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Abstract

Monge–Ampère equation is a nonlinear equation with high degree, therefore its numerical solution is very important and very
difficult. In present paper the numerical method of Dirichlet’s problem of Monge–Ampère equation on Cartan–Hartogs domain of
the third type is discussed by using the analytic method. Firstly, the Monge–Ampère equation is reduced to the nonlinear ordinary
differential equation, then the numerical method of the Dirichlet problem of Monge–Ampère equation becomes the numerical
method of two point boundary value problem of the nonlinear ordinary differential equation. Secondly, the solution of the Dirichlet
problem is given in explicit formula under the special case, which can be used to check the numerical solution of the Dirichlet
problem.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical methods belong to the category of Computer Science, the authors research into them by using the
several complex analysis. Therefore present paper is the intersect of Computer Science and Mathematics or is the
intersect of numerical calculus and complex analysis.

Because of the great applications in many research areas such as deferential geometry, variational method, opti-
mization, transfers problem, to study the complex Monge–Ampère equations becomes the research hotspot. By Yau’s
opinion, the complex Monge–Ampère operator is one of the five important differential operators in the differential
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geometry. The Yau’s very important results are based on the existence of the solution of some types of complex
Monge–Ampère equations. Therefore to study the complex Monge–Ampère equation has great scientific meaning.

S.-Y. Cheng, N.-M. Mok, S.-T. Yau proved [1,2] that there exists unique complete Kaehler–Einstein metric on any
bounded pseudoconvex domain D in Cn. In fact they discuss the following Dirichlet’s problem of the Monge–Ampère
equation:{

det( ∂2g
∂zi∂z̄j

) = e(n+1)g, z ∈ D,

g = ∞, z ∈ ∂D.

The Monge–Ampère equation is the nonlinear equation, hence to get its solution is very difficult. By introducing some
insightful techniques in differential geometry Yau et al. proved that there exists unique solution of the above problem,
but they have not got the solution in explicit formula. Therefore mathematicians hope to get the solutions for that
problem by using the numerical method. The first author asked many experts about the numerical method, they said
that the numerical method is very important for the Monge–Ampère equation, but it is also very difficult, up to now
the successful numerical method of Monge–Ampère equation is not appeared.

2. Presentation of the problem

In present paper the authors try to study the numerical solution of Dirichlet’s problem of complex Monge–Ampère
equation on Cartan–Hartogs domain of the third type. The Cartan–Hartogs domain of the third type is defined as
follows:

YIII = YIII(N3, q;K) := {
W ∈ CN3, Z ∈ RIII(q): |W |2K < det

(
I − ZZt

)
, K > 0

}
,

where RIII(q) is the classical domain of the third type, that is

RIII(q) = {
Z ∈ C

q(q−1)
2 : I − ZZt > 0

}
,

where Z is skew symmetric matrix with q order, Z > 0 means that Z is the positive definite matrix, Z denotes the
conjugate of Z, Zt indicates the transpose of Z, det is the abbreviation of determinant. Due to its explicit formula the
Bergman kernel function of YIII has Bergman exhausticity [3]. Hence the domain is pseudoconvex domain. Therefore
the solution of problem (1) exists and is unique. In present paper the numerical solution of following Dirichlet’s
problem of Monge–Ampère equation is discussed:{

det( ∂2g
∂zi∂z̄j

)1�i,j�N = e(N+1)g, z ∈ YIII,

g = ∞, z ∈ ∂YIII,
(1)

where N = N3 + q(q−1)
2 is the complex dimension of YIII , and suppose (Z,W) ∈ YIII , W = (w1,w2, . . . ,wN3),

Z = −Zt =

⎛⎜⎜⎜⎜⎝
0 z12 · · · z1q

−z12 0 · · · z2q

...
...

. . .
...

−z1q −z2q · · · 0

⎞⎟⎟⎟⎟⎠ ,

let

Z1 = (z1, z2, . . . , z q(q−1)
2

) = (z12, . . . , z1q, z23, . . . , z2q, . . . , zq−1,q ),

Z2 = (z q(q−1)
2 +1, z q(q−1)

2 +2, . . . , zN) = (w1,w2, . . . ,wN3),

then the point (Z,W) can be denoted by a vector z with N entries, that is

z = (Z1,Z2) = (z1, z2, . . . , z q(q−1)
2

, z q(q−1)
2 +1, z q(q−1)

2 +2, . . . , zN).

