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Abstract

By using a very general drop theorem in locally convex spaces we obtain some extended v
of Ekeland’s variational principle, which only need assume local completeness of some relat
and improve Hamel’s recent results. From this, we derive some new versions of Caristi’s fixed
theorems. In the framework of locally convex spaces, we prove that Danes̆’ drop theorem, Ekeland’
variational principle, Caristi’s fixed points theorem and Phelps lemma are equivalent to each
 2005 Elsevier Inc. All rights reserved.

Keywords:Locally convex spaces; Local completeness; Drop theorem; Ekeland’s variational principle

1. Introduction

Let (X,‖‖) be a Banach space andB(X) be its closed unit ball{x ∈ X: ‖x‖ � 1}. For
anyx0 /∈ B(X), the convex hull of the set{x0} ∪ B(X) is called a drop determined by th
point x0 andB(X) and it is denoted byD(x0,B(X)). If a nonempty closed subsetA of X

at a positive distance from the closed unit ballB(X) is given, then there existsa ∈ A such
thatD(a,B(X)) ∩ A = {a}, which is the so-called Danes’ drop theorem; see [1]. The d
theorem was used in various situations (see, for instance, [2–6]) and it is equivalent t
land’s variational principle (see [7]). In the framework of locally convex spaces (her
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in the following, a locally convex space always means a Hausdorff locally convex top
ical vector space), Cheng, Zhou, and Zhang [8], Mizoguchi [9] and Zheng [10] obt
various kinds of drop theorem and deduced the corresponding versions of Ekeland
ational principle. Recently Hamel [11] proved a drop theorem in locally convex spac
follows.

Theorem 1.1 [11, Theorem 7]. LetX be a sequentially complete locally convex space.
A ⊂ X be a nonempty sequentially closed set andB ⊂ X a nonempty sequentially close
bounded convex set. Let{pλ}λ∈Λ be a family of seminorms defining the topology onX

(see, for instance,[12, Chapter 2]or [13, I, pp. 203–204])and assume that there exi
µ ∈ Λ, δ > 0 such thatpµ(a − b) � δ, ∀a ∈ A, ∀b ∈ B. Then for eachx0 ∈ A, there
exists a pointa ∈ D(x0,B) ∩ A such thatD(a,B) ∩ A = {a}.

Here a seminorm family{pλ}λ∈Λ defining the topology onX means that the syste
{⋂n

i=1(pλi
< ε): n ∈ N , λi ∈ Λ, ε > 0} forms a base of 0-neighborhoods inX. Obviously,

the condition that there existsµ ∈ Λ, δ > 0 such thatpµ(a − b) � δ, ∀a ∈ A, ∀b ∈ B,

is equivalent to one that 0/∈ cl(A − B). Hamel also gave the following two versions
Ekeland’s variational principle in locally convex spaces.

Theorem 1.2 [11, Theorem 3]. Let X be a sequentially complete locally convex spa
Letf :X → (−∞,+∞] be a sequentially lower semicontinuous proper function, boun
from below. Let{pλ}λ∈Λ be a family of seminorms defining the topology onX and{αλ}λ∈Λ

a family of positive real numbers. Then for eachx0 ∈ domf there existsz ∈ X such that

(i) f (z) + αλpλ(z − x0) � f (x0) for all λ ∈ Λ;
(ii) for anyx 	= z, there existsµ ∈ Λ such that

f (z) < f (x) + αµpµ(x − z).

Theorem 1.3 [11, Theorem 2]. LetX be a sequentially complete locally convex space.
f :X → (−∞,+∞] be a sequentially lower semicontinuous proper function, boun
from below. LetS ⊂ X be a sequentially closed bounded convex set such that0∈ S. Then,
for eachα > 0, x0 ∈ domf , there existsz ∈ X such that

(i) f (z) + αpS(z − x0) � f (x0);
(ii) for anyx 	= z, f (z) < f (x) + αpS(x − z).

HerepS denotes the Minkowski functional ofS.

In Theorems 1.1–1.3, the assumption thatX is sequentially complete cannot be om
ted. As is well known, for locally convex spaces there are various kinds of complete
for example, completeness, quasicompleteness, sequential completeness,Σ -completeness
l∞-completeness, local completeness and so on; for details, please refer to [14, Ch
and [15]. Up to now, we know that local completeness is the weakest kind of com
ness. In [16] we proved a very general version of the drop theorem in locally convex s
which only needs the assumption on local completeness of some related sets.
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Theorem 1.4 [16, Theorem 3.1]. LetA be a locally closed subset of a locally convex sp
X andB a locally closed, bounded convex subset ofX. Moreover, assume that there exi
a locally convex topologyτ on X such that0 /∈ clτ (A − B), whereclτ (A − B) denotes
the τ -closure ofA − B. Then for eachx0 ∈ A, there existsa ∈ D(x0,B) ∩ A such that
D(a,B) ∩ A = {a} provided that either of the following conditions is satisfied:

(i) the local closure ofB ∩ L(A) is locally complete, whereL(A) denotes the linea
manifold generated byA;

(ii) A is locally complete.

