
J. Math. Anal. Appl. 345 (2008) 258–275
Contents lists available at ScienceDirect

J. Math. Anal. Appl.

www.elsevier.com/locate/jmaa

Boundary-value problem for density–velocity model of collective motion
of organisms

Petro Babak ∗

Department of Mathematical and Statistical Sciences, University of Alberta, Alberta T6G 2G1, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 December 2007
Available online 18 April 2008
Submitted by M. Iannelli

Keywords:
Collective organization
Burgers equation
Conservation equation
Existence
Uniqueness
Regularity
Positivity
Attractors

The collective motion of organisms is observed at almost all levels of biological systems. In
this paper the density–velocity model of the collective motion of organisms is analyzed.
This model consists of a system of nonlinear parabolic equations, a forced Burgers
equation for velocity and a mass conservation equation for density. These equations are
supplemented with the Neumann boundary conditions for the density and the Dirichlet
boundary conditions for the velocity. The existence, uniqueness and regularity of solution
for the density–velocity problem is proved in a bounded 1D domain. Moreover, a priori
estimates for the solutions are established, and existence of an attractor is proved. Finally,
some numerical approximations for asymptotical behavior of the density–velocity model
are presented.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The collective motion is a common phenomenon inherent to a variety of biological species at different spatial scales,
from microscopic bacterial colonies [7,14], phytoplankton aggregations [2], insect swarms [6,15,17,23], to macroscopic fish
schools [1,3,5,17,18,22,27], bird flocks [17], and others. The mutual separation distance and the alignment between the
neighbors in a group of organisms are the main factors in their collective motion [16,18,22]. The analysis of these factors
can be performed at different spatial scales using “Individual-based” and “Population-based” models [7]. Individual-based
models [5,11,16,26] provide a useful tool for studying relatively small groups, but become impractical when the number
of individuals approaches the sizes of real biological groups. On the other hand, population-based models [1–4,6,12–15,
23–25] are particularly useful when the number of individuals is large. They can be regarded as the continuum limit of
individual-based models.

In population-based models a spatially distributed population is often described by the conservation mass equation in
the following form [17]

ρt + div(ρu) = μ�ρ, (1.1)

where ρ = ρ(t, x) is the density of particles at time t and position x, and u = u(t, x) is the average velocity. Assuming a
Newtonian law for the motion of individuals and using a Lagrangian framework, the equation for velocity becomes forced
Burgers equation [3]

du

dt
= ut + (u · ∇)u = ν�u + F (1.2)
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Fig. 1. Examples for the function P ′(ρ).

with the force F composed of the internal force, −P ′(ρ)∇ρ , representing the interaction between particles or fish and the
external force, f , incorporating environmental effects, such as temperature gradient, chemical gradient, as well as food and
predator densities

F = −P ′(ρ)∇ρ + f . (1.3)

The central idea in the modelling of group formations in the collective motion of organisms is to model the internal force as
a “pressure” resulting from the behavior of individuals trying to achieve and maintain a prescribed level of density. In such
case the internal force −P ′(ρ)∇ρ acts in the direction of the density gradient ∇ρ or in the opposite direction depending
on the local density. When the density of organisms is larger than some prescribed density, the distance between nearest
neighbors is too small, and the organisms tend to repulse from each other. In this case the internal force acts in the direction
opposite to the density gradient. On the other hand, when the density of organisms is smaller than the prescribed density,
then the organisms attract to each other, and the direction of the internal force is the same as the gradient of the density
[3,22,25]. This behavior of the system of organisms defines the intervals of positivity and negativity for the function P ′(ρ)

as shown in Fig. 1, see also [3]. Clearly, this function is positive for very large densities and negative for the density levels
smaller than the prescribed density. Fig. 1 shows that the prescribed density may be equal to either one density value ρ∗ ,
or to any density value from the interval [ρ∗

1 ,ρ∗
2 ]. When the density of organisms is very low, the distance between nearest

neighbors is too high to sense each other, so in this case the function P ′(ρ) takes on the values that are either very small,
or zero.

The first steps in theoretical analysis of the one-dimensional density–velocity model governed by Eqs. (1.1)–(1.3) were
undertaken in [3]. In particular, it was shown the existence of global attractor, and demonstrated via numerical simulations
that the shape of the density function asymptotically converges to density patterns that correspond well to observed shapes
of groups of organisms such as fish, birds and insects.

In this paper theoretical study of velocity–density model (1.1)–(1.3) for collective motion of organisms is continued. The
following initial–boundary value problem for this density–velocity model in 1D is considered:⎧⎨

⎩
ρt + (ρu)x = μρxx, ut + u · ux + (

P (ρ)
)

x = νuxx + f , (t, x) ∈ G T = (0, T ] × Ω,

ρx(t,0) = ρx(t, L) = 0, u(t,0) = u(t, L) = 0, t ∈ (0, T ],
ρ(0, x) = ρ0(x), u(0, x) = u0(x), x ∈ Ω̄.

(1.4)

Here Ω = (0, L), L > 0, the unknowns ρ = ρ(t, x) and u = u(t, x) are functions of the time t ∈ [0, T ] and position x ∈ Ω̄ , ν
and μ are positive constants, and functions P and f are given and defined on [0,+∞) and G T , respectively.

The results of this study are organized into the following sections. In Section 2, some preliminary results and definitions
are presented for Problem (1.4). In particular, Hilbert spaces H and V are introduced, and the variational formulation of
the boundary-value problem for the density–velocity system of collective motion of organisms is presented. The uniqueness
theorem is proven in Section 3. Using a priori estimates for Problem (1.4) proven in Section 4, the existence theorem is
proved in Section 5 by applying the Faedo–Galerkin method. In Section 6 the regularity of solutions for Problem (1.4) are
proved.e Further estimates of solutions and nonnegativity of density are established in Section 7. Finally, in Section 8 the
theorem about attractors is proved and some numerical approximations for attractors are presented.

2. Variational formulation of the problem

The goal of this section is the variational formulation of Problem (1.4). To this aim we will introduce the functional
spaces to study this problem in Section 1.1, examine the nonlinear forms generated by the problem in Section 1.2, which
will finally lead to the variational formulation of the problem in Section 1.3.

2.1. Functional spaces and notations

We use L p(Ω) to denote the scalar L p space on Ω = (0, L) ⊂ R1, 0 < L < +∞, 1 � p � ∞, supplemented with the norm
‖ · ‖p . By ‖ · ‖ and (·,·) we denote the standard norm and scalar product in the space L2(Ω).
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Let V1 = C∞(Ω), V2 = C∞
0 (Ω) and V = V1 × V2 be the spaces (without topology). We consider the spaces H = H1 ×

H2 and V = V 1 × V 2, where H1 = H2 = L2(Ω), V 1 = H1(Ω) and V 2 = H1
0(Ω). The space H is endowed with the norm

‖ · ‖H = (‖ · ‖2
H1

+ θ‖ · ‖2
H2

)1/2, and with the scalar product (·,·)H = (·,·)H1 + θ(·,·)H2 , where θ > 0, ‖ · ‖Hi = ‖ · ‖ and

(·,·)Hi = (·,·), i = 1,2. The space V is endowed with the norm ‖ · ‖V = (‖ · ‖2
V 1

+ θ‖ · ‖2
V 2

)1/2, and with the scalar product
(·,·)V = (·,·)V 1 + θ(·,·)V 2 , where ‖ · ‖V i = ‖ · ‖H1(Ω) , and (·,·)V i = (·,·)H1(Ω) , i = 1,2.

Note that the space V is compactly imbedded into the space H . Moreover, the spaces H1, H2, H and V 1, V 2 and V are
the closures of V1, V2, V with respect to the corresponding norms.

2.2. Analysis of the nonlinear forms

In this section, the nonlinear forms appearing in the Problem (1.4) will be introduced and examined, that is, two bilinear
forms a1 and a2, two trilinear forms b and d, and nonlinear form c. The properties of nonlinear forms will be used in the
subsequent sections for the variational formulation of the problem, uniqueness and existence theorems. Here we denote by
c1, c2, . . . the constants that independent of the functions u, v , w , ρ and φ.