Firstly, we reduce the Monge–Ampère equation in (1) to an ordinary differential equation; secondly, we get the
analytic explicit formula of the solution of problem (1) under the special case. This explicit formula can be used to
check the numerical solution of problem (1).



W. Yin, X. Yin / J. Math. Anal. Appl. 339 (2008) 295–302 297
We write this paper from the point of view of numerical method of PDE and wish to show that the several complex
analytic methods may be helpful to the numerical method of PDE. And the authors hope that the scholars, who study
the numerical method of PDE, pay their attention to this matter. Perhaps this is the original idea for advocating the
category subject.

3. Preliminaries

3.1. The following mappings are the holomorphic automorphism of YIII(N3, q,K), the set of such mappings is
denoted by Aut(YIII),⎧⎨⎩W ∗ = UW det

(
I − Z0Z0

t
) 1

2K det
(
I − ZZ0

t
)− 1

K ,

Z∗ = A(Z − Z0)
(
I − Z0

tZ
)−1

A−1,

(2)

where AtA = (I −Z0Z0
t )−1, Z0 ∈ RIII(q), U is the unitary matrix. Such mapping maps the point (Z0,W) onto point

(0,W ∗).

Proof. It is well known that Z∗ = A(Z − Z0)(I − Z0
tZ)−1A−1 is the holomorphic automorphism of RIII(q). By

calculations one has (see [4])

I − Z∗Z∗t = (
At

)−1(
I − ZZ0

t
)−1(

I − ZZt
)(

I − Z0Z
t
)−1

A−1,

det
(
I − Z∗Z∗t

) = det
(
I − Z0Z0

t
)∣∣det

(
I − ZZ0

t
)∣∣−2 det

(
I − ZZt

)
,

and

W ∗W ∗t = WWt det
(
I − Z0Z0

t
)1/K ∣∣det

(
I − ZZ0

t
)∣∣−2/K

,

hence

det
(
I − Z∗Z∗t

) − ∣∣W ∗∣∣2K = det
(
I − Z0Z0

t
)∣∣det

(
I − ZZ0

t
)∣∣−2[det

(
I − ZZt

) − |W |2K
]
.

Therefore the above mapping is the holomorphic automorphism of YIII(N3, q;K). See [3]. �
3.2. Let X = X(Z,W) = |W |2[det(I − ZZt)]−1/K , then X is invariant under the Aut(YIII) that is X(Z∗,W ∗) =

X(Z,W).

Proof. That can be proved by the direct calculations, see [3]. Therefore any function F(X) is also invariant under
Aut(YIII).

From the definition of YIII , one has 0 � X < 1. �
3.3. If g(z, z̄) = g[(Z,W), (Z,W)] is the solution of problem (1), then

ds2 =
∑ ∂2g

∂zi∂z̄j

dzi dzj

is the Kaehler–Einstein metric of domain YIII . The Kaehler–Einstein metric is invariant under the biholomorphic
mapping. Therefore if mapping (Z∗,W ∗) = F(Z,W) = F(z) belongs to Aut(YIII), one has

det

(
∂2g[(Z0,W), (Z0,W)]

∂zi∂z̄j

)
= |detJF |2 det

(
∂2g[(0,W ∗), (0,W ∗)]

∂w∗
i ∂w̄∗

j

)
, (3)

where w∗ is the image of z under F(z), which is the vector with N entries, that is w∗ = (w∗
1, . . . ,w∗

N); let JF denotes
the Jacobian matrix of F , then

JF =
(

∂Z∗/∂Z ∗
0 ∂W ∗/∂W

)
.
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Hence∣∣det(JF )
∣∣2
Z0=Z

= ∣∣det
(
∂W ∗/∂W

)
det

(
∂Z∗/∂Z

)∣∣2
Z0=Z

.

Due to the well-known theory of classical domain [4], one has∣∣det
(
∂Z∗/∂Z

)∣∣2
Z0=Z

= det
(
I − ZZt

)−(q−1)
.

It is easy to get |det(∂W ∗/∂W)Z0=Z|2 = det(I − ZZt)−N3/K . Therefore∣∣det(JF )
∣∣2
Z0=Z

= det
(
I − ZZt

)−(q−1+N3/K)
.

