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Abstract

By using a very general drop theorem in locally convex spaces we obtain some extended versions
of Ekeland’s variational principle, which only need assume local completeness of some related sets
and improve Hamel’s recent results. From this, we derive some new versions of Caristi’s fixed points
theorems. In the framework of locally convex spaces, we prove thatDdrap theorem, Ekeland’s
variational principle, Caristi’s fixed points theorem and Phelps lemma are equivalent to each other.

0 2005 Elsevier Inc. All rights reserved.

Keywords:Locally convex spaces; Local completeness; Drop theorem; Ekeland’s variational principle

1. Introduction

Let (X, || |) be a Banach space amiX) be its closed unit ballx € X: ||x|| < 1}. For
any xg ¢ B(X), the convex hull of the sdivg} U B(X) is called a drop determined by the
pointxg and B(X) and it is denoted by (xg, B(X)). If a nonempty closed subsgtof X
at a positive distance from the closed unit b2{dlX) is given, then there existse A such
thatD(a, B(X)) N A = {a}, which is the so-called Danes’ drop theorem; see [1]. The drop
theorem was used in various situations (see, for instance, [2—6]) and it is equivalent to Eke-
land’s variational principle (see [7]). In the framework of locally convex spaces (here and
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in the following, a locally convex space always means a Hausdorff locally convex topolog-
ical vector space), Cheng, Zhou, and Zhang [8], Mizoguchi [9] and Zheng [10] obtained
various kinds of drop theorem and deduced the corresponding versions of Ekeland’s vari-
ational principle. Recently Hamel [11] proved a drop theorem in locally convex spaces as
follows.

Theorem 1.1[11, Theorem 7]Let X be a sequentially complete locally convex space. Let
A C X be a nonempty sequentially closed set @@ X a nonempty sequentially closed
bounded convex set. Léb; },c4 be a family of seminorms defining the topology Xn
(see, for instancg12, Chapter 2Jor [13, I, pp. 203—204])and assume that there exist
we A, §>0suchthatp,(a —b) > 6, Yae A, Vb e B. Then for eachyg € A, there
exists a pointt € D(xg, B) N A such thatD(a, B)yN A = {a}.

Here a seminorm familyp; },ca defining the topology orX means that the system
{NiZ1(ps; <€):neN, A € A, € > 0} forms a base of 0-neighborhoodsXn Obviously,
the condition that there exisijse A, § > 0 such thatp, (¢ —b) > 6, Yae A, Vb e B,
is equivalent to one that @ cl(A — B). Hamel also gave the following two versions of
Ekeland’s variational principle in locally convex spaces.

Theorem 1.2 [11, Theorem 3] Let X be a sequentially complete locally convex space.
Let f: X — (—o0, +00] be a sequentially lower semicontinuous proper function, bounded
from below. Let p; },.c4 be afamily of seminorms defining the topologyXoand{a; }.c 4

a family of positive real numbers. Then for eaghe domf there existg € X such that

() f(2)+aapi(z —x0) < f(xo) forall x e 4;
(i) foranyx # z, there existg: € A such that

f@) < fx) +oaupu(x —2).

Theorem 1.3[11, Theorem 2]Let X be a sequentially complete locally convex space. Let
f:X — (—o0, +00] be a sequentially lower semicontinuous proper function, bounded
from below. LetS C X be a sequentially closed bounded convex set sucldtbait. Then,

for eacha > 0, xo € domjy, there existg € X such that

() f(@) +aps(z—x0) < f(xo0);
(i) foranyx #z, f(z) < f(x) +aps(x — 2).

Here ps denotes the Minkowski functional 8f

In Theorems 1.1-1.3, the assumption tiaits sequentially complete cannot be omit-
ted. As is well known, for locally convex spaces there are various kinds of completeness,
for example, completeness, quasicompleteness, sequential compleieresspleteness,
[*°-completeness, local completeness and so on; for details, please refer to [14, Chapter 5]
and [15]. Up to now, we know that local completeness is the weakest kind of complete-
ness. In [16] we proved a very general version of the drop theorem in locally convex spaces,
which only needs the assumption on local completeness of some related sets.



J.-H. Qiu/ J. Math. Anal. Appl. 311 (2005) 23-39 25

Theorem 1.4[16, Theorem 3.1]Let A be a locally closed subset of a locally convex space
X and B a locally closed, bounded convex subseXoMoreover, assume that there exists
a locally convex topology on X such thatO ¢ cl; (A — B), wherecl;(A — B) denotes
the T-closure of A — B. Then for eachxg € A, there exists: € D(xg, B) N A such that
D(a, B) N A = {a} provided that either of the following conditions is satisfied

(i) the local closure ofB N L(A) is locally complete, wherd.(A) denotes the linear
manifold generated by;
(i) Aislocally complete.