2.2.1. Bilinear forms a1 and a2
Let us define two bilinear forms ai : Vi × Vi → R, i = 1,2, as

ai(v, w) = (∂x v, ∂x w), v, w ∈ Vi . (2.1)

The forms a1 and a2 are bilinear and continuous on V 1 × V 1 and V 2 × V 2, respectively [9,19]. Moreover, the form a2 is V 2-
coercive, and the form a1 is V 1-coercive with respect to H1, see [9]. Note that for each fixed v ∈ V i the map w 
→ ai(v, w)

is a linear functional on V i , i = 1,2. It follows that we can define two linear operators A1 : V 1 → V ′
1 and A2 : V 2 → V ′

2,
such that

〈Ai v, w〉V i = ai(v, w), v ∈ V i, ∀w ∈ V i, i = 1,2. (2.2)

Since the bilinear forms a1 and a2 are also defined and continuous on H2(Ω) × L2(Ω), the operators A1 and A2 are linear
and continuous if they are defined from H2(Ω) to L2(Ω). Furthermore, the following lemma is true

Lemma 2.1.

(i) If u ∈ L2(0, T ; V i), then Aiu ∈ L2(0, T ; V ′
i ), i = 1,2.

(ii) If v ∈ L2(0, T ; H2(Ω)), then Ai v ∈ L2(0, T ; L2(Ω)), i = 1,2.

2.2.2. Trilinear forms b and d
Dealing with the nonlinear terms in Problem (1.4) in a similar way to (2.1), we define two trilinear forms b : V2 × V2 ×

V2 → R and d : V1 × V2 × V1 → R as follows

b(u, v, w) =
L∫

0

u(∂x v)w dx, (2.3)

d(ρ, u, φ) =
L∫

0

∂x(ρu)φ dx. (2.4)

Let u, v and w belong to V 2, then u, w ∈ L4(Ω), ∂x v ∈ L2(Ω), and by Hölder inequality u(∂x v)w ∈ L1(Ω). Therefore, the
form b is defined on V 2 × V 2 × V 2. Similarly, we can show that the form d is defined on V 1 × V 2 × V 1. The continuity of
the trilinear forms b and d in these spaces follows from the inequalities

∣∣b(u, v, w)
∣∣ � ‖u‖∞‖∂x v‖‖w‖ �

√
c A‖u‖1/2‖∂xu‖1/2‖∂x v‖‖w‖, (2.5)∣∣d(ρ, u, φ)

∣∣ � ‖∂xu‖‖ρφ‖ + ‖∂xρ‖‖uφ‖ � ‖φ‖(‖∂xu‖‖ρ‖∞ + ‖∂xρ‖‖u‖∞
)

�
√

c A‖φ‖(‖∂xu‖‖∂xρ‖1/2‖ρ‖1/2 + ‖∂xρ‖‖∂xu‖1/2‖u‖1/2), (2.6)

where c A is the constant from the Agmon inequality: ‖v‖2∞ � c A‖v‖‖∂x v‖. Using integration by parts in the form b, we can
easily show that

b(u, u, v) = b(v, u, u) = −1

2
b(u, v, u), ∀u, v ∈ V 2, (2.7)

therefore, from (2.5) and (2.7) we infer that
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b(u, u, u) = 0, ∀u ∈ V 2, (2.8)

∣∣b(u, u, v)
∣∣ �

√
c A

2
‖u‖3/2‖∂xu‖1/2‖∂x v‖, ∀u, v ∈ V 2. (2.9)

Also, using integration by parts and the Agmon inequality we get

∣∣d(ρ, u, φ)
∣∣ � ‖ρu‖‖∂xφ‖ �

{√
c A‖ρ‖1/2‖∂xρ‖1/2‖u‖‖∂xφ‖,√
c A‖u‖1/2‖∂xu‖1/2‖ρ‖‖∂xφ‖, (2.10)

d(ρ, u,ρ) = 1

2

L∫
0

ρ2∂xu dx, ∀ρ ∈ V 1, u ∈ V 2. (2.11)

Let us denote by B(u, v) the linear continuous form on V 2 and by D(ρ, u) the linear continuous form on V 1 defined by

〈
B(u, v), w

〉
V 2

= b(u, v, w), u, v ∈ V 2, ∀w ∈ V 2, (2.12)〈
D(ρ, u),φ

〉
V 1

= d(ρ, u, φ), (ρ, u) ∈ V , ∀φ ∈ V 1. (2.13)

For u = v , we write

B(u) = B(u, u), u ∈ V 2. (2.14)

Finally, using inequalities (2.5), (2.6), (2.9) and (2.10), we can prove the following, see also [20].

Lemma 2.2.

(i) If u ∈ L2(0, T ; V 2), then B(u) ∈ L1(0, T ; V ′
2).

(ii) If u ∈ L2(0, T ; V 2) ∩ L∞(0, T , H2), then B(u) ∈ L4(0, T ; V ′
2).

(iii) If u ∈ L∞(0, T ; V 2), then B(u) ∈ L2(0, T ; H2).
(iv) If (ρ, u) ∈ L2(0, T ; V ), then D(ρ, u) ∈ L1(0, T ; V ′

1).
(v) If (ρ, u) ∈ L2(0, T ; V ) ∩ L∞(0, T , H), then D(ρ, u) ∈ L4(0, T ; V ′

1).
(vi) If (ρ, u) ∈ L∞(0, T ; V ), then D(ρ, u) ∈ L2(0, T ; H1).

Proof. If u ∈ L2(0, T ; V 2), then for almost all t , B(u(t)) is an element of V ′
2 and the function t ∈ [0, T ] → B(u(t)) ∈ V ′

2 is

a measurable. Then from (2.9) we get (i) and (ii) by showing that the integrals
∫ T

0 ‖B(u(t))‖V ′
2

dt and
∫ T

0 ‖B(u(t))‖4
V ′

2
dt are

finite.
If u ∈ L∞(0, T ; V 2), then for almost all t , B(u(t)) is an element of H ′

2 and the function t ∈ [0, T ] → B(u(t)) ∈ H ′
2 ≡ H2 is

a measurable. From (2.5) we obtain that the integral
∫ T

0 ‖B(u(t))‖2 dt is finite, which implies (iii).
Similarly, if (ρ, u) ∈ L2(0, T ; V ) then for almost all t , D(ρ(t), u(t)) is an element of V ′

1. The function t ∈ [0, T ] →
D(ρ(t), u(t)) ∈ V ′

1 is a measurable. From (2.10) we get (iv) and (v) by showing that the integrals
∫ T

0 ‖D(ρ(t), u(t))‖V ′
1

dt

and
∫ T

0 ‖D(ρ(t), u(t))‖4
V ′

1
dt are finite.

If (ρ, u) ∈ L∞(0, T ; V ), then for almost all t , D(ρ(t), u(t)) is an element of H ′
1, and the function t ∈ [0, T ] →

D(ρ(t), u(t)) ∈ H ′
1 ≡ H1 is a measurable. From (2.6) we obtain that the integral

∫ T
0 ‖D(ρ(t), u(t))‖2 dt is finite, and, there-

fore, (vi) holds. �
2.2.3. Nonlinear form e

For each ρ from V1 and w from V2 we can define the nonlinear form

e(ρ, w) = −
L∫

0

P (ρ) · ∂x w dx. (2.15)

Let us state the following assumptions for the function P (ρ):

(P0
1 )

∣∣P (ρ)
∣∣ � p1

(|ρ|m + 1
)
, m � 0.

(P0
2 )

∣∣P (ρ) − P (φ)
∣∣ � p2

(|ρ|l + |φ|l + 1
)|ρ − φ|, l � 0.

(P0) ∃P ′(ρ) such that
∣∣P ′(ρ)

∣∣ � p3
(|ρ|k + 1

)
, k � 0.
3
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Clearly, Hypothesis (P0
1 ) follows from Hypothesis (P0

2 ) with l � m − 1, and Hypothesis (P0
2 ) follows from Hypothesis (P0

3 )

with k � l.
If Hypothesis (P0

1 ) holds, then using the Hölder and Agmon inequalities, we get∣∣e(ρ, w)
∣∣ � ‖∂x w‖∥∥P (ρ)

∥∥ � c1‖∂x w‖(‖ρ‖m1‖∂xρ‖m2 + 1
)

(2.16)

with m1 = max{1, (m + 1)/2}, m2 = max{0, (m − 1)/2}. Therefore, since the form e is linear with respect to the second
argument, inequality (2.16) ensures the continuity of e in the second argument on V 2. Moreover, if Hypothesis (P0

2 ) holds,
then the continuity of e in the first argument on V 1 follows from inequalities∣∣e(ρ, w) − e(φ, w)

∣∣ � ‖∂x w‖∥∥P (ρ) − P (φ)
∥∥

� c2‖∂x w‖∥∥∂x(ρ − φ)
∥∥1/2‖ρ − φ‖1/2(‖ρ‖l1‖∂xρ‖l2 + ‖φ‖l1‖∂xφ‖l2 + 1

)
(2.17)

with l1 = max{1, (l + 1)/2}, l2 = max{0, (l − 1)/2}.
If Hypothesis (P0

3 ) is satisfied then for all ρ ∈ V 1 and w ∈ V 2, using integration by parts, we get

e(ρ, w) =
L∫

0

P ′(ρ)∂xρ · w dx, (2.18)

∣∣e(ρ, w)
∣∣ � ‖w‖‖∂xρ‖∥∥P ′(ρ)

∥∥∞ � c3‖w‖‖∂xρ‖(‖∂xρ‖ k
2 ‖ρ‖ k

2 + 1
)
. (2.19)

Denote by E(ρ) the linear continuous form on V 2 for ρ ∈ V 1 defined by〈
E(ρ), w

〉
V 2

= e(ρ, w), ρ ∈ V 1, ∀w ∈ V 2,

then the following results hold.