If Z = Z0, then the form (3) becomes

det

(
∂2g(z, z̄)

∂zi∂z̄j

)
= det

(
I − ZZt

)−(q−1+N3/K) det

(
∂2g[(0,W ∗), (0,W ∗)]

∂w∗
i ∂w̄∗

j

)
. (4)

In fact, only one needs to calculate the following form:

det

(
∂2g[(0,W ∗), (0,W ∗)]

∂w∗
i ∂w̄∗

j

)
. (5)

If g is the solution of problem (1), then the right side of (4) must be equal to e(N+1)g , that is

det
(
I − ZZt

)−(q−1+N3/K) det

(
∂2g[(0,W ∗), (0,W ∗)]

∂w∗
i ∂w̄∗

j

)
= e(N+1)g. (6)

Let

g = (N + 1)−1 log
[
G(X)det

(
I − ZZt

)−(q−1+N3/K)]
, (7)

then the form (6) is equivalent to

det

(
∂2g[(0,W ∗), (0,W ∗)]

∂w∗
i ∂w̄∗

j

)
= G(X). (8)

Therefore if the left side of the form (8) can be expressed by X, G(X) and its derivatives, then the Monge–Ampère
equation in (1) is equivalent to an ordinary differential equation. That is true, please see the next section for details.

4. Reduce the Monge–Ampère equation to an ordinary differential equation

For convenience, let W ∗,w∗ in the left side of (8) are denoted by W,z, respectively. Therefore one needs to
calculate

det

(
∂2g[(0,W), (0,W)]

∂zi∂z̄j

)
. (9)

But

∂2g[(0,W), (0,W)]
∂zi∂z̄j

= ∂2g[(Z,W), (Z,W)]
∂zi∂z̄j

∣∣∣
Z=0

,

then from (7) one has

g = (N + 1)−1 log
[
G(X)det

(
I − ZZt

)−(q−1+N3/K)]
.

Hence the form (9) is equal to

C det

⎛⎝ ∂2 log[G(X)det(I−ZZt )−(q−1+N3/K)]
∂zαβ∂z̄στ

∂2 log[G(X)det(I−ZZt )−(q−1+N3/K)]
∂zαβ∂w̄j

∂2 log[G(X)det(I−ZZt )−(q−1+N3/K)] ∂2 log[G(X)det(I−ZZt )−(q−1+N3/K)]

⎞⎠∣∣∣
Z=0

, (10)
∂wi∂z̄στ ∂wi∂w̄j
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where

C = (N + 1)−N, 1 � α < β � q, 1 � σ < τ � q, 1 � i, j � N3.

Let

logG(X) = M,
d logG(X)

dX
= M ′, d2 logG(X)

dX2
= M ′′. (11)

By calculations one has

∂X

∂zαβ

∣∣∣
z=0

= 0,
∂X

∂z̄στ

∣∣∣
z=0

= 0,

∂2X

∂zαβ∂z̄στ

∣∣∣
z=0

= 1

K
X tr[IαβIτσ ], ∂X

∂wi

∣∣∣
z=0

= w̄i,
∂X

∂w̄j

∣∣∣
z=0

= wj ,

∂2X

∂zαβ∂w̄q

∣∣∣
z=0

= ∂2X

∂wp∂z̄στ

∣∣∣
z=0

= 0,
∂2X

∂wi∂w̄j

∣∣∣
z=0

= δij ,

∂2 log det(I − ZZt)

∂zαβ∂z̄στ

= − tr(IαβIτσ ) = −δασ · δβτ ,

∂2 log det(I − ZZt)

∂zαβ∂w̄j

∣∣∣
z=0

= ∂2 log det(I − ZZt)

∂wi∂z̄στ

∣∣∣
z=0

= ∂2 log det(I − ZZt)

∂wi∂w̄j

∣∣∣
z=0

= 0.

Where Iαβ is q × q matrix, the entry located at the junction of the αth row and βth column is 1, the entry located at
the junction of the βth row and αth column is −1, the other entries are 0. Therefore one has

∂2 log[G(X)det(I − ZZt)−(q−1+N3/K)]
∂zαβ∂z̄στ

∣∣∣
z=0

= 2
1

K
M ′X +

(
q − 1 + N3

K

)
tr(IαβIτσ ),

∂2 log[G(X)det(I − ZZt)−(q−1+N3/K)]
∂zαβ∂w̄j

∣∣∣
z=0

= ∂2 log[G(X)det(I − ZZt)−(q−1+N3/K)]
∂wi∂z̄στ

∣∣∣
z=0

= 0,

∂2 log[G(X)det(I − ZZt)−(q−1+N3/K)]
∂wi∂w̄j

∣∣∣
z=0

= M ′′w̄iwj + M ′δij .