From Theorem 1.4, we have the following deductions.

Theorem 1.5 (Refer to [16, Corollary 3.1]). Let A be a locally closed subset of a loca
convex spaceX andB a locally closed, bounded convex subset ofX with 0 /∈ cl(A − B).
If either A or B is locally complete, then for eachx0 ∈ A, there existsa ∈ D(x0,B) ∩ A

such thatD(a,B) ∩ A = {a}.

Theorem 1.6 (Refer to [16, Corollary 3.2]). Let X be a locally complete locally conve
space,A be a locally closed subset ofX andB be a locally closed, bounded convex sub
of X. If 0 /∈ cl(A − B), then for eachx0 ∈ A, there existsa ∈ D(x0,B) ∩ A such that
D(a,B) ∩ A = {a}.

In Section 2, we review the notions of locally complete sets and locally closed
We shall see that a sequentially complete locally convex space is locally complete
sequentially closed set is locally closed; but neither of the two converses is true.
the assumption in Theorem 1.6 (respectively, in Theorems 1.4 and 1.5) is strictly w
than the assumption in Theorem 1.1. In Section 3, following the way of [7], we use
orem 1.5 to deduce two new versions of Ekeland’s variational principle, which imp
Theorems 1.2 and 1.3. By using the improved Ekeland’s variational principles, we o
two extended versions of Caristi’s fixed theorem. In Section 4, we point out that th
versions of Ekeland’s variational principle, the two versions of Caristi’s fixed theorem
the drop Theorem 1.5 are equivalent to each other. In Section 5, we give a direct
of a general Phelps lemma in locally convex spaces. Moreover, we prove the equiv
between the Phelps lemma and the Ekeland’s variational principle.

2. Sequential completeness and local completeness

In this section, we recall some basic facts concerning sequential completeness a
completeness (for example, see [14, Chapter 5]). LetX be a locally convex space andX∗
be its topological dual. A locally convex space is said to be sequentially complete if
Cauchy sequence inX is convergent. For brevity, we call a bounded absolutely conve
B a disc. Denote sp[B] the vector subspace spanned byB and denotepB the Minkowski
functional ofB, thenEB := (sp[B],pB) is a normed space. IfEB is a Banach space, thenB

is called a Banach disc. A sequence{xn} in X is said to be locally convergent to an elem
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x if there is a discB in X such that the sequence{xn} is convergent tox in EB and{xn}
is said to be locally Cauchy if there is a discB in X such that{xn} is a Cauchy sequenc
in EB . In [12, pp. 225–226], a locally convergent sequence is called a convergent seq
in Mackey sense and some properties of locally convergent sequences were investi

Definition 2.1 [14, Chapter 5]. A locally convex spaceX is locally complete if every
locally Cauchy sequence is locally convergent. This is equivalent to that each bo
subset ofX is contained in a certain Banach disc. LetA be a nonempty subset ofX, then
A is said to be locally complete if every locally Cauchy sequence inA is locally convergen
to a point inA. And A is said to be locally closed if for any locally convergent seque
in A, its local limit point belongs toA.

It is easy to prove that every sequentially complete disc is a Banach disc (see [14,
lary 3.2.5], [17, pp. 91–92], or [18, Theorem 6-1-17]). From this we know:

Theorem 2.1 (See [13, II, p. 135] or [14, Corollary 5.1.8]). Every sequentially comple
locally convex space is locally complete.

As shown by [14, Example 5.1.12], the converse of Theorem 2.1 is not true. In fact,
local completeness is invariant for all compatible locally convex topologies of the dua
(X,X∗) (see [14, Corollary 5.1.7]), we can easily construct a locally complete lo
convex space which is not sequentially complete. For example, see [14, Example 5
[15, Example 1], [16, Example 3.1], and [18, Problem 10-2-119].

Similarly we see that every sequentially closed set is locally closed, but the conve
not true (see [16, Example 3.1]). A proper functionf :X → (−∞,+∞] is called a locally
lower semicontinuous if for eachr ∈ R, the set{x ∈ X: f (x) � r} is locally closed inX.
Clearly every sequentially lower semicontinuous function is locally lower semicontin
and the converse is not true.

3. Ekeland’s variational principle in locally convex spaces

In this section, motivated by the paper of Penot [7], we use Theorem 1.5 to d
two versions of Ekeland’s principle in locally convex spaces, which improve Theorem
and 1.3, respectively.