Lemma 2.3.

(i) Let Hypothesis (P0
1 ) hold with 0 � m � 2. If ρ ∈ L2(0, T ; V 1), then E(ρ) ∈ L1(0, T ; V ′

2).
(ii) Let Hypothesis (P0

1 ) hold with 0 � m � 3. If ρ ∈ L2(0, T ; V 1) ∩ L∞(0, T , H1), then E(ρ) ∈ L2(0, T ; V ′
2).

(iii) Let Hypothesis (P0
3 ) hold. If ρ ∈ L∞(0, T ; V 1), then E(ρ) ∈ L2(0, T ; H2).

Proof. If ρ belongs to L2(0, T ; V 1), then for almost all t , E(ρ(t)) is an element of V ′
2 and the function t ∈ [0, T ] → E(ρ(t)) ∈

V ′
2 is a measurable. Statement (i) of the lemma follows from inequality (2.16), in view of

T∫
0

∥∥E
(
ρ(t)

)∥∥
V ′

2
dt �

T∫
0

c1
(∥∥ρ(t)

∥∥2
V 1

+ 1
)

dt < +∞, 1 � m � 2.

A similar argument using inequality (2.16) gives (ii) for 1 � m � 3.
If ρ ∈ L∞(0, T ; V 1), then for almost all t , E(ρ(t)) is an element of H ′

2 and the function t ∈ [0, T ] → E(ρ(t)) ∈ H ′
2 ≡ H2 is

a measurable. Then from inequality (2.19), we get (iii) for k � 1. �
2.3. Variational formulation of the problem

Let us give the weak formulation of Problem (1.4). Clearly, if (ρ, u) is a classical solution of Problem (1.4), say ρ, u ∈
C1,2

t,x (Ḡ T ), and (φ, w) denotes any element of V , then(
∂ρ

∂t
, φ

)
H1

= −μ · a1(ρ,φ) − d(ρ, u, φ),

(
∂u

∂t
, w

)
H2

= −ν · a2(u, w) − b(u, u, w) − e(ρ, w) + ( f , w)H2 .

By continuity argument, these equalities hold also for each φ ∈ V 1 and w ∈ V 2. We can identify Hi and H ′
i , then the

following injections hold

V i ⊂ Hi ≡ H ′
i ⊂ V ′

i , i = 1,2,

where each space is dense in the following one and the injections are continuous. Consequently, the scalar product in Hi of
v ∈ Hi and ψ ∈ V i is the same as the scalar product of v and ψ in the duality between V ′

i and V i , i = 1,2 [20]. Therefore,
for each v ∈ Hi and ψ ∈ V i

(v,ψ)Hi = 〈v,ψ〉V i ,

(
∂v

∂t
,ψ

)
= d

dt
(v,ψ)Hi = d

dt
〈v,ψ〉V i .
Hi
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This suggests the following weak formulation of Problem (1.4): For given f ∈ L2(0, T ; V ′
2) and (ρ0, u0) ∈ H, to find (ρ, u),

satisfying

(ρ, u) ∈ L2(0, T ; V ) ∩ L∞(0, T ; H),

and {
ρ ′ + μA1ρ + D(ρ, u) = 0, u′ + ν A2u + B(u) + E(ρ) = f , t ∈ (0, T );
ρ(0) = ρ0, u(0) = u0.

(2.20)

Let Hypothesis (P0
1 ) hold with 0 � m � 3. Then using Lemmas 2.1(i), 2.2(ii), (v) and 2.3(ii) we obtain from (2.20) that

ρ ′ ∈ L2(0, T ; V ′
1) and u′ ∈ L2(0, T ; V ′

2). Therefore, (ρ, u) is almost everywhere equal to continuous vector function from
[0, T ] into H [20], see also [10], and the initial conditions in the weak formulation of the problem make sense.

Note also that the mass conservation can be obtained by choosing the test function φ = 1 in the weak formulation of
the problem, specifically,

L∫
0

ρ(t, x)dx =
L∫

0

ρ0(x)dx = ρ̄, a.e. (2.21)

To analyze Problem (1.4) we will need the following hypotheses for P :

(P1) lim
ρ→+∞

P (ρ)

ρ2
= P∞ > 0 and

∣∣P (ρ) − ρ2 P∞
∣∣ � P1|ρ| + P0,

(P2)
∣∣P ′(ρ)

∣∣ � P3ρ
2 + P2.

3. Uniqueness

In this section we shall prove the following uniqueness result for Problem (1.4).

Theorem 3.1 (Uniqueness). Assume that Hypothesis (P0
2 ) holds with 0 � l � 3. Then Problem (1.4) has at most one solution.

Proof. Let us assume that (ρ1, u1) and (ρ2, u2) be two solutions of Problem (1.4), and let ρ = ρ2 − ρ1 and u = u2 − u1.
Then (ρ, u) satisfies the problem:

ρ ′ + μ · A1ρ = −D(ρ2, u2) + D(ρ1, u1), u′ + ν · A2u = −B(u2) + B(u1) − E(ρ2) + E(ρ1), t ∈ (0, T );
ρ(0) = 0, u(0) = 0.

We take a.e. in t the scalar product of these equations and (ρ, u) in the duality between V and V ′ , then we get

d

dt

(∥∥ρ(t)
∥∥2 + ∥∥u(t)

∥∥2) + 2μ
∥∥∂xρ(t)

∥∥2 + 2ν
∥∥∂xu(t)

∥∥2

= 2
(
e(ρ1, u) − e(ρ2, u) + b(u1, u1, u) − b(u2, u2, u) + d(ρ1, u1,ρ) − d(ρ2, u2,ρ)

)
.

From inequality (2.17) we obtain

2
∣∣e(ρ2, u) − e(ρ1, u)

∣∣ � ν‖∂xu‖2 + μ‖∂xρ‖2 + +c‖ρ‖4(‖ρ2‖6
H1

‖ρ2‖2
V 1

+ ‖ρ1‖6
H1

‖ρ1‖2
V 1

+ 1
)
.

Using trilinear property and equality (2.7), we get

b(u1, u1, u) − b(u2, u2, u) = b(2u1 − u2, u, u),

then from inequality (2.5)

2
∣∣b(2u1 − u2, u, u)

∣∣ � ν‖∂xu‖2 + c4

ν
‖u‖2(‖u1‖2

V 2
+ ‖u2‖2

V 2

)
.

It is clear from linearity, that

2d(ρ1, u1,ρ) − 2d(ρ2, u2,ρ) = −2d(ρ, u1,ρ) − 2d(ρ2, u,ρ),

then, in view of (2.10), we get

2
∣∣d(ρ, u1,ρ)

∣∣ + 2
∣∣d(ρ2, u,ρ)

∣∣ � μ‖∂xρ‖2 + 2c A

μ
‖ρ‖2 ‖u1‖2

V 2
+ 2c A

μ
‖u‖2 ‖ρ2‖2

V 1
.
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Hence,

d

dt

(‖ρ‖2 + ‖u‖2) � c5 S(t)
(‖ρ‖2 + ‖u‖2),

where the function

t → S(t) = (
1 + ‖ρ1‖8

H1
+ ‖ρ2‖8

H1

)(
1 + ‖ρ1‖2

V 1
+ ‖u1‖2

V 2
+ ‖ρ2‖2

V 1
+ ‖u2‖2

V 2

)
is integrable for (ρi, ui) ∈ L2(0, T ; V ) ∩ L∞(0, T ; H), i = 1,2. This shows, that

d

dt

{(∥∥ρ(t)
∥∥2 + ∥∥u(t)

∥∥2)
exp

(
−c5

t∫
0

S(τ )dτ

)}
� 0.

Integrating and applying the homogeneous initial conditions, we find∥∥ρ(t)
∥∥2 + ∥∥u(t)

∥∥2 � 0, ∀t ∈ [0, T ].
Therefore, ρ1 = ρ2 and u1 = u2. �

Note that if Hypothesis (P2) is satisfied then Hypothesis (P0
2 ) of the lemma is true for l = 2, therefore, the uniqueness

theorem can be reformulated by replacing Hypothesis (P0
2 ) by Hypothesis (P2).