From Theorem 1.4, we have the following deductions.

Theorem 1.5 (Refer to [16, Corollary 3.1])Let A be a locally closed subset of a locally
convex spac& and B a locally closed, bounded convex subsekoivith 0 ¢ cl(A — B).

If either A or B is locally complete, then for eachy € A, there existst € D(xg, B) N A
such thatD(a, B) N A = {a}.

Theorem 1.6 (Refer to [16, Corollary 3.2])Let X be a locally complete locally convex
space A be a locally closed subset &f and B be a locally closed, bounded convex subset
of X. If 0 ¢ cl(A — B), then for eachxg € A, there existsz € D(xg, B) N A such that
D(a, B)N A ={a}.

In Section 2, we review the notions of locally complete sets and locally closed sets.
We shall see that a sequentially complete locally convex space is locally complete and a
sequentially closed set is locally closed; but neither of the two converses is true. Hence
the assumption in Theorem 1.6 (respectively, in Theorems 1.4 and 1.5) is strictly weaker
than the assumption in Theorem 1.1. In Section 3, following the way of [7], we use The-
orem 1.5 to deduce two new versions of Ekeland’s variational principle, which improve
Theorems 1.2 and 1.3. By using the improved Ekeland’s variational principles, we obtain
two extended versions of Caristi’s fixed theorem. In Section 4, we point out that the two
versions of Ekeland’s variational principle, the two versions of Caristi’s fixed theorem and
the drop Theorem 1.5 are equivalent to each other. In Section 5, we give a direct proof
of a general Phelps lemma in locally convex spaces. Moreover, we prove the equivalence
between the Phelps lemma and the Ekeland’s variational principle.

2. Sequential completeness and local completeness

In this section, we recall some basic facts concerning sequential completeness and local
completeness (for example, see [14, Chapter 5]). X &k a locally convex space ad
be its topological dual. A locally convex space is said to be sequentially complete if every
Cauchy sequence iXi is convergent. For brevity, we call a bounded absolutely convex set
B a disc. Denote §iB] the vector subspace spanned®wnd denotepg the Minkowski
functional of B, thenE g := (Sp(B], pg) is anormed space. Ep is a Banach space, thén
is called a Banach disc. A sequerieg} in X is said to be locally convergent to an element
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x if there is a discB in X such that the sequenge,} is convergent toc in Eg and{x,}

is said to be locally Cauchy if there is a diBcin X such that{x, } is a Cauchy sequence

in Eg. In[12, pp. 225—-226], a locally convergent sequence is called a convergent sequence
in Mackey sense and some properties of locally convergent sequences were investigated.

Definition 2.1 [14, Chapter 5] A locally convex spaceX is locally complete if every
locally Cauchy sequence is locally convergent. This is equivalent to that each bounded
subset ofX is contained in a certain Banach disc. l&be a nonempty subset &f, then

A is said to be locally complete if every locally Cauchy sequenctimlocally convergent

to a point inA. And A is said to be locally closed if for any locally convergent sequence

in A, its local limit point belongs toi.

Itis easy to prove that every sequentially complete disc is a Banach disc (see [14, Corol-
lary 3.2.5], [17, pp. 91-92], or [18, Theorem 6-1-17]). From this we know:

Theorem 2.1 (See [13, Il, p. 135] or [14, Corollary 5.1.8]Every sequentially complete
locally convex space is locally complete.

As shown by [14, Example 5.1.12], the converse of Theorem 2.1 is not true. In fact, since
local completeness is invariant for all compatible locally convex topologies of the dual pair
(X, X*) (see [14, Corollary 5.1.7]), we can easily construct a locally complete locally
convex space which is not sequentially complete. For example, see [14, Example 5.1.12],
[15, Example 1], [16, Example 3.1], and [18, Problem 10-2-119].

Similarly we see that every sequentially closed set is locally closed, but the converse is
not true (see [16, Example 3.1]). A proper functifnX — (—oo, +oc] is called a locally
lower semicontinuous if for eache R, the set{x € X: f(x) <r} is locally closed inX.
Clearly every sequentially lower semicontinuous function is locally lower semicontinuous
and the converse is not true.

3. Ekéland’svariational principlein locally convex spaces

In this section, motivated by the paper of Penot [7], we use Theorem 1.5 to deduce
two versions of Ekeland’s principle in locally convex spaces, which improve Theorems 1.2
and 1.3, respectively.

