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Abstract

In this paper we study a class of subset of Sierpinski carpets for which the allowed digits in the expansions
fall into each fiber set with a prescribed frequency. We calculate the Hausdorff and packing dimensions of
these subsets and give necessary and sufficient conditions for the corresponding Hausdorff and packing
measures to be finite.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let T be the expanding endomorphism of the 2-torus T2 = R2/Z2 given by the matrix
diag(n,m) where 2 � m < n are integers. The simplest invariant sets for T have the form

K(T ,D) =
{ ∞∑

k=1

(
n−1 0

0 m−1

)k

dk: dk ∈ D for all k � 1

}
,
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where D ⊆ I ×J is a set of digits with I = {0,1, . . . , n−1} and J = {0,1, . . . ,m−1}. Through-
out this paper, we always assume that D contains at least two elements. Alternatively, define a
map KT : (I × J )N → T2 by

KT (d) =
∞∑

k=1

(
n−1 0

0 m−1

)k

dk, d = (dk)
∞
k=1 ∈ (I × J )N.

Then K(T ,D) = KT (DN). So each element of K(T ,D) can be represented as an expansion in
base diag(n−1,m−1) with digits in D. The set K(T ,D), called as the Sierpinski carpet, was first
studied by C. McMullen [6] and T. Bedford [1], independently, to determine its Hausdorff and
box-counting dimensions. From then on, some further problems related to the Sierpinski carpet
K(T ,D) are proposed and considered by lots of authors. Y. Peres [8,9] studied its packing and
Hausdorff measures. R. Kenyon and Y. Peres [4,5] extended the results of McMullen [6] and
Bedford [1] to the compact subsets of the 2-torus corresponding to shifts of finite type or sofic
shifts and to the Sierpinski sponges. O.A. Nielsen [7] studied a certain subset of K(T ,D) by
insisting that the allowed digits in the expansions occur with prescribed frequencies.

Let σ denote the projection of R2 onto its second coordinate. Let B = σ(D) = {b1, b2,

. . . , bs}. Set Γj = {d ∈ D: σ(d) = bj }, j = 1,2, . . . , s. Then Γj s are the horizontal fibers of D

and form a partition of D, i.e., D = ⋃s
j=1 Γj with disjoint union. Let (c1, c2, . . . , cs) be a prob-

ability vector, i.e.,
∑s

j=1 cj = 1 with cj > 0. Let

Ω =
{
d = (di)

∞
i=1 ∈ DN: lim

k→∞
#{1 � i � k: di ∈ Γj }

k
= cj , j = 1,2, . . . , s

}
, (1)

where and throughout this paper we use #A to denote the cardinality of a finite set A. Then Ω is
such a subset of DN: for each element of Ω its entry falls into each fiber set Γj with a prescribed
(group) frequency cj . And so KT (Ω) is the subset of the K(T ,D) whose elements have their
codings falling into Γj with prescribed (group) frequencies cj , j = 1,2, . . . , s. We call KT (Ω)

to be a fiber-coding sub-Sierpinski carpet. Clearly, KT (Ω) is T -invariant, dense in K(T ,D) but
not compact in general.

For any Borel subset E of R2, let dimH E and dimP E, respectively, denote its Hausdorff and
packing dimensions, and Hγ (E) and Pγ (E), respectively, denote its γ -dimensional Hausdorff
and packing measures. Let α = logn m and nj = #Γj , j = 1,2, . . . , s. In this paper, we obtain
the following results.

Theorem 1.1.

(I) dimH KT (Ω) = dimP KT (Ω) = ∑s
j=1 cj (logm nα

j − logm cj );

(II) dimH KT (Ω) = dimH K(T ,D) if and only if cj = nα
j∑s

i=1 nα
i

, j = 1,2, . . . , s;

(III) dimP KT (Ω) = dimP K(T ,D) if and only if ci = cj and ni = nj for all 1 � i, j � s.