4. A priori estimates

In this section we will prove some estimates for the solution of Problem (1.4). These estimates will be used to show the
existence and asymptotic behavior of solutions.

Theorem 4.1. Let (ρ, u) be a solution of Problem (1.4). If Hypothesis (P1) holds, then for (ρ0, u0) ∈ H and f ∈ L2(0, T ; V ′
2) with

0 < T < ∞,

∥∥ρ(t)
∥∥2 + θ

∥∥u(t)
∥∥2 � C1, ∀t ∈ [0, T ], (4.1)

T∫
0

∥∥∂xρ(s)
∥∥2 + θ

∥∥∂xu(s)
∥∥2

ds � C2, (4.2)

where θ = 1/(2P∞), C1 and C2 depend on L, T , ν , μ, P∞ , P0 , P1 , ‖u0‖, ‖ρ0‖, ‖ f ‖L2(0,T ;V ′
1) .

Furthermore, if the product of positive coefficients μ and ν is large enough and f ∈ L∞(0,+∞; V ′
2), then there exist such positive

numbers K1 , K2 and k that

∥∥ρ(t)
∥∥2

H1
+ θ

∥∥u(t)
∥∥2

H1
� K1

(
1 − e−kt) + (‖ρ0‖2

H1
+ θ‖u0‖2

H1

)
e−kt, (4.3)

t+1∫
t

∥∥∂xρ(s)
∥∥2 + θ

∥∥∂xu(s)
∥∥2

ds � K2
(
1 + (‖ρ0‖2

H1
+ θ‖u0‖2

H1

)
e−kt). (4.4)

Proof. Let us choose the functions ρ(t) and u(t) as the test functions in Problem (2.20). Then summing the first equation
of Problem (2.20) with the second equation multiplied by θ > 0, and applying the equalities (2.1), (2.8), (2.11), and

2
〈
ρ ′(t),ρ(t)

〉
V 1

= d

dt

∥∥ρ(t)
∥∥2

, 2
〈
u′(t), u(t)

〉
V 2

= d

dt

∥∥u(t)
∥∥2

,

see [20, p. 260], we get

d

dt

(∥∥ρ(t)
∥∥2 + θ

∥∥u(t)
∥∥2) + 2μ

∥∥∂xρ(t)
∥∥2 + 2θν

∥∥∂xu(t)
∥∥2 =

L∫
0

(
2θ P (ρ) − ρ2)∂xu dx + 2θ

〈
f (t), u(t)

〉
V 2

. (4.5)

In view of Hypothesis P1 and the Poincaré inequalities

‖ρ‖2 � c P
1 ‖∂xρ‖2 + 1

ρ̄2, ‖u‖2 � c P
0 ‖∂xu‖2, ∀ρ ∈ V 1, ∀u ∈ V 2,
L
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we obtain for θ = 1/(2P∞):

2

L∫
0

(
P (ρ) − P∞ρ2)∂xu dx � 2

L∫
0

(
P1|ρ| + P0

)|∂xu|dx � (τ1 + τ2)‖∂xu‖2 + P 2
1

τ1
‖ρ‖2 + P 2

0 L

τ2
,

2
∣∣〈 f , u〉V 2

∣∣ � 2‖u‖V 2‖ f ‖V ′
2
� 2

(‖u‖ + ‖∂xu‖)‖ f ‖V ′
2
� τ3‖∂xu‖2 + 2

cP
0 + 1

τ3
‖ f ‖2

V ′
2
.

Then from (4.5):

d

dt

(∥∥ρ(t)
∥∥2 + θ

∥∥u(t)
∥∥2) + 2μ

∥∥∂xρ(t)
∥∥2 − θ P 2

1

τ1

∥∥ρ(t)
∥∥2

(2ν − τ1 − τ2 − τ3)θ
∥∥∂xu(t)

∥∥2

�
2θ(c P

0 + 1)

τ3

∥∥ f (t)
∥∥2

V ′
2
+ θ P 2

0 L

τ2
= F . (4.6)

Therefore, inequalities (4.1) and (4.2) can be easily deduced.
Using the Poincaré inequality for ‖∂xρ‖2 and ‖∂xu‖2 in (4.6), we obtain

d

dt

(∥∥ρ(t)
∥∥2 + θ

∥∥u(t)
∥∥2) + k

(∥∥ρ(t)
∥∥2 + θ

∥∥u(t)
∥∥2) � F + 2μ

c P
1

ρ̄2,

where k = min{(2μτ1 − θ P 2
1c P

1 )/(τ1c P
1 ), (2ν − τ1 − τ2 − τ3)/c P

0 }. Assuming that μν > c P
1 P 2

1/(8P∞), we infer that there exist
positive constants τ1, τ2 and τ3 such that k > 0. Applying the Gronwall lemma, we obtain

∥∥ρ(t)
∥∥2 +θ

∥∥u(t)
∥∥2 �

(‖ρ0‖2 + θ‖u0‖2)e−kt + K1
(
1 − e−kt),

where

K1 = 1

k

(
c P

0 + 1

P∞τ3
‖ f ‖2

L∞(0,∞;V ′
2)

+ 2μ

c P
1

ρ̄2 + P 2
0 L

2P∞τ2

)
.

Finally, inequality (4.4) can be shown by integrating of inequality (4.6) from t to t + 1, and applying inequality (4.3). The
constant K2 depends on the same arguments as K1. �

Let us consider the Hilbert spaces X0, X and X1 with

X0 ⊂ X ⊂ X1,

where the injection of X0 into X is compact. Denote by v̂ the Fourier transform of the function v from R into X1,

v̂(τ ) = 1√
2π

+∞∫
−∞

e−iτ ·t v(t)dt,

Then the derivative in t of order γ of v is the inverse Fourier transform of (−iτ )γ v̂

(̂Dγ
t v

)
(τ ) = (−iτ )γ · v̂(τ ).

For given γ > 0, we define the Hilbert space

Hγ (R; X0, X1) = {
v ∈ L2(R; X0), Dγ

t v ∈ L2(R; X1)
}
,

supplemented with the norm

‖v‖Hγ (R;X0,X1) = (‖v‖2
L2(R;X0)

+ ∥∥|τ |γ v̂
∥∥2

L2(R;X1)

)1/2
.

Associate with any set K ⊂ R, the subspace Hγ
K of Hγ defined as the set of functions u in Hγ with support contained

in K :

Hγ
K (R; X0, X1) = {

u ∈Hγ (R; X0, X1), support u ⊂ K
}
.

The following compactness theorem was proved in [20].

Proposition 4.2. (See [20, p. 274].) For any bounded set K and any γ > 0, the injection of Hγ
(R; X0, X1) into L2(R; X) is compact.
K
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Clearly, choosing X0 = V i , X = X1 = Hi , i = 1,2, we obtain that for any γ > 0, the injection of Hγ
[0,T ](R; V i, Hi) into

L2(R; Hi) is compact.
Let ṽ denote the function from R into V i , i = 1,2, which is equal to v on [0, T ] and 0 on the complement of this

interval, and let v̂ denote the Fourier transform of ṽ . Then the following statement is valid.

Theorem 4.3. Let (ρ, u) be a solution of Problem (1.4) with (ρ0, u0) ∈ H, f ∈ L2(0, T ; V ′
2). If Hypothesis (P1) holds, then for each γ :

(0 < γ < 1/4) there exists a positive number C such that∥∥ρ̃(t)
∥∥2
Hγ (R;V 1,H1)

+ θ
∥∥ũ(t)

∥∥2
Hγ (R;V 2,H2)

� C3,

where θ = 1/(2P∞), and C3 depends on γ , L, T , ν , μ, P0 , P1 , P∞ , ρ̄ , ‖ρ0‖, ‖u0‖ and ‖ f ‖L2(0,T ;V ′
2) .

Proof. Let us rewrite Problem (1.4) as follows(
d

dt
ρ̃(t),φ

)
= 〈g̃, φ〉V 1 + (ρ0, φ)δ0 − (

ρ(T ),φ
)
δT , ∀φ ∈ V 1,(

d

dt
ũ(t), w

)
= 〈 f̃ , w〉V 2 + (u0, w)δ0 − (

u(T ), w
)
δT , ∀w ∈ V 2,

where δ0 and δT are Dirac distributions at t = 0 and t = T , and

g̃ = −μA1ρ − D(ρ, u), f̃ = f − ν A2u − B(u) − E(ρ)

on [0, T ] and 0 outside this interval. By applying the Fourier transform we get

−iτ
(
ρ̂(τ ),Φ

) = 〈ĝ,Φ〉V 1 + 1√
2π

(ρ0,Φ) − 1√
2π

(
ρ(T ),Φ

)
e−iτ T , ∀Φ ∈ V 1,

−iτ
(
û(τ ), U

) = 〈 f̂ , U 〉V 2 + 1√
2π

(u0, U ) − 1√
2π

(
u(T ), U

)
e−iτ T , ∀U ∈ V 2.