Hence the form (10) is equal to

C det

(
2[ 1

K
M ′X + (q − 1 + N3

K
)]I 0

0 M ′I + M ′′WtW

)
. (12)

Let the W,z come back to W ∗,w∗, respectively, and M,M ′,M ′′ are invariant functions, therefore the above form (12)
is equal to

C det

(
2[ 1

K
M ′X + (q − 1 + N3

K
)]I 0

0 M ′I + M ′′W ∗tW ∗

)
, (13)

which is equal to

C

[
2

K
M ′X + 2

(
q − 1 + N3

K

)] q(q−1)
2

det
[
M ′I + M ′′W ∗tW ∗].

Due to the following fact: for the any vector α, one always has

det[I + ᾱ′α] = 1 + αᾱ′,

the form (13) is equal to

C

[
2

M ′X + 2

(
q − 1 + N3

)] q(q−1)
2

(M ′)N3

[
1 + M ′′

′ W
∗W ∗t

]
.

K K M
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Due to W ∗W ∗t = X, hence the above form is equal to

C

[
2

K
M ′X + 2

(
q − 1 + N3

K

)] q(q−1)
2

(M ′)N3

[
1 + M ′′

M ′ X
]
.

Therefore the left side of the form (8) is equal to the above form, and due to the form (11), then the form (8) is
equivalent to

(N + 1)−N

[
2X

K

dG

dX
+ 2

(
q − 1 + N3

K

)
G

] q(q−1)
2

[
G

dG

dX
+

(
G

d2G

dX2
−

(
dG

dX

)2)
X

](
dG

dX

)N3−1

= GN+2.

Therefore the solution of problem (1) is

g = (N + 1)−1 log
[
G(X)det

(
I − ZZt

)−(q−1+N3/K)]
,

where G = G(X) is the solution of the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(N + 1)−N 2

q(q−1)
2

[
X

K
G′ +

(
q − 1 + N3

K

)
G

] q(q−1)
2 [

GG′ + (
GG′′ − (G′)2)X] (G′)N3−1

GN+1
= G,

G(0) =
(

K

2

)− q(q−1)
2

, lim
X→1

G(X) = ∞.

(14)

Therefore the Dirichlet’s problem (1) of Monge–Ampère equation is reduced to the above problem (14) of an ordi-
nary differential equation. Problem (14) is also called two point boundary value problem of an ordinary differential
equation.

5. The explicit solution of the Dirichlet problem of Monge–Ampère equation

Under the special case, the solution of the problem (14) can be got in explicit formula. Let

G = G(X) = A(1 − X)−(N+1), (15)

put it into the first equation of the form (14), then one can determine the constant A. By calculations, one has

G′ = A(N + 1)(1 − X)−(N+2), G′X = A(N + 1)(1 − X)−(N+2) − A(N + 1)(1 − X)−(N+1),

1

K
G′X = A

K
(N + 1)(1 − X)−(N+2) − A

K
(N + 1)(1 − X)−(N+1).

Let

K = q(q − 1) + 2

2(q − 1)
= q

2
+ 1

q − 1
,

then one has[
1

K
G′X +

(
q − 1 + N3

K

)
G

] q(q−1)
2 =

[
N + 1

K
A(1 − X)−(N+2)

] q(q−1)
2

, (16)

(G′)N3−1

GN+1
= (N + 1)N3−1AN3−2−N(1 − X)(N+1)2−(N+2)(N3−1). (17)

Then by the calculations

GG′ = (N + 1)A2(1 − X)−(2N+3), GG′′ = (N + 1)(N + 2)A2(1 − X)−(2N+4),

(G′)2 = (N + 1)2A2(1 − X)−(2N+4), GG′′ − (G′)2 = (N + 1)A2(1 − X)−(2N+4).

Therefore one has(
GG′′ − (G′)2)X = (N + 1)A2(1 − X)−(2N+4) − (N + 1)A2(1 − X)−(2N+3),

GG′ + (
GG′′ − (G′)2)X = (N + 1)A2(1 − X)−(2N+4). (18)
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Due to the (15)–(18), the form (14) is equal to(
2

K

) q(q−1)
2

(1 − X)−(N+1) =
(

4(q − 1)

q2 − q + 2

) q(q−1)
2

(1 − X)−(N+1) = A(1 − X)−(N+1).

Therefore

A =
(

4(q − 1)

q2 − q + 2

) q(q−1)
2

.

At that time the G(X) satisfies the first boundary condition, and

lim
X→1

G(X) = lim
X→1

[(
4(q − 1)

q2 − q + 2

) q(q−1)
2

(1 − X)−(N+1)

]
= ∞.