Theorem 3.1. Let X be a locally convex space,{pλ}λ∈Λ be a family of seminorm
defining the topology onX and {αλ}λ∈Λ be a family of positive real numbers. L
f :X → (−∞,+∞] be a locally lower semicontinuous, bounded from below, pro
function and letx0 ∈ domf . Assume that the set

⋂
λ∈Λ{x ∈ X: αλpλ(x) � 1} or the set

{x ∈ X: f (x) � f (x0)} is locally complete, then there existsz ∈ X such that

(i) f (z) + αλpλ(z − x0) � f (x0) for all λ ∈ Λ,

(ii) for anyx 	= z, there existsµ ∈ Λ such thatf (z) < f (x) + αµpµ(x − z).
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Proof. Without loss of generality, we may assume thatx0 = 0 and f (x0) = 0. Put
E := X × R with the product topology, then the topology can be generated by a fa
{qλ}λ∈Λ of seminorms, whereqλ(x, t) = pλ(x) + |t |, ∀(x, t) ∈ E = X × R. Let A be the
set {(x, t) ∈ E: f (x) � t � 0} and letm := inf{t : (x, t) ∈ A}, then−∞ < m � 0. Take
any fixed real numberr < m and put

B :=
{
(x, r) ∈ E: pλ(x) � −r

αλ

, ∀λ ∈ Λ

}
,

thenK := cone(B) is exactly the set{(y, t) ∈ E: −t � αλpλ(y), ∀λ ∈ Λ}, where cone(B)

denotes the cone generated byB, i.e.

cone(B) := {
α(x, r): α � 0, (x, r) ∈ B

}
.

By the assumption we see that eitherA or B is locally complete,B is a bounded close
convex subset ofE andqλ(A − B) � m − r > 0. By Theorem 1.5, there exists

(z, s) ∈ A ∩ D
(
(0,0),B

) ⊂ A ∩ K (1)

such that

A ∩ D
(
(z, s),B

) = {
(z, s)

}
. (2)

From (1),(z, s) ∈ A ∩ K , hence

f (z) � s � 0 (3)

and for allλ ∈ Λ,

−s � αλpλ(z). (4)

Combining (3) and (4), we have

−f (z) � −s � αλpλ(z), ∀λ ∈ Λ. (5)

Remarking the assumption thatx0 = 0 andf (x0) = 0, we can write (5) as

f (x0) − f (z) � αλpλ(z − x0), ∀λ ∈ Λ.

That is, the result (i) holds. By (3) and the meanings ofr andm, we have

r < m � f (z) � s � 0.

Put

δ := f (z) − r

s − r
, then 0< δ � 1.

It is easy to verify that

δs + (1− δ)r = f (z) − r

s − r
s + s − f (z)

s − r
r = f (z).

Hence(
z, f (z)

) = (
z, δs + (1− δ)r

) = δ(z, s) + (1− δ)(z, r). (6)
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By (5),

pλ(z) � −f (z)

αλ

<
−r

αλ

, ∀λ ∈ Λ,

which means that

(z, r) ∈ B. (7)

Combining (6) and (7), we have(z, f (z)) ∈ D((z, s),B). Also, clearly (z, f (z)) ∈ A.
Hence we have(

z, f (z)
) ∈ A ∩ D

(
(z, s),B

)
.

On the other hand, by (2), we have

A ∩ D
(
(z, s),B

) = {
(z, s)

}
.

Thus we have shown that(z, f (z)) = (z, s) ands = f (z).

For anyx ∈ X, x 	= z, we consider the following two cases:
Case1. Let (x, f (x)) /∈ A, thenf (x) > 0. Thus for allλ ∈ Λ,

f (x) + αλpλ(z − x) � f (x) > 0� f (z).

Case2. Let(x, f (x)) ∈ A, we shall show that(x, f (x)) /∈ (z, s)+K. If not, we assume
that(x − z, f (x) − s) ∈ K , i.e.

s − f (x) � αλpλ(x − z) for all λ ∈ Λ.

Sincex 	= z and{pλ}λ∈Λ separates points inX, we conclude thats − f (x) > 0. Put

η := s − f (x)

s − r
, then 0< η < 1.

SinceK is a cone,(
x − z

η
,
f (x) − s

η

)
∈ K,

that is,(
x − z

η
, r − s

)
∈ K. (8)

By (1),

(z, s) ∈ K. (9)

SinceK is a convex cone, by (8) and (9) we have

(z, s) +
(

x − z

η
, r − s

)
∈ K, i.e.

(
z + x − z

η
, r

)
∈ K ∩ (

X × {r}) = B.

It is easy to verify that

(1− η)s + ηr = f (x) − r
s + s − f (x)

r = f (x),

s − r s − r
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(
x,f (x)

) = (1− η)(z, s) + η

(
z + x − z

η
, r

)
∈ D

(
(z, s),B

)
.

Thus we have(
x,f (x)

) ∈ D
(
(z, s),B

) ∩ A.

By (2),

A ∩ D
(
(z, s),B

) = {
(z, s)

}
,

which leads to that(x, f (x)) = (z, s) and hencex = z, a contradiction. This shows th
(x, f (x)) /∈ (z, s) + K = (z, f (z)) + K, i.e. there existsµ ∈ Λ such that

f (z) − f (x) < αµpµ(x − z).

That is to say, the result (ii) holds.�
If X is locally complete, then both

⋂
λ∈Λ{x ∈ X: αλpλ(x) � 1} and{x ∈ X: f (x) �

f (x0)} are locally complete. Hence the following corollary is direct.

