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Let D = {ρ < 0} be a smooth relatively compact domain in a four-dimensional almost
complex manifold (M, J ), where ρ is a J -plurisubharmonic function on a neighborhood
of D and strictly J -plurisubharmonic on a neighborhood of ∂ D . We give sharp estimates of
the Kobayashi metric. Our approach is based on an asymptotic quantitative description of
both the domain D and the almost complex structure J near a boundary point. Following
Z.M. Balogh and M. Bonk [Z.M. Balogh, M. Bonk, Gromov hyperbolicity and the Kobayashi
metric on strictly pseudoconvex domains, Comment. Math. Helv. 75 (2000) 504–533], these
sharp estimates provide the Gromov hyperbolicity of the domain D .

© 2008 Elsevier Inc. All rights reserved.

0. Introduction

One can define different notions of hyperbolicity on a given manifold, based on geometric structures, and it seems
natural to try to connect them. For instance, the links between the symplectic hyperbolicity and the Kobayashi hyperbolicity
were studied by A.-L. Biolley [3]. In the article [1], Z.M. Balogh and M. Bonk established deep connections between the
Kobayashi hyperbolicity and the Gromov hyperbolicity, based on sharp asymptotic estimates of the Kobayashi metric. Since
the Gromov hyperbolicity may be defined on any geodesic space, it is natural to understand its links with the Kobayashi
hyperbolicity in the most general manifolds on which the Kobayashi metric can be defined, namely the almost complex
manifolds. As emphasized by [1], it is necessary to study precisely the Kobayashi metric. Since there is no exact expression
of this pseudometric, except for particular domains where geodesics can be determined explicitly, we are interested in the
boundary behaviour of the Kobayashi metric and in its asymptotic geodesics. One can note that boundary estimates of
this invariant pseudometric, whose existence is directly issued from the existence of pseudoholomorphic discs proved by
A. Nijenhuis and W. Woolf [20], is also a fundamental tool for the study of the extension of diffeomorphisms and for the
classification of manifolds.

The first results in this direction are due to I. Graham [12], who gave boundary estimates of the Kobayashi metric near
a strictly pseudoconvex boundary point, providing the (local) complete hyperbolicity near such a point. Considering an L2-
theory approach, D. Catlin [5] obtained similar estimates on pseudoconvex domains of finite type in C

2. A crucial progress in
the strictly pseudoconvex case is due to D. Ma [18], who gave an optimal asymptotic description of this metric. His approach
is based on a localization principle given by F. Forstneric and J.-P. Rosay [9] using some purely complex analysis arguments
as peak holomorphic functions. The estimates proved by D. Ma were used in [1] to prove the Gromov hyperbolicity of
relatively compact strictly pseudoconvex domains. The aim of this paper is to obtain sharp estimates of the Kobayashi
metric on strictly pseudoconvex domains in four almost complex manifolds.
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Theorem A. Let D be a relatively compact strictly J -pseudoconvex smooth domain in a four-dimensional almost complex manifold
(M, J ). Then for every ε > 0, there exist 0 < ε0 < ε and positive constants C and s such that for every p ∈ D ∩ Nε0(∂ D) and every
v = vn + vt ∈ T p M we have

e−Cδ(p)s
( |vn|2

4δ(p)2
+ L J ρ(π(p), vt)

2δ(p)

) 1
2

� K(D, J )(p, v) � eCδ(p)s
( |vn|2

4δ(p)2
+ L J ρ(π(p), vt)

2δ(p)

) 1
2

. (0.1)

In the above theorem, δ(p) := dist(p, ∂ D), where dist is taken with respect to a Riemannian metric. For p sufficiently
close to the boundary the point π(p) denotes the unique boundary point such that δ(p) = ‖p−π(p)‖. Moreover Nε0(∂ D) :=
{q ∈ M, δ(q) < ε0}. We point out that the splitting v = vn + vt ∈ T p M in tangent and normal components in (0.1) is
understood to be taken at π(p).

As a corollary of Theorem A, we obtain:

Theorem B.