Theorem 1.2. Let γ = dimH KT (Ω) = dimP KT (Ω) = ∑s
j=1 cj (logm nα

j − logm cj ). Then

(I) 0 < Hγ (KT (Ω)) � Pγ (KT (Ω)) < ∞ if and only if ci = cj and ni = nj for all 1 � i, j � s;
(II) if there exist some 1 � i �= j � s such that ci �= cj or ni �= nj , then Hγ (KT (Ω)) =

Pγ (KT (Ω)) = +∞.
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Our Theorems 1.1 and 1.2 can be considered as a generalization of the results given by
O.A. Nielsen in [7] where the subset KT (Ω∗) of the Sierpinski carpet was studied. From the de-
finition of Ω∗ defined by (6), it follows that KT (Ω∗) ⊆ KT (Ω) if taking cj = ∑

d∈Γj
pd for 1 �

j � s. Each digit d ∈ D is required to occur as an entry of elements of Ω∗ with a prescribed fre-
quency pd , while its occurrence as an entry of elements of Ω is relatively more freely. However,
the method for the proofs of our Theorems 1.1 and 1.2 comes from that given by O.A. Nielsen
in [7], mainly by making use of Lemmas 2.1 and 2.2 which appear as Lemmas 4 and 5 in [7].

The rest of this paper is organized as follows. In Section 2, some basic facts and known results
needed in the proof of our theorems are described. Proofs of Theorems 1.1 and 1.2 are arranged
in Section 3.

2. Preliminaries

As in [6–9], a class of approximate squares are used to calculate the various dimensions of the
Sierpinski carpets and its subsets. For each ω = (ωj )

∞
j=1 ∈ (I × J )N and each positive integer k,

let

Qk(ω) = {
KT (y): y = (yj )

∞
j=1 ∈ (I × J )N, yj = ωj for 1 � j � [αk] and

σ(yj ) = σ(ωj ) for [αk] + 1 � j � k
}
,

where, as usual, [x] with x ∈ R denotes the greatest integer function. The sets Qk(ω) are approx-
imate squares in [0,1]2, whose sizes have length n−[αk] and m−k . Note that the radio of the sizes
of Qk(ω) is at most n, and their diameters diamQk(ω) satisfy√

2m−k � diamQk(ω) �
√

2nm−k.

So in the definition of Hausdorff measure, we can restrict attention to covers by such approxi-
mate squares since any set of diameter less than m−k can be covered by a bounded number of
approximate squares Qk(ω). The following two lemmas appear in [7] in which the approximate
square Qk(ω) behaves as an analogue as the ball does in the classical density theorems. The first
of them, involved in Hausdorff measure, is just a reformulation of the Rogers–Taylor density
theorem as stated by Peres in Section 2 of [9]. The proof for the second of them, involved in
packing measure, was given by Nielsen [7] as Lemma 5 in Section 2.

Lemma 2.1. (Nielsen [7, Lemma 4]) Suppose that δ is a positive number, that μ is a finite Borel
measure in [0,1]2, and that E is a subset of (I ×J )N such that KT (E) is a Borel subset of [0,1]2,
and μ(KT (E)) > 0, put

A(ω) = lim sup
k→∞

(
kδ + logm μ

(
Qk(ω)

))
for each point ω ∈ E.

(1) If A(ω) = −∞ for all ω ∈ E, then Hδ(KT (E)) = +∞.
(2) If A(ω) = +∞ for all ω ∈ E, then Hδ(KT (E)) = 0.
(3) If there are numbers a and b such that a � A(ω) � b for all ω ∈ E, then 0 < Hδ(KT (E)) <

+∞.

Lemma 2.2. (Nielsen [7, Lemma 5]) Suppose that δ, μ and E are as in Lemma 2.1 and put

B(ω) = lim inf
k→∞

(
kδ + logm μ

(
Qk(ω)

))
for each point ω ∈ E.
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(1) If B(ω) = −∞ for all ω ∈ E, then Pδ(KT (E)) = +∞.
(2) If B(ω) = +∞ for all ω ∈ E, then Pδ(KT (E)) = 0.
(3) If there are numbers a and b such that a � B(ω) � b for all ω ∈ E, then 0 < Pδ(KT (E)) <

+∞.

The Borel measures on [0,1]2 to which the above lemmas will be applied are constructed as
follows. Let p = (pd)d∈D be a probability vector on D, i.e.,

∑
d∈D pd = 1 with each pd > 0.