Corollary 3.1. Let X be a locally complete locally convex space,{pλ}λ∈Λ be a family of
seminorms defining the topology onX and {αλ}λ∈Λ be a family of positive real number
Let f :X → (−∞,+∞] be a locally lower semicontinuous, bounded from below, pro
function and letx0 ∈ domf . Then there existsz ∈ X such that

(i) f (z) + αλpλ(z − x0) � f (x0) for all λ ∈ Λ;
(ii) for anyx 	= z, there existsµ ∈ Λ such that

f (z) < f (x) + αµpµ(x − z).

Let S ⊂ X be a convex set containing 0. As usual, we define the Minkowski funct
of S to be

pS(x) :=
{

inf{α > 0: x ∈ αA}, if there existsα > 0 such thatx ∈ αA;
+∞, if x /∈ αA for all α > 0.

When the perturbation function is the Minkowski functional of a bounded set, we can
use Theorem 1.5 to deduce the following Theorem 3.2, which improves Theorem 1.

Theorem 3.2. LetX be a locally convex space,S ⊂ X be a locally closed, bounded conv
set containing0, α be a positive real number,f :X → (−∞,+∞] be a locally lower
semicontinuous, bounded from below, proper function andx0 ∈ domf . If the set{x ∈ X:
f (x) � f (x0)} or S is locally complete, then there existsz ∈ domf such that

(i) f (z) + αpS(z − x0) � f (x0);
(ii) for anyx 	= z, f (z) < f (x) + αpS(x − z).

The proof of Theorem 3.2 is similar to that of Theorem 3.1 and we omit it. From T
rem 3.2 we immediately obtain the following:
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Corollary 3.2. LetX be a locally complete locally convex space,S ⊂ X be a locally closed
bounded convex set containing0, α be a positive real number, andf :X → (−∞,+∞]
be a locally lower semicontinuous, bounded from below, proper function. Then for
x0 ∈ domf , there existsz ∈ domf such that

(i) f (z) + αpS(z − x0) � f (x0);
(ii) for anyx 	= z, f (z) < f (x) + αpS(x − z).

Obviously Corollaries 3.1 and 3.2 improve Theorems 1.2 and 1.3 (see Section
spectively. Mizoguchi [9] and Fang [19] considered the extended versions of Caristi’s
point theorem [20] in complete uniform spaces and in sequentially complete topol
vector spaces, respectively. Here, from Theorems 3.1 and 3.2 we obtain the followin
versions of Caristi’s fixed point theorem in locally convex spaces.

Corollary 3.3. LetX be a locally convex space,{pλ}λ∈Λ be a family of seminorms definin
the topology onX, {αλ}λ∈Λ be a family of positive real numbers andf :X → (−∞,+∞]
be a locally lower semicontinuous, bounded from below, proper function. Moreove
sume that the set{x ∈ X: αλpλ(x) � 1, ∀λ ∈ Λ} is locally complete or assume that the
existsx0 ∈ domf such that{x ∈ X: f (x) � f (x0)} is locally complete(particularly we
may assume thatX is locally complete). If T :X → 2X has the property that for eachx ∈ X

andy ∈ T x,

αλpλ(x − y) + f (y) � f (x), ∀λ ∈ Λ;
then there existsz ∈ T x0 such thatT z = {z}.

Corollary 3.4. LetX be a locally convex space,S ⊂ X be a locally closed, bounded conv
set containing0, α be a positive real number andf :X → (−∞,+∞] be a locally lower
semicontinuous, bounded from below, proper function. Moreover, assume thatS is locally
complete or assume that there existsx0 ∈ domf such that{x ∈ X: f (x) � f (x0)} is lo-
cally complete(particularly we may assume thatX is locally complete). If T :X → 2X

has the property that for eachx ∈ X andy ∈ T x,

αpS(y − x) + f (y) � f (x);
then there existsz ∈ T x0 such thatT z = {z}.

4. Equivalences between drop theorem, Ekeland’s variational principle and
Caristi’s fixed point theorem

In Section 3 by using Theorem 1.5 we obtained Theorems 3.1 and 3.2, the two
ent versions of Ekeland’s variational principle in locally convex spaces. In fact the
equivalent.

Theorem 4.1. Theorems3.1 and3.2 are mutually equivalent.
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Proof. First we show that Theorem 3.2 implies Theorem 3.1. Put

S =
⋂
λ∈Λ

{
x ∈ X: αλpλ(x) � 1

}
,

thenS ⊂ X is a bounded, closed absolutely convex set. LetpS be the Minkowski functiona
of S, then

pS(x) = sup
λ∈Λ

αλpλ(x), ∀x ∈ X. (10)

By the assumption thatS or {x ∈ X: f (x) � f (x0)} is locally complete, then by Theo
rem 3.2 (takingα = 1) we havez ∈ X such that

(i) f (z) + pS(z − x0) � f (x0);
(ii) for any x 	= z, f (z) < f (x) + pS(x − z).

