linearity property ofRn defined by (7), the rest of the proof of Theorem 4 is
in the proof of Theorem 3. �

A simple consequence of Theorem 4 is given by the following corollary.

Corollary 2. LetF andG be functions defined on(a, b] such that the functions

f (x) = (x − a)α−1F(x) and g(x) = (x − a)α−1G(x)

satisfy the conditions of Theorem4. Then, for everyx ∈ (a, b], there is aξ (a � ξ � x)

such that

R̃n(F ;x, a)

R̃n(G;x, a)
= [D(n+1)α

a (x − a)α−1F(x)](ξ)

[D(n+1)α
a (x − a)α−1G(x)](ξ)

, (14)

where

R̃n(F ;x, a) = F(x) −
n∑

j=0

cj (x − a)jα

Γ
(
(j + 1)α

) (15)

and

cj = [
I1−α
a D

jα
a (x − a)α−1F(x)

]
(a+) (j ∈ N0; 0� j � n).

3. An outline of the general method

Let Ξ be a set and letF be some appropriately chosen vector space of real-va
functions defined onΞ . LetΦ be a functional onF and letA :F → R be a linear operator
whereR is the vector space ofall real-valued functions defined onΞ .

Suppose that, for eachf ∈F , there is aξ ∈ Ξ such that
Φ(f ) = A(f )(ξ). (16)
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Theorem 5. For everyf,g ∈F , there is aξ ∈ Ξ such that

A(g)(ξ)Φ(f ) = A(f )(ξ)Φ(g), (17)

whereΦ is given by(16) in terms of the linear operatorA :F →R.

Proof. Consider the following linear combination:

h = Φ(g)f − Φ(f )g.

Obviously, we have

Φ(h) = 0.

On the other hand, there is aξ ∈ Ξ such that

A(h)(ξ) = Φ(h) = 0,

which completes the proof of Theorem 5 by using the linearity property of the operaA.�
In order to obtain Theorem 3 from Theorem 5 (using Theorem 1), we set

Ξ = [a, x], Φ(f ) = f (x) − [
(x − a)1−αf (x)

]
(a+)(x − a)α−1,

and

A(f ) = Dα
a f,

and letF contain continuous functionsf on (a, b] for whichDα
a f is continuous on[a, b].

In exactly the same way, we can obtain results of this kind from anyNewton–Cotes
quadrature formula, provided that we know its error term. For example, in the cas
Simpson’s rule, we set

Ξ = [a, b], Φ(f ) = 1

b − a

b∫
a

f (x) dx − 1

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
,

and

A(f ) = − (b − a)4

2880
f (4),

and then letF contain functions with continuous fourth derivative on[a, b].

4. Derivation of the reversed results

In the preceding sections, the mean-value theorems of the Lagrange type were
and the mean-value theorems of the Cauchy type were deduced from them. In th
tion, we prove some new Cauchy type mean-value theorems and deduce therefrom
(possibly new and useful) Lagrange type mean-value theorems.

The following result is connected with Jensen’s inequality and its discrete form

proved by Mercer [2] (see also [3]).
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Theorem 6. Let I be a compact real interval and letφ,ψ ∈ C2(I). Also leth be an
integrable function with respect to a normalized weightω on [a, b] ⊂ R such that the
range ofh is a subset ofI. Then, for someξ ∈ I,∫ b

a
φ
(
h(x)

)
ω(x)dx − φ

(∫ b

a
h(x)ω(x)dx

)
∫ b

a
ψ

(
h(x)

)
ω(x)dx − ψ

(∫ b

a
h(x)ω(x)dx

) = φ′′(ξ)

ψ ′′(ξ)
, (18)

provided that the denominator on the left-hand side of(18) is non-zero.

Proof. DefineA := ∫ b

a
h(x)ω(x)dx and (analogously as in [2]) write

(Qφ)(t) =
b∫

a

φ
(
th(x) + (1− t)A

)
ω(x)dx − φ(A),

so that

(Qφ)′(t) =
b∫

a

(
h(x) − A

)
φ′(th(x) + (1− t)A

)
ω(x)dx

and

(Qφ)′′(t) =
b∫

a

(
h(x) − A

)2
φ′′(th(x) + (1− t)A

)
ω(x)dx.

We now consider the functionW(t) given by

W(t) = (Qψ)(1)(Qφ)(t) − (Qφ)(1)(Qψ)(t),

which immediately yields

W(0) = W ′(0) = W(1) = 0,

so that two applications of the mean-value theorem give us

W ′′(µ) = 0 for someµ ∈ (0,1).