Theorem 3.1. Let X be a locally convex spacdp;},ca be a family of seminorms
defining the topology orX and {«;},ca be a family of positive real numbers. Let
f:X — (—o00,400] be a locally lower semicontinuous, bounded from below, proper
function and letxo € domf. Assume that the s€f), ., {x € X: a; py(x) < 1} or the set

{x e X: f(x) < f(x0)} is locally complete, then there exigt& X such that

() f@@) +oupi(z—x0) < fxg) forall L e A,
(if) for anyx # z, there existgw € A such thatf (z) < f(x) +aupu(x —2).
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Proof. Without loss of generality, we may assume that= 0 and f(xg) = 0. Put

E := X x R with the product topology, then the topology can be generated by a family
{gr}rea Of sSeminorms, where; (x, t) = py(x) + |¢], Y(x,t) € E =X x R. Let A be the
set{(x,t) € E: f(x) <t <0} andletm :=inf{r: (x,7) € A}, then—oco < m < 0. Take

any fixed real number < m and put

B := {(x,r) e E: p)(x) < —_r’ Vi e A},
07}
thenK :=condB) is exactly the sef(y, 1) € E: —t > «; p;(y), YA € A}, where conéB)
denotes the cone generatedByi.e.
condB) := {a(x, ra=0, (x,r)e B}.

By the assumption we see that eitheior B is locally complete B is a bounded closed
convex subset of andg; (A — B) > m —r > 0. By Theorem 1.5, there exists

(z,$)€ AND((0,0,B) CANK (1)
such that

AND((z,5), B) ={(z 9} )
From (1),(z,s) e AN K, hence

f@)<s<0 3)
and for allx € A,

—s > a,pa(2). (4)
Combining (3) and (4), we have

—f@==s>api), YrAeA. (5)

Remarking the assumption thaf= 0 and f (xg) = 0, we can write (5) as
f(x0) — f(2) Zappa(z —x0), VAeA.

That is, the result (i) holds. By (3) and the meanings ahdm, we have
r<m< f(z) <s<0.

Put

§ = M then 0<§ < 1.

s—r

It is easy to verify that

/@) L /@)
—r

S —r N

ds+ (A —-98)r=

r= f(2).
Hence

(2. @) = (2,85 + L= 8)r) =8(z,5) + (1= 8)(z, 7). (6)



28 J.-H. Qiu/ J. Math. Anal. Appl. 311 (2005) 23-39

By (5),
P (2) < A < _—r, Vie A,
o) o)
which means that
(z,r) € B. (7)

Combining (6) and (7), we havé, f(z)) € D((z,s), B). Also, clearly(z, f(2)) € A.
Hence we have

(z. f(2)) e AND((z,5), B).
On the other hand, by (2), we have
AND((z,s), B) ={(z,9]}.

Thus we have shown th&t, f(z)) = (z,s) ands = f(z).
For anyx € X, x # z, we consider the following two cases:
Casel. Let(x, f(x)) ¢ A, thenf(x) > 0. Thus for allx € A,

F&) +aprz—x) = f(x)>0= f(2).

Case2. Let(x, f(x)) € A, we shall show thatx, f(x)) ¢ (z,s) + K. If not, we assume
that(x —z, f(x) —s) e K, i.e.

s—f(x)Zappi(x—z) forallre A.

Sincex # z and{p; },ca Separates points ik, we conclude that — f(x) > 0. Put
_s—fW
ni=

S —r
SinceKk is a cone,

(x—va(X)—S)eK’

, thenO<n<1

n n
that is,
(x_z,r—s>eK. (8)
n
By (1),
(z,5) € K. )

SinceKk is a convex cone, by (8) and (9) we have

X =2

(Z,S)-i-( ,r—s)eK, i.e.

(Z—i—x;Z,r)eKﬂ(Xx{r})zB.

It is easy to verify that
f(x)—rs+s—f(x)
S — S —r

r

A-ms+nr=

r=f),
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hence

(x, f))=A =z 9+ n(z +

X —2Z

,r) € D((z,9), B).
Thus we have

(x, f(x)) € D((z.5), B)N A.
By (2),

AND((z,s), B) ={(z, 9},

which leads to thatx, f(x)) = (z,s) and hencex = z, a contradiction. This shows that
(x, f(x) ¢ (z,5) + K =(z, f(2)) + K, i.e. there existg € A such that

f@) = fx) <aupux—2).
That is to say, the result (ii) holds.O

If X is locally complete, then both), . ,{x € X: oy ps(x) <1} and{x € X: f(x) <
f(x0)} are locally complete. Hence the following corollary is direct.