Choosing ρ̂(τ ) and û(τ ) as testing functions and adding the first equation with the second multiplied by a positive num-
ber θ ,

−iτ
(∥∥ρ̂(τ )

∥∥2 + θ
∥∥û(τ )

∥∥2) = 〈
ĝ, ρ̂(τ )

〉
V 1

+ θ
〈
f̂ , û(τ )

〉
V 2

+ 1√
2π

[(
ρ0, ρ̂(τ )

) + θ
(
u0, û(τ )

) − [(
ρ(T ), ρ̂(τ )

) + θ
(
u(T ), û(τ )

)]
e−iτ T ]

. (4.7)

In view of Lemmas 2.1(i), 2.2(i), (iv) and 2.3(i) and inequality (4.2) of Theorem 4.1, we obtain

+∞∫
−∞

∥∥g̃(t)
∥∥

V ′
1

dt =
T∫

0

∥∥g(t)
∥∥

V ′
1

dt < c1,

+∞∫
−∞

∥∥ f̃ (t)
∥∥

V ′
2

dt =
T∫

0

∥∥ f̃ (t)
∥∥

V ′
2

dt < c2,

where c1, c2 depend on the same arguments as C1 in Theorem 4.1. Therefore,

sup
τ∈R

∥∥ĝ(τ )
∥∥

V ′
1
< c1, sup

τ∈R

∥∥ f̂ (τ )
∥∥

V ′
2
< c2.

If (ρ0, u0) ∈ H , then from (4.1) of Theorem 4.1,∥∥ρ(T )
∥∥ � c3,

∥∥u(T )
∥∥ � c3.

Then we deduce from (4.7), that

|τ |(∥∥ρ̂(τ )
∥∥2 + θ

∥∥û(τ )
∥∥2) � c4

(∥∥ρ̂(τ )
∥∥

V 1
+ θ

∥∥û(τ )
∥∥

V 2

)
.

For fixed positive γ , such that γ < 1/4, we observe that

I1 =
∫

R\[−1.1]
|τ |2γ

(∥∥ρ̂(τ )
∥∥2 + θ

∥∥û(τ )
∥∥2)

dτ � c4

∫
R\[−1.1]

|τ |2γ −1(∥∥ρ̂(τ )
∥∥

V 1
+ θ

∥∥û(τ )
∥∥

V 2

)
dτ

� c4

∫
R\[−1.1]

|τ |4γ −2 + (∥∥ρ̂(τ )
∥∥2 + θ

∥∥û(τ )
∥∥2)

dτ � 2c4

+∞∫
1

|τ |4γ −2 dτ + c4

+∞∫
−∞

(∥∥ρ̂(τ )
∥∥2 + θ

∥∥û(τ )
∥∥2)

dτ ,

I2 =
1∫
|τ |2γ

(∥∥ρ̂(τ )
∥∥2 + θ

∥∥û(τ )
∥∥2)

dτ �
1∫ (∥∥ρ̂(τ )

∥∥2 + θ
∥∥û(τ )

∥∥2)
dτ �

+∞∫ (∥∥ρ̂(τ )
∥∥2 + θ

∥∥û(τ )
∥∥2)

dτ .
−1 −1 −∞
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Therefore, from Theorem 4.1 we obtain that

I1 + I2 =
+∞∫

−∞
|τ |2γ

(∥∥ρ̂(τ )
∥∥2 + θ

∥∥û(τ )
∥∥2)

dτ < C3,

where C3 depends on the same arguments as C1 in Theorem 4.1. �
5. Existence

The existence of solutions of Problem (1.4) is ensured by the following theorem.

Theorem 5.1 (Existence). Suppose that Hypotheses (P1) and (P0
2 ) with 0 � l � 3 hold. Then, for (ρ0, u0) ∈ H and f ∈ L2(0, T ; V ′

2),
there exists at least one solution (ρ, u) of Problem (1.4). Moreover, (ρ, u) is almost everywhere equal to a function continuous from
[0, T ] into H and(

ρ(t), u(t)
) → (ρ0, u0) in H, as t → 0.

Proof. To prove the existence theorem we use the Faedo–Galerkin method. The space V = V 1 × V 2 is a separable space,
therefore, there exists a sequence of linearly independent elements {(φi, wi)}, i = 1,2, . . . , that is total in V . For each m we
define an approximate solution (ρm, um) of Problem (1.4) in the form

ρm(t, x) =
m∑

i=1

ρ i
m(t)φi(x), um(t, x) =

m∑
i=1

ui
m(t)wi(x),

where the functions ρ i
m(t) and ui

m(t) are determined by choosing the test functions φ j and w j , j = 1,2, . . . ,m, that is from(
ρ ′

m, φ j
) + μa1(ρm, φ j) + d(ρm, um, φ j) = 0, (5.1)(

u′
m, w j

) + νa2(um, w j) + b(um, um, w j) + e(ρm, w j) = 〈 f , w j〉, (5.2)

for t ∈ [0, T ]. These equations form a nonlinear system of ordinary differential equations for the functions ρ i
m(t) and ui

m(t)
in the form

m∑
i=1

(φi, φ j)
dρ i

m

dt
+ μ

m∑
i=1

a1(φi, φ j)ρ
i
m +

m∑
i,k=1

d(φk, wi, φ j)ui
mρk

m = 0,

m∑
i=1

(wi, w j)
dui

m

dt
+ ν

m∑
i=1

a2(wi, w j)ui
m +

m∑
i,k=1

b(wi, wk, w j)ui
muk

m + e

(
m∑

i=1

ρ i
mφi, w j

)
= 〈 f , w j〉.

Inverting the nonsingular matrices with elements (φi, φ j) and (wi, w j), we obtain the system of differential equations

dρ i
m

dt
+

m∑
j=1

ηi jρ
j

m +
m∑

j,k=1

θi jku j
mρk

m = 0,

dui
m

dt
+

m∑
j=1

αi ju
j
m +

m∑
j,k=1

βi jku j
muk

m + γi
(
ρ1

m, . . . , ρm
m

) =
m∑

j=1

ζi j〈 f , w j〉.

We supplement this system with the initial conditions

ρ i
m(0) = ρ i

0m, ui
m(0) = ui

0m,

where

ρm(0) = ρ0m =
m∑

i=1

ρ i
0mφi, um(0) = u0m =

m∑
i=1

ui
0m wi,

and (ρ0m, u0m) is the orthogonal projection in H of (ρ0, u0) onto the space spanned by {(φi, wi)}, i = 1,2, . . . ,m.
Note that there exists a solution of the above problem for ρ i

m(t) and ui
m(t), which is defined on some interval [0, tm].

Using the same method of estimation as in Theorems 4.1 and 4.3, we infer that:

• the sequence (ρm, um) remains in a bounded set of L2(0, T ; V ),
• the sequence (ρm, um) remains in a bounded set of L∞(0, T ; H),
• the sequence (ũm, ρ̃m) remains in a bounded set of Hγ (R; V , H) for each γ , 0 < γ < 1/4.
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Therefore, tm = T , and there exists such subsequence, say (ρm, um), that

(ρm, um) → (ρ, u) strongly in L2(0, T ; H),

weakly star in L∞(0, T ; H),

weakly in L2(0, T ; V );
moreover, (ρ, u) ∈ L2(0, T ; V ) ∩ L∞(0, T ; H).

To show that (ρ, u) is a solution of Problem (1.4) in the form (2.20) we will need the following convergence result
proved in Appendix A.

Lemma 5.2 (Convergence lemma).

(i) If uα converges to u in L2(0, T ; V 2) weakly and in L2(0, T ; H2) strongly, then for any function w ∈ C1(Ḡ T ), G T = (0, T ] × Ω ,

T∫
0

b
(
uα(t), uα(t), w(t)

)
dt →

T∫
0

b
(
u(t), u(t), w(t)

)
dt.

(ii) If (ρα, uα) converges to (ρ, u) in L2(0, T ; V ) weakly and in L2(0, T ; H) strongly, then for any function φ ∈ C1(Ḡ T ),

T∫
0

d
(
ρα(t), uα(t),φ(t)

)
dt →

T∫
0

d
(
ρ(t), u(t),φ(t)

)
dt.