This implies that

b∫
a

(
h(x) − A

)2[
(Qψ)(1)φ′′(µh(x) + (1− µ)A

)
− (Qφ)(1)ψ ′′(µh(x) + (1− µ)A

)]
ω(x)dx = 0.

For any fixedµ, the expression in the square brackets is a continuous function ofx and
hence it vanishes for some value ofx in (a, b). Corresponding to this value ofx ∈ (a, b),

we get a numberξ ∈ I such that

(Qψ)(1)φ′′(ξ) − (Qφ)(1)ψ ′′(ξ) = 0,
which completes the proof of Theorem 6.�



J.E. Pečarić et al. / J. Math. Anal. Appl. 306 (2005) 730–739 737

-

of the

uous
As our first application of Theorem 6, let us consider the integral power meansMr(h)

(h � 0), which are defined as follows:

Mr(h) =
( b∫

a

[
h(x)

]r
ω(x) dx

)1/r

(r �= 0)

and

M0(h) = exp

( b∫
a

ω(x) log
(
h(x)

)
dx

)
.

Choose

φ(x) = xr/s and ψ(x) = xl/s

in (18) and then puth(x) = [u(x)]s . We thus find that∣∣∣∣ r(r − s)

l(l − s)

∣∣∣∣m �
∣∣∣∣Mr

r (u) − Mr
s (u)

Ml
l (u) − Ml

s(u)

∣∣∣∣ �
∣∣∣∣ r(r − s)

l(l − s)

∣∣∣∣M, (19)

whereM andm denote the maximum and minimum ofxr−l over the range ofu(x). The
estimation in (19) is also meaningful in their limiting cases whens → 0, s → ∞, and
s → −∞.

As our second application of Theorem 6, we putψ(x) = x2 in Theorem 6. Upon rear
ranging (18), we get

b∫
a

φ
(
h(x)

)
ω(x)dx − φ

( b∫
a

h(x)ω(x)dx

)

= 1

2
φ′′(ξ)

b∫
a

[
h(x) −

b∫
a

h(x)ω(x)dx

]2

ω(x)dx,

which immediately gives Jensen’s inequality for a convex (concave) functionψ .
Finally, we give a Cauchy type mean-value theorem which is a generalization

classicaltrapezoid rule(see, for details, [1]).

Theorem 7. Let f,g : [a, b] → R be two functions, each of which possesses a contin
derivative of ordern � 2. If

f (k)(a) = g(k)(a) = 0 (k = 2, . . . , n − 2),

then

(b − a)
f (a)+f (b)

2 − ∫ b

a
f (x) dx

(b − a)
g(a)+g(b)

2 − ∫ b

a
g(x) dx

= f (n)(ξ)(ξ − a) + (n − 2)f (n−1)(ξ)

g(n)(ξ)(ξ − a) + (n − 2)g(n−1)(ξ)
(20)
for someξ ∈ (a, b).
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Proof. Consider the function

(Qf )(t) = f (t) + f (a)

2
(t − a) −

t∫
a

f (s) ds,

so that

(Qf )′(t) = 1

2
f ′(t)(t − a) − 1

2

(
f (t) − f (a)

)
and

(Qf )(k)(t) = 1

2

[
f (k)(t)(t − a) + (k − 2)f (k−1)(t)

]
(2 � k � n).

We note that

(Qf )(a) = (Qf )′(a) = (Qf )′′(a) = 0.

We now consider the functionW(t) given by

W(t) = (Qg)(b)(Qf )(t) − (Qf )(b)(Qg)(t),

which readily yields

W(a) = W ′(a) = · · · = W(n−1)(a) = W(b) = 0,

so thatn successive applications of the mean-value theorem give us

W(n)(ξ) = 0 for someξ ∈ (a, b).

This evidently completes the proof of Theorem 7.�
By settingg(x) = x2 andn = 2 (in which case we do not have any boundary con

tions), our assertion (20) of Theorem 7 reduces to the classicaltrapezoidal rule. Further-
more, by letting

g(x) = (x − a)n

and assuming that

f (n−1)(a) = 0

in Theorem 7, the following estimation would result from the assertion (20) of Theore

f (a) + f (b)

2
− 1

b − a

b∫
a

f (x) dx � (n − 1)(b − a)n

2 · (n + 1)! Mn,

where

Mn = max
x∈[a,b]f

(n)(x).
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