Corollary 3.1. Let X be a locally complete locally convex spa¢g; }ic4 be a family of
seminorms defining the topology ahand{«; },c4 be a family of positive real numbers.
Let f: X — (—o0, +00] be a locally lower semicontinuous, bounded from below, proper
function and letvg € domf. Then there exists e X such that

() f@) +aypi(z—x0) < f(xo) forall A e A;
(ii) foranyx # z, there existg: € A such that

f@) < fx)+a,pulx —2).

Let S C X be a convex set containing 0. As usual, we define the Minkowski functional
of S to be

infla > 0: x exA}, ifthere existsx > 0 such thakr € «A;
ps(x) =

400, ifx¢aAforalla>0.

When the perturbation function is the Minkowski functional of a bounded set, we can also
use Theorem 1.5 to deduce the following Theorem 3.2, which improves Theorem 1.3.

Theorem 3.2. Let X be a locally convex spac8,C X be alocally closed, bounded convex
set containing0, o be a positive real number : X — (—o0, +00] be a locally lower
semicontinuous, bounded from below, proper function and domf. If the set{x € X:
f(x) < f(xp)} or S is locally complete, then there exigte dom f such that

(i) f() +aps(z—x0) < f(xo):
(i) foranyx #z, f(z) < f(x) +aps(x — z2).

The proof of Theorem 3.2 is similar to that of Theorem 3.1 and we omit it. From Theo-
rem 3.2 we immediately obtain the following:
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Corollary 3.2. Let X be alocally complete locally convex spase; X be alocally closed,
bounded convex set containifga be a positive real number, anfl: X — (—o0, +00]

be a locally lower semicontinuous, bounded from below, proper function. Then for each
xo € domf, there existg € domf such that

() f(@) +aps(z—x0) < f(x0);
(iiy foranyx #z, f(z) < f(x) +aps(x — z).

Obviously Corollaries 3.1 and 3.2 improve Theorems 1.2 and 1.3 (see Section 2), re-
spectively. Mizoguchi [9] and Fang [19] considered the extended versions of Caristi’s fixed
point theorem [20] in complete uniform spaces and in sequentially complete topological
vector spaces, respectively. Here, from Theorems 3.1 and 3.2 we obtain the following two
versions of Caristi’s fixed point theorem in locally convex spaces.

Corollary 3.3. Let X be a locally convex spacgp; }.ca be a family of seminorms defining
the topology orX, {«;}.ca be a family of positive real numbers agfd X — (—o0, +00]

be a locally lower semicontinuous, bounded from below, proper function. Moreover, as-
sume that the sdik € X: ay p, (x) <1, VA € A} is locally complete or assume that there
existsxg € domf such that{x € X: f(x) < f(xp)} is locally completq particularly we

may assume tha is locally completg If 7: X — 2 has the property that for eache X

andy € Tx,

o=+ fO) < f), YrieA

then there exists € Txg such thatT z = {z}.

Corollary 3.4. Let X be alocally convex spac§,C X be alocally closed, bounded convex
set containind), « be a positive real number anfl: X — (—o0, +00] be a locally lower
semicontinuous, bounded from below, proper function. Moreover, assumg ithkdcally
complete or assume that there exiggse domf such that{x € X: f(x) < f(x0)} is lo-
cally complete( particularly we may assume that is locally completg. If 7: X — 2X
has the property that for eache X andy € Tx,

aps(y —x) + f(y) < f(x);

then there exists € Txg such thatT z = {z}.
4. Equivalences between drop theorem, Ekeland’svariational principle and
Caristi’sfixed point theorem
In Section 3 by using Theorem 1.5 we obtained Theorems 3.1 and 3.2, the two differ-
ent versions of Ekeland’s variational principle in locally convex spaces. In fact they are

equivalent.

Theorem 4.1. Theorems3.1 and 3.2 are mutually equivalent.
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Proof. First we show that Theorem 3.2 implies Theorem 3.1. Put

S= m{x e X appr(x) < 1},
reA

thenS C X is abounded, closed absolutely convex set.jsebe the Minkowski functional
of §, then

ps(x) = supa, py(x), VxeX. (10)

reA

By the assumption thaf or {x € X: f(x) < f(xp)} is locally complete, then by Theo-
rem 3.2 (takingr = 1) we havez € X such that

(i) f@) + ps(z—x0) < f(x0);
(ii) foranyx #z, f(2) < f(x) + ps(x —2).