(iii) Assume that Hypothesis (P0
2 ) holds with 0 � l � 3. If ρα converges to ρ in L2(0, T ; V 1) weakly, in L∞(0, T ; H1) weakly star and

in L2(0, T ; H1) strongly, then for any function w ∈ C1(Ḡ T )

T∫
0

e
(
ρα(t), w(t)

)
dt →

T∫
0

e
(
ρ(t), w(t)

)
dt.

Let us consider a vector function (ψ, v) continuously differentiable on [0, T ] and such that ψ(T ) = 0 and v(T ) = 0. By
multiplying (5.1) by ψ(t) and (5.2) by v(t) and integrating over (0, T ) we obtain

−(ρ0m, φ j)ψ(0) −
T∫

0

(
ρm(t),φ jψ

′(t)
)

dt + μ

T∫
0

a1
(
ρm(t),φ jψ(t)

)
dt +

T∫
0

d
(
ρm(t), um(t),φ jψ(t)

)
dt = 0,

−(u0m, w j)v(0) −
T∫

0

(
um(t), w j v ′(t)

)
dt + ν

T∫
0

a2
(
um(t), w j v(t)

)
dt

+
T∫

0

b
(
um(t), um(t), w j v(t)

)
dt +

T∫
0

e
(
ρm(t), w j v(t)

)
dt =

T∫
0

〈
f (t), w j v(t)

〉
dt.

Let us pass to the limit as m → ∞. Clearly,

ρ0m → ρ0 in H1, u0m → u0 in H2, as m → ∞.

Then using Lemma 5.2, we obtain that the equations

−(ρ0, φ)ψ(0) −
T∫

0

(
ρ(t),φψ ′(t)

)
dt + μ

T∫
0

a1
(
ρ(t),φψ(t)

)
dt +

T∫
0

d
(
ρ(t), u(t),φψ(t)

)
dt = 0,

−(u0, w)v(0) −
T∫

0

(
u(t), w v ′(t)

)
dt + ν

T∫
0

a2
(
u(t), w v(t)

)
dt

+
T∫

b
(
u(t), u(t), w v(t)

)
dt +

T∫
e
(
ρ(t), w v(t)

)
dt =

T∫ 〈
f (t), w v(t)

〉
dt
0 0 0
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hold for (φ, w) ∈ {(φ j, w j)}. By the linearity argument, these equations also hold for any finite linear combination of the
(φ j, w j)’s. Moreover, by the continuity argument these equations are still true for any (φ, w) ∈ V . Writing with components
(ψ, v) in D(0, T ), we see that (ρ, u) satisfies the equations of Problem (1.4) in the distributional sense.

To show that the initial conditions are hold for (ρ, u), we multiply Eqs. (2.20) by ψ(t) and v(t) as above, and integrate
over interval (0, T ). Using integration by parts, we obtain

−(
ρ(0),φ

)
ψ(0) −

T∫
0

(
ρ(t),φψ ′(t)

)
dt + μ

T∫
0

a1
(
ρ(t),φψ(t)

)
dt +

T∫
0

d
(
ρ(t), u(t),φψ(t)

)
dt = 0,

−(
u(0), w

)
v(0) −

T∫
0

(
u(t), w v ′(t)

)
dt + ν

T∫
0

a2
(
u(t), w v(t)

)
dt

+
T∫

0

b
(
u(t), u(t), w v(t)

)
dt +

T∫
0

e
(
ρ(t), w v(t)

)
dt =

T∫
0

〈
f (t), w v(t)

〉
dt.

Then for each φ ∈ V 1 and w ∈ V 2,(
ρ(0) − ρ0, φ

)
ψ(0) = 0,

(
u(0) − u0, w

)
v(0) = 0.

Choosing ψ(0) = 1 and v(0) = 1 we see that the initial conditions are valid.
Finally, in view of Lemmas 2.1(i), 2.2(ii), (v) and 2.3(ii),

ρ ′ ∈ L2(0, T ; V ′
1

)
, u′ ∈ L2(0, T ; V ′

2

)
,

therefore, (ρ, u) is almost everywhere equal to continuous vector function from [0, T ] into H , see [10,20]. �
6. Regularity

In this section we will prove the regularity of the solution of Problem (1.4) whose existence and uniqueness are ensured
by Theorems 5.1 and 3.1. We will also derive some a priori estimates of solutions.

Theorem 6.1. Let Hypotheses (P1) and (P2) hold. If f ∈ L2(0, T ; H2) and (ρ0, u0) ∈ H, then there exists a unique solution of
Problem (1.4) such that (

√
tρ,

√
tu) ∈ L∞(0, T ; V ) ∩ L2(0, T ; H2(Ω)), and for any ε > 0 there are such numbers C4 = C4(ε) and

C5 = C5(ε) that

∥∥∂xρ(t)
∥∥2 + θ

∥∥∂xu(t)
∥∥2 � C4(ε), ∀t: t ∈ [ε, T ], θ > 0, (6.1)∥∥∂2

x ρ
∥∥2

L2(ε,T ;L2(Ω))
+ θ

∥∥∂2
x u

∥∥2
L2(ε,T ;L2(Ω))

� C5(ε). (6.2)

Moreover, if (ρ0, u0) ∈ V , then (ρ, u) ∈ L∞(0, T ; V ) ∩ L2(0, T ; H2(Ω)), and (ρ ′, u′) ∈ L2(0, T ; H).
Furthermore, if the product of positive coefficients μ and ν is large enough, f ∈ L∞(0,+∞; V ′

2), for any t > 0:∫ t+1
t ‖ f (t)‖2 dx � C f , and (ρ0, u0) ∈ H. Then there are such positive numbers K3 , K4 and t1 that

∥∥∂xρ(t)
∥∥2 + θ

∥∥∂xu(t)
∥∥2 � K 2

3 , ∀t � t1, (6.3)

t+1∫
t

∥∥∂2
x ρ(s)

∥∥2 + θ
∥∥∂2

x u(s)
∥∥2

ds � K 2
4 , ∀t � t1. (6.4)

Proof. We consider again Galerkin approximation (5.1) and (5.2), where φ j ’s are the eigenfunctions of the operator A1 with
the eigenvalues λ1

j , and the w j ’s are the eigenfunctions of the operator A2 with the eigenvalues λ2
j . In the case when

(ρ0, u0) ∈ V , we assume that ρ0m ∈ Sp[φ1, . . . , φm] and u0m ∈ Sp[w1, . . . , wm] are chosen so that

(ρ0m, u0m) → (ρ0, u0) strongly in V as m → ∞.

Note that

a1(φ j, φ) = 〈A1φ j, φ〉V 1 = 〈
λ1

j φ j, φ
〉
V 1

= λ1
j (φ j, φ)H1 ,

a2(w j, w) = 〈A2 w j, w〉V 2 = 〈
λ2

j w j, w
〉
V 2

= λ2
j (w j, w)H2 .
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Then, multiplying Eq. (5.1) by λ1
j , and Eq. (5.2) by λ2

j , we write

a1
(
ρ ′

m, φ j
) + μ(A1ρm, A2φ j) + d

(
ρm(t), um, A1φ j

) = 0,

a2
(
u′

m, w j
) + ν(A2um, A1 w j) + b

(
um(t), um, A2 w j

) + e(ρm, A2 w j) = ( f , A2 w j),

where t ∈ [0, T ] and j = 1, . . . ,m. Summing with respect to j these equalities multiplied by ρ
j

m(t) and u j
m(t), respectively,

see Theorem 5.1, we obtain

a1
(
ρ ′

m,ρm
) + μ(A1ρm, A1ρm) + d

(
ρm(t), um, A1ρm

) = 0, (6.5)

a2
(
u′

m, um
) + ν(A2um, A2um) + b(um, um, A2um) + e(ρm, A2um) = ( f , A2um). (6.6)

In view of inequalities (2.5), (2.6) and (2.19),

2
∣∣d(ρm, um, A1ρm)

∣∣ � μ‖A1ρm‖2 + c6
(‖∂xρm‖4 + ‖∂xum‖4 + ‖∂xρm‖2‖ρm‖2 + ‖∂xum‖2‖um‖2),

2
∣∣b(um, um, A1um)

∣∣ � ν

3
‖A2um‖2 + c7

(‖∂xum‖4 + ‖∂xum‖2‖um‖2),
2
∣∣e(ρm, A2um)

∣∣ � ν

3
‖A2um‖2 + c8‖∂xρm‖2(‖∂xρm‖2‖ρm‖2 + 1

)
,

2
∣∣( f (t), A2um

)∣∣ � 2
∥∥ f (t)

∥∥‖A2um‖ � ν

3
‖A2um‖2 + 3

ν

∥∥ f (t)
∥∥2

.