(1) Let D be a relatively compact strictly J -pseudoconvex smooth domain in an almost complex manifold (M, J ) of dimension four.
Then the domain D endowed with the Kobayashi integrated distance d(D, J ) is a Gromov hyperbolic metric space.

(2) Each point in a four-dimensional almost complex manifold admits a basis of Gromov hyperbolic neighborhoods.

The paper is organized as follows. In Section 1, we give general facts about almost complex manifolds. In Section 2, we
show how to deduce Theorem B from Theorem A. Finally, Section 3 is devoted to the proof of our main result, namely
Theorem A.

1. Preliminaries

We denote by Δ the unit disc of C and by Δr the disc of C centered at the origin of radius r > 0.

1.1. Almost complex manifolds and pseudoholomorphic discs

An almost complex structure J on a real smooth manifold M is a (1,1) tensor field which satisfies J 2 = −Id. We suppose
that J is smooth. The pair (M, J ) is called an almost complex manifold. We denote by Jst the standard integrable structure
on C

n for every n. A differentiable map f : (M ′, J ′) → (M, J ) between two almost complex manifolds is said to be ( J ′, J )-
holomorphic if J ( f (p)) ◦ dp f = dp f ◦ J ′(p), for every p ∈ M ′ . In case M ′ = Δ ⊂ C, such a map is called a pseudoholomorphic
disc. If f : (M, J ) → M ′ is a diffeomorphism, we define an almost complex structure, f∗ J on M ′ as the direct image of J
by f :

f∗ J (q) := d f −1(q) f ◦ J
(

f −1(q)
) ◦ dq f −1,

for every q ∈ M ′ .
The following lemma (see [10]) states that locally any almost complex manifold can be seen as the unit ball of C

n

endowed with a small smooth perturbation of the standard integrable structure Jst.

Lemma 1.1. Let (M, J ) be an almost complex manifold, with J of class Ck, k � 0. Then for every point p ∈ M and every λ0 > 0 there
exist a neighborhood U of p and a coordinate diffeomorphism z : U → B centered at p (i.e. z(p) = 0) such that the direct image of J
satisfies z∗ J (0) = Jst and ‖z∗( J ) − Jst‖Ck(B) � λ0 .

This is simply done by considering a local chart z : U → B centered at p (i.e. z(p) = 0), composing it with a linear
diffeomorphism to insure z∗ J (0) = Jst and dilating coordinates.

So let J be an almost complex structure defined in a neighborhood U of the origin in R
2n , and such that J is sufficiently

closed to the standard structure in uniform norm on the closure U of U . The J -holomorphy equation for a pseudoholomor-
phic disc u :Δ → U ⊆ R

2n is given by

∂u

∂ y
− J (u)

∂u

∂x
= 0. (1.1)

According to [20], for every p ∈ M , there is a neighborhood V of zero in T p M , such that for every v ∈ V , there is a
J -holomorphic disc u satisfying u(0) = p and d0u(∂/∂x) = v .
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1.2. Splitting of the tangent space

Assume that J is a diagonal almost complex structure defined in a neighborhood of the origin in R
4 and such that

J (0) = Jst. Consider a basis (ω1,ω2) of (1,0) differential forms for the structure J in a neighborhood of the origin. Since J
is diagonal, we may choose

ω j = dz j − B j(z)dz j, j = 1,2.

Denote by (Y1, Y2) the corresponding dual basis of (1,0) vector fields. Then

Y j = ∂

∂z j
− β j(z)

∂

∂z j
, j = 1,2.

Moreover B j(0) = β j(0) = 0 for j = 1,2. The basis (Y1(0), Y2(0)) simply coincides with the canonical (1,0) basis of C
2.

In particular Y1(0) is a basis vector of the complex tangent space T J
0 (∂ D) and Y2(0) is normal to ∂ D . Consider now for

t � 0 the translation ∂ D − t of the boundary of D near the origin. Consider, in a neighborhood of the origin, a (1,0) vector
field X1 (for J ) such that X1(0) = Y1(0) and X1(z) generates the J -invariant tangent space T J

z (∂ D − t) at every point
z ∈ ∂ D − t , 0 � t << 1. Setting X2 = Y2, we obtain a basis of vector fields (X1, X2) on D (restricting D if necessary). Any
complex tangent vector v ∈ T (1,0)

z (D, J ) at point z ∈ D admits the unique decomposition v = vt + vn where vt = α1 X1(z) is
the tangent component and vn = α2 X2(z) is the normal component. Identifying T (1,0)

z (D, J ) with T z D we may consider the
decomposition v = vt + vn for each v ∈ T z(D). Finally we consider this decomposition for points z in a neighborhood of the
boundary.