Remarking (10), we know that (i) and (ii) in Theorem 3.1 hold.
Conversely we can prove that Theorem 3.1 implies Theorem 3.2. From Theorem

easily deduce the following proposition (∗):
Let (X,‖‖) be a normed space andf : (X,‖‖) → (−∞,+∞] be a lower semicontin

uous, bounded from below, proper function andx0 ∈ domf . If (X,‖‖) is complete or the
set{x ∈ X: f (x) � f (x0)} is complete, then for anyα > 0, there existsz ∈ X such that

(i) f (z) + α‖z − x0‖ � f (x0);
(ii) for any x 	= z, f (z) < f (x) + α‖x − z‖.

Let T = Γ (x0, S) be the absolutely convex hull ofS ∪{x0}. Then(XT ,‖‖T ) is a normed
space. Put

C = {
x ∈ XT : f (x) + αpS(x − x0) � f (x0)

}
,

thenC is closed in(XT ,‖‖T ) sincef andpS are locally lower semicontinuous. Define
functiong onXT as following:

g(x) =
{

f (x), if x ∈ C,

+∞, if x ∈ XT \ C.
(11)

Theng is a bounded from below, lower semicontinuous proper function andx0 ∈ domg. If
S is locally complete, thenT is a Banach disk and(XT ,‖‖T ) is a Banach space. If the s
{x ∈ X: f (x) � f (x0)} is locally complete, then{x ∈ XT : g(x) � g(x0)} = C ∩ {x ∈ X:
f (x) � f (x0)} is a complete set in(XT ,‖‖T ). By proposition (∗), there existsz ∈ XT

such that

(i) g(z) + α‖z − x0‖T � g(x0) = f (x0);
(ii) for any x ∈ XT andx 	= z,

g(z) < g(x) + α‖x − z‖T . (12)

From (i) we know thatg(z) < ∞, and hencez ∈ C, that is,

f (z) + αpS(z − x0) � f (x0). (13)
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Thus the result (i) in Theorem 3.2 holds. Next we show that the result (ii) in Theorem
according to the following three cases:

Case1. Letx 	= z andx ∈ C, then (12) becomes

f (z) < f (x) + α‖x − z‖T � f (x) + αpS(x − z).

Case2. Letx 	= z andx ∈ XT \ C, then by the definition ofC we have

f (x) + αS(x − x0) > f (x0).

Combining this with (13), we have

f (z) + αpS(z − x0) � f (x0) < f (x) + αpS(x − x0)

� f (x) + αpS(x − z) + αpS(z − x0). (14)

From (13) we knowαpS(z − x0) < ∞. By subtractingαpS(z − x0) from the two sides
of (14), we havef (z) < f (x) + αpS(z − x0).

Case3. Let x 	= z andx /∈ XT , thenpS(z − x0) = +∞ and certainlyf (z) < f (x) +
αpS(z − x0). �

As shown in Section 3, we see that the drop theorem (Theorem 1.5) implies th
versions of Ekeland’s variational principle (i.e. Theorems 3.1 and 3.2). Now Theore
points out that the two versions are mutually equivalent. Moreover, we shall see th
two versions of Ekeland’s variational principle and the drop theorem are equivalent to
other.

Theorem 4.2. Theorems3.1, 3.2, and1.5 are equivalent to each other.

Proof. It is sufficient to prove that Theorem 3.2 implies Theorem 1.5. The proof is sim
to one of Theorem 2 in [21]. Here for the sake of completeness we sketch out the
points. Without loss of generality we may assume that 0∈ B. Since 0/∈ cl(A − B), there
exists a closed absolutely convex 0-neighborhoodW such that

(A − B) ∩ (3W) = ∅ or (B + 3W) ∩ A = ∅. (15)

DenoteΓ (x0,B) the absolutely convex hull of the set{x0} ∪B, then there isα, 0< α < 1,
such thatαΓ (x0,B) ⊂ W . Let G be the local closure of the setB + αΓ (x0,B) andp be
the Minkowski functional ofG. Clearly

α

2

(
B + αΓ (x0,B)

) ⊂ 1

2
W + 1

2
W = W and

α

2
G ⊂ W.

Thus

G + α

2
G ⊂ B + αΓ (x0,B) + W + W ⊂ B + W + W + W = B + 3W.

Combining this with (15), we have(
G + α

G

)
∩ A = ∅.
2
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This yields that

p(x) � 1+ α

2
, ∀x ∈ A. (16)

Definef as follows:f (x) = p(x) for anyx ∈ D(x0,B) ∩ A; or elsef (x) = +∞. Thenf

is locally lower semicontinuous and bounded from below. Since

x0 ∈ 1

α

(
αΓ (x0,B)

) ⊂ 1

α
G and x0 ∈ D(x0,B) ∩ A,

we havef (x0) = p(x0) � 1/α. Thus{
x ∈ X: f (x) � f (x0)

} = p(x0)G ∩ D(x0,B) ∩ A.

If A or B is locally complete, then{x ∈ X: f (x) � f (x0)} is locally complete. By using
Theorem 3.2 (α is replaced byα2/4 andS is replaced byG), we know that there exists
point z ∈ domf = D(x0,B) ∩ A such that

α2

4
p(x − z) + f (x) > f (z), ∀x ∈ X andx 	= z. (17)

For anyx ∈ D(z,B)∩A, we may writex = tz+ (1− t)b, whereb ∈ B ⊂ G and 0� t � 1.