Then from (6.5) and (6.6), using

2a1
(
ρ ′

m(t),ρm(t)
) = d

dt

∥∥∂xρm(t)
∥∥2

, 2a2
(
u′

m(t), um(t)
) = d

dt

∥∥∂xum(t)
∥∥2

,(
A1ρm(t), A1ρm(t)

) = ∥∥A1ρm(t)
∥∥2

,
(

A2um(t), A2um(t)
) = ∥∥A2um(t)

∥∥2
,

we obtain the following inequality for t � 0

dym(t)

dt
+ rm(t) � gm(t)ym(t) + qm(t), (6.7)

where θ > 0

ym(t) = ‖∂xρm‖2 + θ‖∂xum‖2, rm(t) = μ‖A1ρm‖2 + νθ‖A2um‖2,

gm(t) = c9
(‖∂xρm‖2‖ρm‖2 + ‖∂xρm‖2 + ‖ρm‖2 + ‖∂xum‖2 + ‖um‖2 + 1

)
,

qm(t) = 3

ν

∥∥ f (t)
∥∥2

.

In view of Theorems 4.1 and 5.1 for each ε > 0, we can estimate the following integrals for all t in [0, T − ε]:
t+ε∫
t

ym(t)dt � Y (ε),

t+ε∫
t

gm(t)dt � G(ε),

t+ε∫
t

qm(t)dt � Q (ε),

where Y , G and Q depend on ε, T , L, μ, ν , θ , P∞ , P0, . . . , P3, ρ̄ , ‖ρ0‖H1 , ‖u0‖H2 and ‖ f ‖L2(0,T ;V ′
2) , but they are indepen-

dent of m. By applying the uniform Gronwall lemma [21], we get

∥∥∂xρm(t)
∥∥2 + θ

∥∥∂xum(t)
∥∥2 � C4(ε) =

(
Y (ε)

ε
+ Q (ε)

)
eG(ε), ∀t ∈ [ε, T ],

where C4(ε) is independent of m. Since, (ρm, um) converges to (ρ, u), then (ρ, u) ∈ L∞(ε, T ; V ).
Integrating (6.7) with respect to t on the interval [ε, T ], it is easy to see that

T∫
ε

∥∥∂2
x ρ(t)

∥∥2 + θ
∥∥∂2

x u(t)
∥∥2

dt � 1

min{μ,ν}
T∫

ε

rm(t)dt � C5(ε)

uniformly in m, hence, (ρ, u) ∈ L2(ε, T ; H2(Ω)).
Let us multiply (6.7) by t . Choosing

zm(t) = t · ym(t), q1
m(t) = t · qm(t) + ym(t) � T · qm(t) + ym(t),

we get the differential inequality

dzm(t) � gm(t)zm(t) + q1
m(t), for t � 0,
dt
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with zero initial conditions

zm(0) = 0.

In view of the Gronwall inequality, the sequence zm remains bounded in L∞(0, T ). Hence, the sequence (
√

tρm,
√

tum)

remains bounded in L∞(0, T ; V ). In this case (
√

tρm,
√

tum) converges to (
√

tρ,
√

tu) ∈ L∞(0, T ; V ). The sequence
(
√

tρm,
√

tum) also remains bounded in L2(0, T ; H2(Ω)), and (
√

tρm,
√

tum) converges to (
√

tρ,
√

tu), with (
√

tρ,
√

tu) ∈
L2(0, T ; H2(Ω)).

Assume that (ρ0, u0) ∈ V , then by Gronwall method there exists a positive number ε such that the sequence ym defined
by (6.7) is uniformly bounded in L∞(0, ε). Combining with (6.1) and (6.2) we get uniform boundedness of the sequence
(ρm, um) in L∞(0, T ; V ). Hence, (ρm, um) converges to (ρ, u) ∈ L∞(0, T ; V ). Now, from (6.7) we get that the sequences
‖A1ρm(t)‖ and ‖A2um(t)‖ and, therefore, ‖∂2

x ρm(t)‖ and ‖∂2
x um(t)‖, are uniformly bounded in L2(0, T ). Then, from Theo-

rem 4.1, we conclude that (ρm, um) converges to (ρ, u) ∈ L2(0, T ; H2(Ω)). Finally, Lemmas 2.1(ii), 2.2(iii), (vi) and 2.3(iii)
imply that

ρ ′ = −μ · A1ρ − D(ρ, u) ∈ L2(0, T ; H1);
u′ = −ν · A2u − B(u) − E(ρ) + f ∈ L2(0, T ; H2).

Let now f ∈ L∞(0,∞; V ′
2) and μν > c P

1 P 2
1/(8P∞), then from Theorem 4.1 for each fixed ρ̄ , there exists a time t0 =

t0(‖ρ0‖2
H1

+ θ‖u0‖2
H2

) such that for t > t0,

∥∥ρm(t)
∥∥2

H1
+ θ‖um‖2

H1
� 2K1,

t+1∫
t

∥∥∂xρm(s)
∥∥2

H1
+ θ

∥∥∂xum(s)
∥∥2

H2
ds � 2K2.

Using the uniform Gronwall lemma to (6.7) and
∫ t+1

t ‖ f (t)‖2 dx � C f , we get∥∥∂xρm(t)
∥∥2 + θ

∥∥∂xum(t)
∥∥2 � K3, ∀t > t1 = t0 + 1, m = 1,2, . . . ,

therefore, estimate (6.3) holds.
Integrating (6.7) with respect to t on the interval [t, t +1], we get (6.4), since there exists such independent of m constant

K4 that

t+1∫
t

∥∥∂2
x ρm(s)

∥∥2 + θ
∥∥∂2

x um(s)
∥∥2

ds � K4, ∀t > t1, m = 1,2, . . . . �

7. Positivity and boundedness of the density ρ

To show positivity and boundedness of the solution ρ for Problem (1.4), we first establish an integral identity for ρ
and u. Multiplying the first equation of (1.4) by a piecewise differentiable function m(ρ) = l′(ρ) and integrating over x ∈ Ω ,
we get

d

dt

L∫
0

l(ρ)dx +
L∫

0

∂xu · (l′(ρ)ρ − l(ρ)
)

dx = −μ

L∫
0

(∂xρ)2l′′(ρ)dx. (7.1)

Choosing l(ρ) = H(ρ), where H(ρ) is the nonnegative cut-off function in the form

H(y) =
{

y2, y < 0,

0, y � 0,

we can easily obtain the integral inequality

dz(t)

dt
+ q(t)z(t) � 0, (7.2)

where z(t) = ∫ L
0 H(ρ(t, x))dx, and the function q(t) = ess infx∈Ω ux(t, x) belongs to L1(0, T ), see Theorems 4.1 and 6.1.

Clearly, for any nonnegative initial function ρ0(x),

z(0) =
L∫

0

H
(
ρ0(x)

)
dx = 0

therefore, the solution z(t) of the differential inequality (7.2) is non-positive. Thus,
∫ L

0 H(ρ(t, x))dx = 0 for any t ∈ [0, T ] and
ρ(t, x) � 0 a.e. for x ∈ Ω and t ∈ [0, T ].

The obtained result can be summarized in the form.
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Theorem 7.1. Let Hypotheses (P1) and (P2) be satisfied, f ∈ L2(0, T ; H2) and (ρ0, u0) ∈ V . Then, if the initial function ρ0 is non-
negative in Ω , the solution of Problem (1.4) is such that ρ(t, x) is nonnegative for (t, x) ∈ [0, T ] × Ω .

Now we proceed to more precise result on the boundedness of the density ρ .

Theorem 7.2. Let Hypotheses (P1) and (P2) be satisfied, f ∈ L2(0, T ; H2) and (ρ0, u0) ∈ V . Then the solution of Problem (1.4)
satisfies the inequality

ρ(t, x) � exp

{
−

t∫
0

q(s)ds

}
ess sup

x∈Ω

ρ0(x), (7.3)

where q(t) = ess infx∈Ω ux(t, x). Moreover, if the initial function ρ0 is nonnegative in Ω , then

ρ(t, x) � exp

{
−

t∫
0

g(s)ds

}
ess sup

x∈Ω

ρ0(x), (7.4)

where g(t) = ess supx∈Ω ux(t, x).

Proof. To prove this theorem we first choose l(ρ) = H(ρ/s) in (7.1) with s > 0, where H(y) is the cut-off function in the
form

H(y) =
{

(y − 1)2, y > 1,

0, y � 1.