Remarking (10), we know that (i) and (ii) in Theorem 3.1 hold.

Conversely we can prove that Theorem 3.1 implies Theorem 3.2. From Theorem 3.1 we
easily deduce the following propositioR)(

Let (X, || ]) be a normed space antt (X, || ||) — (—o0, +oc] be a lower semicontin-
uous, bounded from below, proper function ads dom£. If (X, | ||) is complete or the
set{x € X: f(x) < f(x0)}is complete, then for any > 0, there existg € X such that

() f@) +allz—xoll < f(x0);
(ii) foranyx #z, f(2) < f(x) +afx —z].

LetT = I'(xg, S) be the absolutely convex hull 6fU {xo}. Then(X7, ||||7) is a normed
space. Put

C={xeXr: f(x)+aps(x —x0) < f(x0)}.

thenC is closed in(Xr, || |I7) since f and pg are locally lower semicontinuous. Define a
functiong on X7 as following:

fx), ifxec,
gx) = .

+o0, ifxeXr\C.
Theng is a bounded from below, lower semicontinuous proper functiorvgrddomyg. If
S is locally complete, theff is a Banach disk an@X 7, || ||7) is a Banach space. If the set
{x e X: f(x) < f(xp)} is locally complete, thetfix € X7: g(x) < gxg)}=CN{x e X:
f(x) < f(x0)} is a complete set inXr, || |I7). By proposition §), there exists € X7
such that

(11)

() g(2) +eallz—xollr < g(x0) = f(x0);
(i) foranyx € Xy andx # z,

g(2) <gx) +alx —zlr. (12)

From (i) we know thag(z) < oo, and hence € C, that is,
[ (@) +aps(z —x0) < f(x0)- (13)
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Thus the result (i) in Theorem 3.2 holds. Next we show that the result (ii) in Theorem 3.2
according to the following three cases:
Casel. Letx # z andx € C, then (12) becomes

f@ < fx)+allx —zllr < f(x) +apsix —2).
Case2. Letx # z andx € X7 \ C, then by the definition o€ we have

f(x) +as(x —xo) > f(xo0).
Combining this with (13), we have

f(@) +aps(z —x0) < f(xo) < f(x) +aps(x — xo)
< f(x) +aps(x —2) + aps(z — xp). (14)

From (13) we knowxps(z — xg) < oco. By subtractingeps(z — xg) from the two sides
of (14), we havef (z) < f(x) + aps(z — xo).

Case3. Letx # z andx ¢ X7, then ps(z — xg) = +00 and certainlyf (z) < f(x) +
aps(z —x0). O

As shown in Section 3, we see that the drop theorem (Theorem 1.5) implies the two
versions of Ekeland’s variational principle (i.e. Theorems 3.1 and 3.2). Now Theorem 4.1
points out that the two versions are mutually equivalent. Moreover, we shall see that the
two versions of Ekeland’s variational principle and the drop theorem are equivalent to each
other.

Theorem 4.2. Theorems.1, 3.2, and1.5 are equivalent to each other.

Proof. Itis sufficient to prove that Theorem 3.2 implies Theorem 1.5. The proof is similar
to one of Theorem 2 in [21]. Here for the sake of completeness we sketch out the main
points. Without loss of generality we may assume that®. Since 0¢ cl(A — B), there
exists a closed absolutely convex 0-neighborh@bduch that

(A—B)N@BW)=0 or (B+3W)NA=4. (15)

Denotel" (xg, B) the absolutely convex hull of the sy} U B, then there isr, 0 < o < 1,
such thaixI" (xg, B) C W. Let G be the local closure of the s8t+ «I"(xo, B) andp be
the Minkowski functional ofG. Clearly
o
2
Thus

1 1 o
(B+al(xo, B)) C éW+ EW: W and EG cw.

G+%GCB+ozF(xo,B)+W+WCB+W+W+W=B+3W.

Combining this with (15), we have

(G—I—%G)ﬂA:Q).
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This yields that
p(x)>1+%, Vx € A. (16)

Define f as follows: f (x) = p(x) for anyx € D(xg, B) N A; or elsef (x) = +oo. Then f
is locally lower semicontinuous and bounded from below. Since

1 1
x0€ —(al(xo, B)) C =G and xg€ D(xo, B)NA,
o o

we havef (xg) = p(x0) < 1/a. Thus
{xeX: f(0) < f(x)} = p(x0)G N D(xo, B) N A.