Therefore

G = G(X) =
(

4(q − 1)

q2 − q + 2

) q(q−1)
2

(1 − X)−(N+1) (19)

is the solution of the problem (14). Due to the (19) and K = q(q−1)+2
2(q−1)

, the form (7) is equal to

g = log

[
(1 − X)−1 det

(
I − ZZt

)−1/K
(

2

K

) q(q−1)
2(N+1)

]
, (20)

which is equivalent to

g = log

[
(1 − X)−1 det

(
I − ZZt

)− 2(q−1)

q2−q+2

(
4(q − 1)

q2 − q + 2

) q(q−1)
2(N+1)

]
. (20′)

Therefore the above g is the solution of the problem (1). In fact, one can prove that the g of form (7)

g = (N + 1)−1 log
[
G(X)det

(
I − ZZt

)−(q−1+N3/K)]
is the solution of problem (1), if G(X) is the solution of problem (14).

Firstly it is obvious that the g satisfies the complex Monge–Ampère equation of (1). Secondly g is also satisfying
the boundary condition of (1) due to the following way:

If the point (Z̃, W̃ ) ∈ ∂YIII , and W̃ �= 0, when (Z,W) ∈ YIII, and (Z,W) → (Z̃, W̃ ), one has X → 1−, so
G(X) → +∞, and det(I − ZZt) → |W̃ |2K > 0. Therefore g → +∞, (Z,W) → ∂YIII .

If (Z̃, W̃ ) ∈ ∂YIII , and W̃ = 0, when (Z,W) ∈ YIII, and (Z,w) → (Z̃,0), one has G(X) → (K
2 )−

q(q−1)
2 ,

det(I − ZZt) → 0, that is g → +∞, (Z,W) → ∂YIII . Therefore the g of (7) is the solution of the problem (1).

Up to now the following theorem is proved.

Theorem. If G(X) is the solution of the problem (14), then

g = (N + 1)−1 log
[
G(X)det

(
I − ZZt

)−(q−1+N3/K)]
is the solution of the problem (1); if K = q(q−1)+2

2(q−1)
= q

2 + 1
q−1 , then

G(X) =
(

4(q − 1)

q2 − q + 2

) q(q−1)
2

(1 − X)−(N+1)

satisfies the problem (14) and accordingly



302 W. Yin, X. Yin / J. Math. Anal. Appl. 339 (2008) 295–302
g = (N + 1)−1 log

[(
4(q − 1)

q2 − q + 2

) q(q−1)
2

(1 − X)−(N+1) det
(
I − ZZt

)−(q−1+N3/K)
]

= log

[
(1 − X)−1 det

(
I − ZZt

)− 2(q−1)

q2−q+2

(
4(q − 1)

q2 − q + 2

) q(q−1)
2(N+1)

]
is the solution of the problem (1).

If N3 = 1, then the solution of the problem (1) is discussed in [5]. In present paper the N3 is in general case, and
the ordinary differential equation is different from that in [5].

Remark. In problem (14) the condition limX→1 G(X) = ∞ is the nodus for the numerical method. One can use the
following way to overcome this nodus.

Due to the form (8), G(X) has to be positive, therefore

F(X) = 1

G(X)

is determinate. And the problem (14) becomes the following problem:⎧⎪⎪⎨⎪⎪⎩
C

[−XF ′ + (
K(q − 1) + N3

)
F

] q(q−1)
2

[−FF ′ − FF ′′X + (F ′)2X
]
(−F ′)N3−1 = FN,

F (0) =
(

K

2

) q(q−1)
2

, lim
X→1

F(X) = 0,

(21)

where C = (N + 1)−N( 2
K

)
q(q−1)

2 . Then one can use the numerical method to solve the problem (21).

The title of present paper is “A research into the numerical method of Dirichlet’s problem of complex Monge–
Ampère equation on Cartan–Hartogs domain of the third type,” but up to now the numerical method has not appeared.
In present paper the numerical method of the solution of Dirichlet’s problem (1) of Monge–Ampère equation is
reduced to the numerical method of the problem (14) of the ordinary differential equation. The problem (14) is also
called two point boundary value problem of an ODE. How to get the numerical solution of problem (14)? One can
see the following book: Herbert B. Keller, Numerical Solution of Two Point Boundary Value Problems, Society for
Industrial and Applied Mathematics, Philadelphia, 1976.

The numerical method provided in the above book can be used to solve the problem (14) or (21).
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