Then identity (7.1) can be rewritten as follows

∂

∂t

L∫
0

H(ρ/s)dx +
L∫

0

(
ρ/s · H ′(ρ/s) − H(ρ/s)

) · ∂xu dx = −μ

L∫
0

H ′′(ρ/s) · (∂xρ)2/s2 dx. (7.5)

Integrating both parts of identity (7.5) with respect to s in (λ,∞), we get

∂

∂t

∞∫
λ

ds

L∫
0

H(ρ/s)dx +
∞∫

λ

ds

L∫
0

(
ρ/s · H ′(ρ/s) − H(ρ/s)

) · ∂xu dx = −μ

∞∫
λ

ds

L∫
0

H ′′(ρ/s) · (∂xρ)2/s2 dx. (7.6)

Note that the integral over s in (7.6) is actually taken within finite limits, since, by Theorems 4.1 and 6.1, the solution of
Problem (1.4) for ρ is bounded, and H(ρ/s) = 0 in some neighborhood of s = ∞.

Integrating by parts in (7.6) and taking in account that the left-hand side of this identity is non-positive, we get

∂

∂t

∞∫
λ

ds

L∫
0

H(ρ/s)dx + λ

L∫
0

∂xu · H(ρ/λ)dx � 0.

Let

q(t) = ess inf
x∈Ω

ux(t, x), and v(t, λ) =
∞∫

λ

ds

L∫
0

H
(
ρ(t, x)/s

)
dx,

then the following differential inequality can be deduced from (7.6)

∂v(t, λ)

∂t
− λ · q(t)

∂v(t, λ)

∂λ
� 0. (7.7)

Making in (7.7) the change of variables (t, λ) → (τ , ξ), where

τ = t, ξ = λ · exp

{ t∫
0

q(σ )dσ

}
; v̂(τ , ξ) = v

(
t(τ , ξ), λ(τ , ξ)

)
,

we get

∂v(t, λ) − λ · q(t)
∂v(t, λ) = ∂ v̂(τ , ξ) � 0.
∂t ∂λ ∂τ
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Thus

0 � v

(
τ , ξ exp

{
−

τ∫
0

q(σ )dσ

})
= v̂(τ , ξ) � v̂(0, ξ) = v(0, ξ).

Since H(ρ0/s) = 0 for ρ0/s � 1, then v(0, ξ) = 0 for ξ > ess supx∈Ω ρ0(x), therefore, v(t, λ) = 0 for λ � ess supx∈Ω ρ0(x) ×
exp{− ∫ t

0 q(σ )dσ }. This completes the proof of inequality (7.3).
To show that inequality (7.4) holds, we choose the cut-off function in the form

H(y) =
{

(y − 1)2, y < 1,

0, y � 1.
�

8. Asymptotic behavior of solutions

In this section we apply the a priori estimates obtained for solutions of Problem (1.4) in Theorems 4.1 and 6.1 to show
their asymptotic behavior.

Let us introduce the metric spaces Ha and Hα , endowed with the norm ‖ · ‖H , where

Ha =
{

(φ, w) ∈ H:
1

L

L∫
0

φ(x)dx = a

}
, Hα =

⋃
0�a�α

Ha.

Clearly, the spaces Ha and Hα are convex. The following theorem about the asymptotic behavior of solutions holds, see also
[3].

Theorem 8.1. Let Hypotheses P1 and P2 be satisfied and let the function f (t, x) be independent of t and f ∈ H2 . Then, for every α � 0,
the semigroup S(t) associated with Problem (1.4) maps Hα into itself. It possesses a maximal attractor Aα in Hα that is bounded in V ,
compact and connected in H. Moreover, the semigroup S(t) maps Hα into itself and possesses in Hα a maximal attractor Aα that is
compact.

Proof. The proof of theorem relies on the following proposition.

Proposition 8.2. (See [8,21].) Let the continuous operators S(t), t � 0, given on the metric space X satisfy the semigroup property,
that is, S(t + τ ) = S(t)S(τ ) for all nonnegative t and τ , and S(0) = I with the identity operator I on X. Also let S(t) be uniformly
compact for large t. If there exists a bounded set B of X such that B is absorbing in X, then the ω-limit set of B,

A= ω(B) =
⋂
s�0

⋃
t�s

S(t)B,

is a compact attractor which attracts the bounded sets of X . It is the maximal bounded attractor in X. Furthermore, if X is a convex set
of a Banach space H, and the mapping t → S(t)u0 is continuous from [0,+∞) into X, for every u0 in X, then A is connected.

The existence of the continuous operators S(t), t � 0, from X = Hα into itself for fixed α � 0 associated with Prob-
lem (1.4) is ensured by Theorem 5.1. Clearly, the operators S(t) satisfy the semigroup property.

Theorem 4.1 guaranties the existence of the absorbing set B = Bα in Hα . Moreover, Theorem 6.1 implies the existence
of the absorbing set in Hα ∩ V and the uniformly compactness of S(t) for large t . Therefore, the conclusions of Theorem 8.1
are inferred by applying Proposition 8.2. �

The theorem asserts for each fixed α � 0 there exists a compact attractor on the set Hα . This attractor belongs to the
absorbing set Bα which absorbs all bounded subsets of Hα . However, in view of inequality (4.3), this absorbing set does not
absorb all bounded sets of H . So, the obtained attractors are not attractors in the usual sense in H . This is a consequence
of conservation of mass property in Problem (1.4).

Fig. 2 illustrates numerical approximations of attractors for homogeneous 1D density–velocity model (1.4). There are
trivial and nontrivial attractors for the density and velocity. In the trivial attractor the density and velocity are constant
over all domain. Fig. 2 shows the examples of the nontrivial attractors for the density and velocity. From this figure we can
observe that if the total initial density is large enough, the solutions to Problem (1.4) for the density ρ are attracted to the
step functions with the same nonzero density level. The position of the steps can vary from the boundaries to interior of
the spatial domain. In the case when the total initial density is too small the density is attracted to the shapes that are
similar to the peaks. The height of these peaks is smaller than the nonzero level of the steps corresponding to the case with
large total initial density.

Moreover, it is worth noting that the nontrivial density attractors shown in Fig. 2 are similar to the density contours
of fish schools, insect swarms, bird flocks with fixed distance between nearest neighbors. This distance corresponds to the
nonzero constant density level in the density attractors.
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Fig. 2. Examples of nontrivial attractors for the density “—” and velocity “- - -” in the model governed by Eqs. (1.4) with P ′(ρ) = 2|ρ − 0.5| − 1, μ = 0.001,
ν = 0.05 and f = 0.
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Appendix A. Proof of Lemma 5.2

Proof. (i) By virtue of (2.7), we get

T∫
0

b(uα, uα, w)dt = −1

2

T∫
0

dt

L∫
0

(uα)2∂x w dx.

This integral converges to

−1

2

T∫
0

dt

L∫
0

u2∂x w dx =
T∫

0

b(u, u, w)dt.

(ii) It is clear that

T∫
0

d(ρα, uα,φ)dt = −
T∫

0

dt

L∫
0

ραuα∂xφ dx.

This integral converges to

−
T∫

dt

L∫
ρu∂xφ dx =

T∫
d(ρ, u, φ)dt.
0 0 0



P. Babak / J. Math. Anal. Appl. 345 (2008) 258–275 275
(iii) Consider∣∣∣∣∣
T∫

0

e(ρα, w) − e(ρ, w)dt

∣∣∣∣∣ � ‖∂x w‖L∞(GT )

T∫
0

dt

L∫
0

∣∣P (ρα) − P (ρ)
∣∣dx.

Next, for 0 � l � 3:

T∫
0

dt

L∫
0

∣∣P (ρα) − P (ρ)
∣∣dx �

T∫
0

dt

L∫
0

p2
(|ρ|l + |ρα |l + 1

) · |ρα − ρ|dx

� ‖ρα − ρ‖L2(GT )

√√√√√
T∫

0

dt

L∫
0

p2
2

(|ρ|3 + |ρα |3 + 3
)2

dx � C‖ρα − ρ‖L2(GT ),

because, by the Agmon inequality

T∫
0

dt

L∫
0

ρ6 dx � ‖ρ‖2
L∞(0,T ;H1)

T∫
0

∥∥ρ(t)
∥∥4

∞ dt �
(
c A)2‖ρ‖2

L∞(0,T ;H1)

T∫
0

∥∥ρ(t)
∥∥2∥∥∂xρ(t)

∥∥2
dt

�
(
c A)2‖ρ‖4

L∞(0,T ;H1)‖ρ‖2
L2(0,T ;V 1)

< ∞.

This completes the lemma. �
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