If A or B is locally complete, therfix € X: f(x) < f(xp)} is locally complete. By using
Theorem 3.24 is replaced byr?/4 andS is replaced byG), we know that there exists a
pointz € domf = D(xo, B) N A such that

2
%p(x — )4 f)> f), V¥xeXandx#£z. (17)

Foranyx € D(z, B)N A, we may writex =tz+ (1—¢t)b, whereb € BC Gand 0< ¢t < L.
Clearlya(b/2—z/2) € al'(xg, B) C G. Thus

1 1
—bh - — < < 1.
p(a(zb 2z>> <1 and pb)«l1

Now we have

2 2
fx) + O[Zp(x —2)=p(tz+ A —-0b) + %p((l— (b —72))

<tp@) + A —1)pb) + %(1 - t)p(%(b - z))
<tp@+ A=)+ %(1— 0

=ip(2)+ (1 ;)<1+ %)
<tp(@+A-1)p@)
=p@) = f().
Combining this with (17), we conclude that= z. This completes the proof.O

From Theorems 3.1 and 3.2 we deduce respectively Corollaries 3.3 and 3.4, the two ver-
sions of Caristi’s fixed point theorem in locally convex spaces. Conversely we shall prove
that Corollary 3.3/Corollary 3.4 implies Theorem 3.1/Theorem 3.2, respectively. Combin-
ing this with Theorems 4.1 and 4.2 we know that Theorems 1.5, 3.1, 3.2, Corollaries 3.3
and 3.4 are equivalent to each other.

Theorem 4.3. TheorenB.1 and Corollary3.3 are mutually equivalent.
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Proof. Itis sufficient to prove that Corollary 3.3 implies Theorem 3.1. Define&l — 2%
as follows:

Tx={yeX: a,p(y—x)+ f(») < f(x), Vre A}.
Obviously, for anyx € X, Tx # @. And for eachx € X andy € Tx,

ap(x =+ f) < fx), VYreA.
By Corollary 3.3, there existse T xg such thatl' z = {z}. Sincez € Txp, we have

api(z—x0)+ f(2) < f(x0), VreA.

That is, the result (i) in Theorem 3.1 holds. Sirfte= {z}, for anyx € X, x # z, we have
x ¢ Tz. That is, there existg € A, such thatw, p,,(x — z) + f(x) > f(z). Hence the
result (ii) in Theorem 3.1 holds.O

Similarly we can prove the following:

Theorem 4.4. TheorenB.2 and Corollary3.4 are mutually equivalent.

5. The equivalence between Phelpslemma and Ekeland’s variational principle

Phelps obtained a lemma known as his name in complete locally convex spaces [22].
Hamel [11, Theorem 1] gave a generalization of Phelps lemma to sequentially complete
locally convex spaces and proved the equivalence between the Phelps lemma and the Eke-
land’s variational principle. For the case of complete metric spaces, the equivalence can
be found in [23]. In this section we shall give an improved version of Hamel’s result and
prove that the version is equivalent to Theorem 3.2. First we give some lemmas.

Lemma55.1. Let (X, || ||) be a normed space anBl C X be a bounded closed convex set
with0¢ B. Let K =condB) :={x € X: da > 0, b € B such thatx = ab}, thenkK is a
closed convex cone. MoreoverBfis complete, theiX is complete.

Proof. On the proof ofK being a closed convex cone, see [24, p. 121]. Now assume that
B is complete, we show below that is complete. Lefx,} C K be a Cauchy sequence.
We may assume that, = 1,,b,, A, > 0, b, € B, Vn € N. If there exists a subsequence
{An;} Of {r,} such thatr,, — 0, asi — oo, thenx,, = A,;b,;, — 0, asi — oo. Thus

xp, — 0, asn — oo and Oe K. Or else, we may assume that thereniss N such that
inf{L,,;: n > m}=n > 0. For convenience, we assume that> n > 0, Vrn € N. Since the
Cauchy sequencgx,} is bounded, there exisfs > 0 such that|x,|| < 8, Vrn € N. And

since O¢ B and B is closed, there exists> 0 such that|b|| > § > 0, Vb € B. Thus we
have:

M8 < Aullbpll = Anbull = llxn |l < B.
From this,

and hence {),} C [n, é}

An < s

SRy
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By the compactness ¢f;, /481, there exists a subsequeriag; } of {1,} such thai,, —
Ao € [n, B/5]. Observe thatr,, by, }icn is a Cauchy sequence atd,, — Ag)b,, — 0, as

i — oo. We conclude thafhoby, } = {Ay,; bn; } + {(Ao — A, )by, } is still a Cauchy sequence.
Sinceig > n > 0, we know thatb,, } is a Cauchy sequence too. By the hypothesis ghat
is complete, there existg € B such thab,, — bg. Thus the subsequenge,,} = {1, by, }

is convergent to.obg € K, which implies that the Cauchy sequerieg} is convergent to
xo=Xoboe K. 0O