Clearlyα(b/2− z/2) ∈ αΓ (x0,B) ⊂ G. Thus

p

(
α

(
1

2
b − 1

2
z

))
� 1 and p(b) � 1.

Now we have

f (x) + α2

4
p(x − z) = p

(
tz + (1− t)b

) + α2

4
p
(
(1− t)(b − z)

)

� tp(z) + (1− t)p(b) + α

2
(1− t)p

(
α

2
(b − z)

)

� tp(z) + (1− t) + α

2
(1− t)

= tp(z) + (1− t)

(
1+ α

2

)

� tp(z) + (1− t)p(z)

= p(z) = f (z).

Combining this with (17), we conclude thatx = z. This completes the proof.�
From Theorems 3.1 and 3.2 we deduce respectively Corollaries 3.3 and 3.4, the tw

sions of Caristi’s fixed point theorem in locally convex spaces. Conversely we shall
that Corollary 3.3/Corollary 3.4 implies Theorem 3.1/Theorem 3.2, respectively. Com
ing this with Theorems 4.1 and 4.2 we know that Theorems 1.5, 3.1, 3.2, Corollari
and 3.4 are equivalent to each other.

Theorem 4.3. Theorem3.1 and Corollary3.3 are mutually equivalent.
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Proof. It is sufficient to prove that Corollary 3.3 implies Theorem 3.1. DefineT :X → 2X

as follows:

T x = {
y ∈ X: αλpλ(y − x) + f (y) � f (x), ∀λ ∈ Λ

}
.

Obviously, for anyx ∈ X, T x 	= ∅. And for eachx ∈ X andy ∈ T x,

αλpλ(x − y) + f (y) � f (x), ∀λ ∈ Λ.

By Corollary 3.3, there existsz ∈ T x0 such thatT z = {z}. Sincez ∈ T x0, we have

αλpλ(z − x0) + f (z) � f (x0), ∀λ ∈ Λ.

That is, the result (i) in Theorem 3.1 holds. SinceT z = {z}, for anyx ∈ X, x 	= z, we have
x /∈ T z. That is, there existsµ ∈ Λ, such thatαµpµ(x − z) + f (x) > f (z). Hence the
result (ii) in Theorem 3.1 holds.�

Similarly we can prove the following:

Theorem 4.4. Theorem3.2 and Corollary3.4 are mutually equivalent.

5. The equivalence between Phelps lemma and Ekeland’s variational principle

Phelps obtained a lemma known as his name in complete locally convex space
Hamel [11, Theorem 1] gave a generalization of Phelps lemma to sequentially com
locally convex spaces and proved the equivalence between the Phelps lemma and t
land’s variational principle. For the case of complete metric spaces, the equivalen
be found in [23]. In this section we shall give an improved version of Hamel’s resul
prove that the version is equivalent to Theorem 3.2. First we give some lemmas.

Lemma 5.1. Let (X,‖‖) be a normed space andB ⊂ X be a bounded closed convex s
with 0 /∈ B. Let K = cone(B) := {x ∈ X: ∃α � 0, b ∈ B such thatx = αb}, thenK is a
closed convex cone. Moreover, ifB is complete, thenK is complete.

Proof. On the proof ofK being a closed convex cone, see [24, p. 121]. Now assume
B is complete, we show below thatK is complete. Let{xn} ⊂ K be a Cauchy sequenc
We may assume thatxn = λnbn, λn � 0, bn ∈ B, ∀n ∈ N. If there exists a subsequen
{λni

} of {λn} such thatλni
→ 0, asi → ∞, thenxni

= λni
bni

→ 0, as i → ∞. Thus
xn → 0, asn → ∞ and 0∈ K . Or else, we may assume that there ism ∈ N such that
inf{λn: n � m} = η > 0. For convenience, we assume thatλn � η > 0, ∀n ∈ N. Since the
Cauchy sequence{xn} is bounded, there existsβ > 0 such that‖xn‖ � β, ∀n ∈ N. And
since 0/∈ B andB is closed, there existsδ > 0 such that‖b‖ � δ > 0, ∀b ∈ B. Thus we
have:

λnδ � λn‖bn‖ = ‖λnbn‖ = ‖xn‖ � β.

From this,

λn � β
and hence {λn} ⊂

[
η,

β
]
.