Then p determines a unique infinite product Borel probability measure, denoted by μp, on DN.
For any finite sequence (ω1,ω2, . . . ,ωk) ∈ Dk ,

μp
(
C(ω1,ω2, . . . ,ωk)

) =
k∏

j=1

pωj
,

where C(ω1,ω2, . . . ,ωk) := {d = (dj )
∞
j=1 ∈ DN: dj = ωj for 1 � j � k} is a cylinder set of DN

with base (ω1,ω2, . . . ,ωk). Let μ̃p be the Borel probability measure on KT (DN) which is the
image measure of μp under KT , i.e., μ̃p(A) = μp(K−1

T A) for Borel set A ⊆ R2. From the fact
that the approximate square Qk(ω) is a finite union of cylinder sets, it follows that for any ω ∈ DN

(cf. formula (4) in [7], also formula (4.4) in [3]),

μ̃p
(
Qk(ω)

) =
[αk]∏
j=1

pωj
·

k∏
j=[αk]+1

qσ(ωj ), (2)

where, also below, qbi
= ∑

d∈Γi
pd for bi ∈ B (recall B = σ(D) = {b1, b2, . . . , bs} and Γi =

{d ∈ D: σ(d) = bi}, i = 1,2, . . . , s).
The following lemma shows that KT (Ω) is of full μ̃p-measure for some properly selected p.

Lemma 2.3. Let Ω be defined as (1). If the probability vector p = (pd)d∈D satisfies∑
d∈Γi

pd = ci , i = 1,2, . . . , s, then μ̃p(KT (Ω)) = 1.

Proof. Let

Ωi =
{
ω ∈ DN: lim

k→∞
#{1 � j � k: ωj ∈ Γi}

k
= ci

}
, i = 1,2, . . . , s.

Then Ω = ⋂s
i=1 Ωi . So it suffices to show that μp(Ωi) = 1, i = 1,2, . . . , s. Fix i ∈ {1,2, . . . , s}

and define a sequence of random variables {Xj }∞j=1 on the probability space (DN,F ,μp) (F is
the Borel σ -algebra) by letting

Xj(ω) = 1 if ωj ∈ Γi, otherwise = 0,

for j ∈ N and ω = (ωj )
∞
j=1 ∈ DN. Then X1,X2, . . . are independent and identically distributed

random variables with μp(X1 = 1) = μp(
⋃

d∈Γi
C(d)) = ∑

d∈Γi
pd = ci and μp(X1 = 0) =

1 − ci . By Kolmogorov strong law of large numbers, we have that for μp-a.e. ω ∈ DN,

lim
k→∞

#{1 � j � k: ωj ∈ Γi}
k

= lim
k→∞

1

k

k∑
j=1

Xj(ω) = E(X1) = ci,

implying μp(Ωi) = 1. �
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Finally, we will use the following lemma in next section which proof can be found in
[2, Corollary 1.5]. In addition, we always use the notation log to denote the natural logarithm,
i.e., log = loge.

Lemma 2.4. For a probability vector (u1, u2, . . . , ut ) and any (γj )
t
j=1 ∈ Rt we have

t∑
j=1

uj (− loguj + γj ) � log
t∑

j=1

eγj ,

with equality if and only if uj = e
γj∑t

i=1 eγi
, j = 1,2, . . . , t .

3. Proofs

Proof of Theorem 1.1. (I) We will make use of Lemmas 2.1 and 2.2. To do this, we take E = Ω

defined by (1), μ = μ̃p with pd = cj

nj
for d ∈ Γj , 1 � j � s. Then μ̃p(KT (Ω)) = 1 > 0 by

Lemma 2.3. For each ω = (ωj )
∞
j=1 ∈ DN, d ∈ D and k ∈ N let

Nk(ω,d) = #{1 � j � k: ωj = d}. (3)

Then

#{1 � j � k: ωj ∈ Γi} =
∑
d∈Γi

Nk(ω,d) for i = 1,2, . . . , s. (4)

By (2) we have

logm μ̃p
(
Qk(ω)

) =
[αk]∑
j=1

logm pωj
+

k∑
j=[αk]+1

logm qσ(ωj )

=
[αk]∑
j=1

logm pωj
+

k∑
j=1

logm qσ(ωj ) −
[αk]∑
j=1

logm qσ(ωj )

=
s∑

i=1

∑
d∈Γi

N[αk](ω, d) logm pd +
s∑

i=1

∑
d∈Γi

Nk(ω,d) logm qσ(d)

−
s∑

i=1

∑
d∈Γi

N[αk](ω, d) logm qσ(d)

=
s∑

i=1

∑
d∈Γi

N[αk](ω, d) logm

ci

ni

+
s∑

i=1

∑
d∈Γi

Nk(ω,d) logm ci

−
s∑

i=1

∑
d∈Γi

N[αk](ω, d) logm ci

=
s∑

i=1

∑
d∈Γi

Nk(ω,d) logm ci −
s∑

i=1

∑
d∈Γi

N[αk](ω, d) logm ni.