Lemma 5.2 (See [25, Lemmas 1.1 and 1.2]et (X, || ||) be a normed spaceB C X
be a bounded closed convex set Witk B and A C X be closed. Assume that or B
is complete, then for eachy € A such thatA N (xg + K) is bounded, there existse
AN (xo+ K) such thatd N (z + K) = {z}, whereK = congB).

Proof. By the assumption that or B is complete and by Lemma 5.1 we know that
AN (xg + K) is complete, whereX denotes cong). By modifying the proof of [25,
Lemmas 1.1 and 1.2], we can deduce the resuit.

Lemma 5.3 (Refer to [11, Proposition 4]Let X be a locally convex spac&, C X be a
bounded absolutely convex set aBia: 7 with O ¢ cl(B). If M C K is bounded inX, then
M is bounded i X7, || |7). Here K denotesong B) and X7 denotespar .

Proof. Since 0¢ cl(B), there exists a continuous seminopp on X and$ > 0 such that
pu(b) = 8, Vb € B. SinceM is bounded inX, there exists8 > 0 such thatp,(y) < 8,
Vy e M. Foranyy € M C K, we may assume that= b, A > 0,b € B. Thus

A8 < Apu(b) = pu(Ab) = pu(y) < B.
From this,A» < /8 and hence

B
Iyllr = 1Abllr = Albllr < A < %

Thatis,M is bounded inX7, || l7). O

Now we can give the following Phelps lemma in locally convex spaces, which only need
assume local completeness of some related sets (particularly, which only need assume that
the locally convex space is locally complete).

Theorem 5.1. Let X be alocally convex spacd, C X be alocally closed setanBl C X be

alocally closed bounded convex set wiitéd cl(B). Assume that or B is locally complete,
then for eachxg € A such thatA N (xg+ K) is bounded, there existss A N (xg+ K) such

that{z} = AN (z + K). Here K denotexondB).

Proof. Let T be the local closure of (xg, B), then(X7, || |7) is @ hormed space. Since
A islocally closed A N X7 is closed in(X7, || ||7). SinceB is locally closed and C T,
thenB is a bounded closed convex set(iy, || ||7) with 0 ¢ B. Itis easy to prove that i

is locally complete themt N X is complete in(X7, || ||7). And if B is locally complete,
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then B is complete in(X7, || |I7). Now xg € A such thatA N (xg + K) is bounded inX,
which implies that(A N X7) N (xo + K) is bounded inX. By Lemma 5.3, we know that
(ANX7)N(xo+ K) isbounded in X7, || |I7). By Lemma5.2, there existse (AN X7)N
(xo + K) such that

{Z}=(ANXp)N(z+ K).
Sincez+ K Cxo+ K+ K =x0+ K C X7, we have
AN+ K)=(ANXr)N(z+K)=1{z}.

This completes the proof. O

We shall see that the above Phelps lemma turns out to be equivalent to the Ekeland’s
variational principle, Theorem 3.2. By modifying the proof of Lemma 5.1 we can show the
following:

Lemma 5.4. Let B be a locally closed bounded convex set &l B, thenK = congB)
is locally closed. IfB is locally complete, thek is also locally complete.

Theorem 5.2. TheorenB.2 implies Theoren®.1.

Proof. Let S = co({0} U B) be the convex hull of0} U B. SinceB is a locally closed
convex setS is also a locally closed convex set (see [16, Lemma 2.1]).dsebe the
Minkowski functional ofS. Since 0 cl(B), there existé € X* anda > 0 such that(b) >
a >0, Vb € B. For anyx € K := con€B), we may assume that= Ab for somei >0
and somé € B. Remarking thapg(b) < 1, we have

aps(x) =aps(Ab) = haps(b) < Ao < AL(D) = [(Ab) = (x).
Therefore
KCK,: = {x e X: aps(x) Sl(x)}.

Since B is locally closed bounded convex set, by Lemma K4+ congB) is locally

closed andg + K is locally closed. Puig = A N (xg + K), thenAp, as the intersection

of the two locally closed sets, is still locally closed (see [14, Proposition 5.1.17]). Define
f) = { 100, e Ao (18)

+00, if x ¢ Ao.