δ δ
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By the compactness of[η,β/δ], there exists a subsequence{λni
} of {λn} such thatλni

→
λ0 ∈ [η,β/δ]. Observe that{λni

bni
}i∈N is a Cauchy sequence and(λni

− λ0)bni
→ 0, as

i → ∞. We conclude that{λ0bni
} = {λni

bni
} + {(λ0 − λni

)bni
} is still a Cauchy sequenc

Sinceλ0 � η > 0, we know that{bni
} is a Cauchy sequence too. By the hypothesis thB

is complete, there existsb0 ∈ B such thatbni
→ b0. Thus the subsequence{xni

} = {λni
bni

}
is convergent toλ0b0 ∈ K , which implies that the Cauchy sequence{xn} is convergent to
x0 = λ0b0 ∈ K . �
Lemma 5.2 (See [25, Lemmas 1.1 and 1.2]). Let (X,‖‖) be a normed space,B ⊂ X

be a bounded closed convex set with0 /∈ B and A ⊂ X be closed. Assume thatA or B

is complete, then for eachx0 ∈ A such thatA ∩ (x0 + K) is bounded, there existsz ∈
A ∩ (x0 + K) such thatA ∩ (z + K) = {z}, whereK = cone(B).

Proof. By the assumption thatA or B is complete and by Lemma 5.1 we know th
A ∩ (x0 + K) is complete, whereK denotes cone(B). By modifying the proof of [25,
Lemmas 1.1 and 1.2], we can deduce the result.�
Lemma 5.3 (Refer to [11, Proposition 4]). Let X be a locally convex space,T ⊂ X be a
bounded absolutely convex set andB ⊂ T with 0 /∈ cl(B). If M ⊂ K is bounded inX, then
M is bounded in(XT ,‖‖T ). HereK denotescone(B) andXT denotesspanT .

Proof. Since 0/∈ cl(B), there exists a continuous seminormpµ on X andδ > 0 such that
pµ(b) � δ, ∀b ∈ B. SinceM is bounded inX, there existsβ > 0 such thatpµ(y) � β,
∀y ∈ M . For anyy ∈ M ⊂ K , we may assume thaty = λb, λ � 0, b ∈ B. Thus

λδ � λpµ(b) = pµ(λb) = pµ(y) � β.

From this,λ � β/δ and hence

‖y‖T = ‖λb‖T = λ‖b‖T � λ � β

δ
.

That is,M is bounded in(XT ,‖‖T ). �
Now we can give the following Phelps lemma in locally convex spaces, which only

assume local completeness of some related sets (particularly, which only need assu
the locally convex space is locally complete).

Theorem 5.1. LetX be a locally convex space,A ⊂ X be a locally closed set andB ⊂ X be
a locally closed bounded convex set with0 /∈ cl(B). Assume thatA or B is locally complete
then for eachx0 ∈ A such thatA∩ (x0 +K) is bounded, there existsz ∈ A∩ (x0 +K) such
that {z} = A ∩ (z + K). HereK denotescone(B).

Proof. Let T be the local closure ofΓ (x0,B), then(XT ,‖‖T ) is a normed space. Sinc
A is locally closed,A ∩ XT is closed in(XT ,‖‖T ). SinceB is locally closed andB ⊂ T ,
thenB is a bounded closed convex set in(XT ,‖‖T ) with 0 /∈ B. It is easy to prove that ifA
is locally complete thenA ∩ XT is complete in(XT ,‖‖T ). And if B is locally complete,
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thenB is complete in(XT ,‖‖T ). Now x0 ∈ A such thatA ∩ (x0 + K) is bounded inX,
which implies that(A ∩ XT ) ∩ (x0 + K) is bounded inX. By Lemma 5.3, we know tha
(A∩XT )∩ (x0 +K) is bounded in(XT ,‖‖T ). By Lemma 5.2, there existsz ∈ (A∩XT )∩
(x0 + K) such that

{z} = (A ∩ XT ) ∩ (z + K).

Sincez + K ⊂ x0 + K + K = x0 + K ⊂ XT , we have

A ∩ (z + K) = (A ∩ XT ) ∩ (z + K) = {z}.
This completes the proof.�

We shall see that the above Phelps lemma turns out to be equivalent to the Ek
variational principle, Theorem 3.2. By modifying the proof of Lemma 5.1 we can show
following:

Lemma 5.4. Let B be a locally closed bounded convex set and0 /∈ B, thenK = cone(B)

is locally closed. IfB is locally complete, thenK is also locally complete.

Theorem 5.2. Theorem3.2 implies Theorem5.1.

Proof. Let S = co({0} ∪ B) be the convex hull of{0} ∪ B. SinceB is a locally closed
convex set,S is also a locally closed convex set (see [16, Lemma 2.1]). LetpS be the
Minkowski functional ofS. Since 0/∈ cl(B), there existsl ∈ X∗ andα > 0 such thatl(b) �
α > 0, ∀b ∈ B. For anyx ∈ K := cone(B), we may assume thatx = λb for someλ � 0
and someb ∈ B. Remarking thatpS(b) � 1, we have

αpS(x) = αpS(λb) = λαpS(b) � λα � λl(b) = l(λb) = l(x).

Therefore

K ⊂ Kα := {
x ∈ X: αpS(x) � l(x)

}
.