Therefore, by (1) and (4) we have
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lim
k→∞

logm μ̃p(Qk(ω))

k

= lim
k→∞

∑s
i=1

∑
d∈Γi

Nk(ω,d) logm ci − ∑s
i=1

∑
d∈Γi

N[αk](ω, d) logm ni

k

=
s∑

i=1

ci logm ci −
s∑

i=1

αci logm ni =
s∑

i=1

ci

(
logm ci − logm nα

i

)
, (5)

for each ω = (ωj )
∞
j=1 ∈ Ω . Denote γ = ∑s

j=1 cj (logm nα
j − logm cj ). Therefore, for each ω =

(ωj )
∞
j=1 ∈ Ω we have

lim
k→∞

(
kδ + logm μ̃p

(
Qk(ω)

)) = lim
k→∞k

(
δ + logm μ̃p(Qk(ω))

k

)
=

{+∞ if δ > γ,

−∞ if δ < γ,

by (5). This implies that dimH KT (Ω) = dimP KT (Ω) = ∑s
j=1 cj (logm nα

j − logm cj ) by Lem-
mas 2.1 and 2.2.

(II) We first recall that dimH K(T ,D) = logm

∑s
j=1 nα

j (cf. McMullen [6]), dimP K(T ,D) =
dimBK(T ,D) = logm(#B1−α#Dα) (cf. Peres [8]). Applying Lemma 2.4 to the probability vector
(c1, c2, . . . , cs) and (logm nα

i )si=1, we have

dimH KT (Ω) =
s∑

i=1

ci

(
logm nα

i − logm ci

)
� logm

s∑
i=1

nα
i = dimH K(T ,D),

with equality if and only if ci = nα
i∑s

j=1 nα
j

for all 1 � i � s.

(III) By taking all γj = 0, Lemma 2.4 shows that for a probability vector (u1, u2, . . . , ut )

t∑
j=1

−uj loguj � log t,

with equality if and only if all uj are equal to t−1. Then

dimP KT (Ω) =
s∑

j=1

cj

(
logm nα

j − logm cj

)

= −α

s∑
j=1

nj∑
i=1

cj

nj

logm

cj

nj

− (1 − α)

s∑
j=1

cj logm cj

� α logm #D + (1 − α) logm #B = dimP K(T ,D),

where the equality holds if and only if all
cj

nj
are equal for the first term, all cj are equal for the

second term. �
Proof of Theorem 1.2. (I) We first prove the sufficiency. Denote c = cj and r = nj . Then sc = 1
and γ = α logm r − logm c. Take p = (pd)d∈D with pd = c

r
for all d ∈ D. Then by (2)

kγ + logm μ̃p
(
Qk(ω)

) = k(α logm r − logm c) + [αk] logm

c

r
+ (

k − [αk]) logm c

= (
αk − [αk]) logm r,

for each ω ∈ Ω and all k ∈ N. So the conclusion is obtained by Lemmas 2.1(3) and 2.2(3).
The necessity is included in the following (II).
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(II) The proof of this part will be obtained by applying Theorem 3(b) in [7] directly. Take
p = (pd)d∈D with pd = cj

nj
for d ∈ Γj , 1 � j � s. Let

Ω∗ =
{
ω = (ωj )

∞
j=1 ∈ DN: lim

k→∞
Nk(ω,d)

k
= pd for all d ∈ D

}
, (6)

where Nk(ω,d) is defined as (3). O.A. Nielsen (cf. [7, Theorem 1]) proved that

dimH KT (Ω∗) = dimP KT (Ω∗) = −α
∑
d∈D

pd logm pd − (1 − α)

s∑
j=1

qbj
logm qbj

=
s∑

i=1

ci

(
logm nα

i − logm ci

) = dimH KT (Ω) = dimP KT (Ω) = γ.

So KT (Ω∗) and KT (Ω) have the same dimensions.
A probability vector u = (ud)d∈D is said to be uniformly distributed on D if ud = #D−1

for all d ∈ D and D is said to have uniform horizontal fibers if ni = nj for all 1 � i, j � s.
Theorem 3(b) in [7] shows that

Hγ
(
KT (Ω∗)

) = Pγ
(
KT (Ω∗)

) = +∞,

if p is not uniformly distributed on D or if D does not have uniform horizontal fibers. This
implies our result by the fact that KT (Ω) ⊇ KT (Ω∗). �
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