Then f is a locally lower semicontinuous, bounded from below, proper function. It is easy

to see thatyg € domf and that{x € X: f(x) < f(x0)} = {x € Ao: I(x0 —x) <0} =

AN(xo+ K)N{x e X: I(x) > 1l(x0)} is a locally closed subset A. If A is locally

complete, ther(x € X: f(x) < f(xp)}, as a locally closed subset df, is still locally

complete. IfB is locally complete, thels = co({0} U B) is still locally complete (see [16,

Lemma 2.1]). Now applying Theorem 3.2, we know that there existX such that

(i) aps(z—x0) + f(z) < f(x0);
(i) foranyx #z, f(z) < f(x) +aps(x — 2).
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By (i), f(z) < f(x0) <+400,80z€ Ag=AN (xo0+ K).

Next we show that (ii) implies thafz} = A N (z + K). Assume thatc # z andx €
AN (z+ K). We consider the following two cases:

Casel. Letx ¢ Ag,i.e.x ¢ AN(xg+ K). Sincex € A, we conclude that ¢ xo+ K. On
the otherhandy e z+ K andz € AgCxo+ K. Thusx ez +kCxo+ K+ K =x9+ K,
a contradiction.

Case2. Letx € Ag, then (ii): f(2) < f(x) +aps(x — z) becomes

—1(z) < —=l(x)+aps(x —z), thatis I(x—z) <apsx—2z).

Thusx — z ¢ K, and sincekK C K, we havex ¢ z + K. This contradicts the assumption
thatxe AN(z+K)Cz+ K. O

Theorem 5.3. Theorenb.1 implies Theoren3.2.
First we prove that Theorem 5.1 implies the following Bishop—Phelps lemma.

Lemma 5.5 (Refer to [21, Lemma 2])Let X be a locally convex space ang: X —

R™ U {400} alocally lower semicontinuous, positive-homogeneous, sub-additive function
such thatB := {x € X: p(x) < 1} is bounded. Suppose thatis locally closed nhonempty
subset o x R and thatinf{r: (x,r) € A} =0.If A or B is locally complete, then for any

a > 0 and any(xg, ro) € A, there existgx,7) € A N (K, + (x0, r0)) such that{(x,r)} =
AN(Ky + (x,7)), whereK, :={(x,r) € X X R: ap(x) < —r}.

Proof. PutB :={(x,—1) € X x R: ap(x) < 1}, thenB is a locally closed bounded convex
setinX x R, (0,0) ¢ cl(B) and K, = congB). Obviously the condition that or B is
locally complete means thator B is locally complete. If we can prove that ((xo, ro) +
Ky) is bounded inX x R, then the result follows from Theorem 5.1. Take anyr) €
AN ((xo,r0) + Ky). Then(x, r) € A and since infr: (x,r) € A} =0, we have

0<r < +oo. (19)
On the other handy, r) € (xg, ro) + K4, hence
ap(x —xp) <ro—r. (20)

By (19) and (20), we know thatp (x — xg) < ro. Takee = 1, thenx — xg € (¢ +rg/a)B =
(1+ ro/@) B and hencer € xo + (1+ ro/«) B, the right side is a bounded setih Again
by (19) and (20), we know thatQ r < ro — ap(x — xg) < ro. Thus we have shown that

AN ((xo,70) + K¢) C (x0+ (14 ro/a)B) x [0, rol,
which is bounded ik x R. O
Proof of Theorem 5.3. Now we have already shown that Theorem 5.1 implies Lemma 5.5.

Just as we did in the proof of [21, Theorem 1], we can prove that Lemma 5.5 implies
Theorem 3.2. O
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Remark 5.1. Summing up the main points in Sections 4 and 5 we conclude that the two
versions of Ekeland’s variational principle (Theorems 3.1 and 3.2), the two versions of
Caristi’s fixed point theorem (Corollaries 3.3 and 3.4), the drop theorem (Theorem 1.5), the
Phelps lemma (Theorem 5.1) and the Bishop—Phelps lemma (Lemma 5.5) are equivalent
to each other.

Remark 5.2. Just like Corollaries 3.1 and 3.2, if we assume tkias a locally complete
locally convex space, then the condition on local completeness of some related subsets is
automatically satisfied. Hence in the case, we can omit the condition and all the results
remain true.

Remark 5.3. The referee(s) pointed out that a direct proof of Theorem 3.1 using the induc-
tion argument is also possible. Here we use Theorem 1.5 to prove Theorem 3.1 and stress
the connection between them.
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