SinceB is locally closed bounded convex set, by Lemma 5.4,K = cone(B) is locally
closed andx0 + K is locally closed. PutA0 = A ∩ (x0 + K), thenA0, as the intersectio
of the two locally closed sets, is still locally closed (see [14, Proposition 5.1.17]). De

f (x) =
{−l(x), if x ∈ A0,

+∞, if x /∈ A0.
(18)

Thenf is a locally lower semicontinuous, bounded from below, proper function. It is
to see thatx0 ∈ domf and that{x ∈ X: f (x) � f (x0)} = {x ∈ A0: l(x0 − x) � 0} =
A ∩ (x0 + K) ∩ {x ∈ X: l(x) � l(x0)} is a locally closed subset ofA. If A is locally
complete, then{x ∈ X: f (x) � f (x0)}, as a locally closed subset ofA, is still locally
complete. IfB is locally complete, thenS = co({0} ∪ B) is still locally complete (see [16
Lemma 2.1]). Now applying Theorem 3.2, we know that there existsz ∈ X such that

(i) αpS(z − x0) + f (z) � f (x0);
(ii) for any x 	= z, f (z) < f (x) + αpS(x − z).
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By (i), f (z) � f (x0) < +∞, soz ∈ A0 = A ∩ (x0 + K).

Next we show that (ii) implies that{z} = A ∩ (z + K). Assume thatx 	= z andx ∈
A ∩ (z + K). We consider the following two cases:

Case1. Letx /∈ A0, i.e.x /∈ A∩(x0+K). Sincex ∈ A, we conclude thatx /∈ x0+K . On
the other hand,x ∈ z + K andz ∈ A0 ⊂ x0 + K. Thusx ∈ z + k ⊂ x0 + K + K = x0 + K ,
a contradiction.

Case2. Letx ∈ A0, then (ii):f (z) < f (x) + αpS(x − z) becomes

−l(z) < −l(x) + αpS(x − z), that is, l(x − z) < αpS(x − z).

Thusx − z /∈ Kα and sinceK ⊂ Kα , we havex /∈ z + K . This contradicts the assumptio
thatx ∈ A ∩ (z + K) ⊂ z + K. �
Theorem 5.3. Theorem5.1 implies Theorem3.2.

First we prove that Theorem 5.1 implies the following Bishop–Phelps lemma.

Lemma 5.5 (Refer to [21, Lemma 2]). Let X be a locally convex space andp :X →
R+ ∪ {+∞} a locally lower semicontinuous, positive-homogeneous, sub-additive fun
such thatB := {x ∈ X: p(x) � 1} is bounded. Suppose thatA is locally closed nonempt
subset ofX ×R and thatinf{r: (x, r) ∈ A} = 0. If A or B is locally complete, then for an
α > 0 and any(x0, r0) ∈ A, there exists(x̄, r̄) ∈ A ∩ (Kα + (x0, r0)) such that{(x̄, r̄)} =
A ∩ (Kα + (x̄, r̄)), whereKα := {(x, r) ∈ X × R: αp(x) � −r}.

Proof. PutB̂ := {(x,−1) ∈ X×R: αp(x) � 1}, thenB̂ is a locally closed bounded conve
set inX × R, (0,0) /∈ cl(B̂) andKα = cone(B̂). Obviously the condition thatA or B is
locally complete means thatA or B̂ is locally complete. If we can prove thatA∩((x0, r0)+
Kα) is bounded inX × R, then the result follows from Theorem 5.1. Take any(x, r) ∈
A ∩ ((x0, r0) + Kα). Then(x, r) ∈ A and since inf{r: (x, r) ∈ A} = 0, we have

0� r < +∞. (19)

On the other hand,(x, r) ∈ (x0, r0) + Kα , hence

αp(x − x0) � r0 − r. (20)

By (19) and (20), we know thatαp(x − x0) � r0. Takeε = 1, thenx − x0 ∈ (ε + r0/α)B =
(1+ r0/α)B and hencex ∈ x0 + (1+ r0/α)B, the right side is a bounded set inX. Again
by (19) and (20), we know that 0� r � r0 − αp(x − x0) � r0. Thus we have shown that

A ∩ (
(x0, r0) + Kα

) ⊂ (
x0 + (1+ r0/α)B

) × [0, r0],
which is bounded inX × R. �
Proof of Theorem 5.3. Now we have already shown that Theorem 5.1 implies Lemma
Just as we did in the proof of [21, Theorem 1], we can prove that Lemma 5.5 im
Theorem 3.2. �
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Remark 5.1. Summing up the main points in Sections 4 and 5 we conclude that the
versions of Ekeland’s variational principle (Theorems 3.1 and 3.2), the two versio
Caristi’s fixed point theorem (Corollaries 3.3 and 3.4), the drop theorem (Theorem 1.
Phelps lemma (Theorem 5.1) and the Bishop–Phelps lemma (Lemma 5.5) are equ
to each other.

Remark 5.2. Just like Corollaries 3.1 and 3.2, if we assume thatX is a locally complete
locally convex space, then the condition on local completeness of some related su
automatically satisfied. Hence in the case, we can omit the condition and all the
remain true.

Remark 5.3. The referee(s) pointed out that a direct proof of Theorem 3.1 using the in
tion argument is also possible. Here we use Theorem 1.5 to prove Theorem 3.1 an
the connection between them.
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