1.3. Levi geometry

Let ρ be a C2 real valued function on a smooth almost complex manifold (M, J ). We denote by dc
J ρ the differential

form defined by

dc
J ρ(v) := −dρ( J v), (1.2)

where v is a section of T M . The Levi form of ρ at a point p ∈ M and a vector v ∈ T p M is defined by

L J ρ(p, v) := d
(
dc

J ρ
)
(p)
(

v, J (p)v
)= ddc

J ρ(p)
(

v, J (p)v
)
.

In case (M, J ) = (Cn, Jst), then L Jstρ is, up to a positive multiplicative constant, the usual standard Levi form:

L Jstρ(p, v) = 4
∑ ∂2ρ

∂z j∂zk
v j vk.

We investigate now how close is the Levi form with respect to J from the standard Levi form. For p ∈ M and v ∈ T p M ,
we easily get

L J ρ(p, v) =L Jstρ(p, v) + d
(
dc

J − dc
Jst

)
ρ(p)
(

v, J (p)v
)+ ddc

Jst
ρ(p)
(

v,
(

J (p) − Jst
)

v
)
. (1.3)

In local coordinates (t1, t2, . . . , t2n) of R
2n , (1.3) may be written as follows

L J ρ(p, v) =L Jstρ(p, v) + t v
(

A − t A
)

J (p)v + t( J (p) − Jst
)

v D Jst v + t( J (p) − Jst
)

v D
(

J (p) − Jst
)

v (1.4)

where

A :=
(∑

i

∂u

∂ti

∂ J i, j

∂tk

)
1� j,k�2n

and D :=
(

∂2u

∂t j∂tk

)
1� j,k�2n

.

Let f be a ( J ′, J )-biholomorphism from (M ′, J ′) to (M, J ). Then for every p ∈ M and every v ∈ T p M:

L J ′ρ(p, v) =L J ρ ◦ f −1( f (p),dp f (v)
)
.

This expresses the invariance of the Levi form under pseudobiholomorphisms.
The next proposition is useful in order to compute the Levi form (see [15]).

Proposition 1.2. Let p ∈ M and v ∈ T p M. Then

L J ρ(p, v) = Δ(ρ ◦ u)(0),

where u :Δ → (M, J ) is any J -holomorphic disc satisfying u(0) = p and d0u(∂/∂x) = v.
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Proposition 1.2 leads to the following proposition–definition.

Proposition 1.3. The two statements are equivalent:

(1) ρ ◦ u is subharmonic for any J -holomorphic disc u :Δ → M.
(2) L J ρ(p, v) � 0 for every p ∈ M and every v ∈ T p M.

If one of the previous statements is satisfied we say that ρ is J -plurisubharmonic. We say that ρ is strictly J -
plurisubharmonic if L J ρ(p, v) is positive for any p ∈ M and any v ∈ T p M \ {0}. Plurisubharmonic functions play a very
important role in almost complex geometry: they give attraction and localization properties for pseudoholomorphic discs.
For this reason the construction of J -plurisubharmonic functions is crucial.

Similarly to the integrable case, one may define the notion of pseudoconvexity in almost complex manifolds. Let D be a
domain in (M, J ). We denote by T J ∂ D := T ∂ D ∩ J T ∂ D the J -invariant subbundle of T ∂ D.

Definition 1.4.

(1) The domain D is J -pseudoconvex (respectively is strictly J -pseudoconvex) if L J ρ(p, v) � 0 (respectively > 0) for any

p ∈ ∂ D and v ∈ T J
p ∂ D (respectively v ∈ T J

p ∂ D \ {0}).
(2) A J -pseudoconvex region is a domain D = {ρ < 0} where ρ is a C2 defining function, J -plurisubharmonic on a neigh-

borhood of D .

We recall that a defining function for D satisfies dρ �= 0 on ∂ D .
We need the following lemma due to E. Chirka [6].

Lemma 1.5. Let J be an almost complex structure of class C1 defined in the unit ball B of R
2n satisfying J (0) = Jst . Then there exist

positive constants ε and Aε = O (ε) such that the function log‖z‖2 + Aε‖z‖ is J -plurisubharmonic on B whenever ‖ J − Jst‖C1(B) � ε.

Proof. This is due to the fact that for p ∈ B and ‖ J − Jst‖C1(B) sufficiently small, we have

L J A‖z‖(p, v) � A

(
1

‖p‖ − 2

‖p‖
∥∥ J (p) − Jst

∥∥− 2
(
1 + ∥∥ J (p) − Jst

∥∥)‖ J − Jst‖C1(B)

)
‖v‖2

� A

2‖p‖‖v‖2

and

L J ln ‖z‖(p, v) �
(

− 2

‖p‖2

∥∥ J (p) − Jst
∥∥− 1

‖p‖2

∥∥ J (p) − Jst
∥∥2 − 2

‖p‖‖ J − Jst‖C1(B)

− 2

‖p‖
∥∥ J (p) − Jst

∥∥‖ J − Jst‖C1(B)

)
‖v‖2

� − 6

‖p‖‖ J − Jst‖C1(B)‖v‖2.

So taking A = 24‖ J − Jst‖C1(B) the Chirka’s lemma follows. �
The strict J -pseudoconvexity of a relatively compact domain D implies that there is a constant C � 1 such that:

1

C
‖v‖2 �L J ρ(p, v) � C‖v‖2, (1.5)

for p ∈ ∂ D and v ∈ T J
p (∂ D).

Let ρ be a defining function for D , J -plurisubharmonic on a neighborhood of D and strictly J -plurisubharmonic on a
neighborhood of the boundary ∂ D . Consider the one-form dc

J ρ defined by (1.2) and let α be its restriction on the tangent

bundle T ∂ D . It follows that T J ∂ D = Kerα. Due to the strict J -pseudoconvexity of ρ , the two-form ω := ddc
J ρ is a symplectic

form (i.e. nondegenerate and closed) on a neighborhood of ∂ D , that tames J . This implies that

gR := 1

2

(
ω(., J .) + ω( J ., .)

)
(1.6)

defines a Riemannian metric. We say that T J ∂ D is a contact structure and α is contact form for T J ∂ D . Consequently vector
fields in T J ∂ D span the whole tangent bundle T ∂ D . Indeed if v ∈ T J ∂ D , it follows that ω(v, J v) = α([v, J v]) > 0 and thus
[v, J v] ∈ T ∂ D \ T J ∂ D . We point out that in case v ∈ T J ∂ D , the vector fields v and J v are orthogonal with respect to the
Riemannian metric gR .
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1.4. The Kobayashi pseudometric

The existence of local pseudoholomorphic discs proved by A. Nijenhuis and W. Woolf [20] allows to define the Kobayashi–
Royden pseudometric, abusively called the Kobayashi pseudometric, K(M, J ) for p ∈ M and v ∈ T p M:

K(M, J)(p, v) := inf

{
1

r
> 0, u :Δ → (M, J ) J -holomorphic, u(0) = p, d0u(∂/∂x) = rv

}
= inf

{
1

r
> 0, u :Δr → (M, J ), J -holomorphic, u(0) = p, d0u(∂/∂x) = v

}
.

Since the composition of pseudoholomorphic maps is still pseudoholomorphic, the Kobayashi pseudometric satisfies the
decreasing property.

Proposition 1.6. Let f : (M ′, J ′) → (M, J ) be a ( J ′, J )-holomorphic map. Then for any p ∈ M ′ and v ∈ T p M ′ we have

K(M, J)
(

f (p),dp f (v)
)
� K(M′, J ′)(p, v).

Since the structures we consider are smooth enough, we may define the integrated pseudodistance d(M, J) of K(M, J):

d(M, J)(p,q) := inf

{ 1∫
0

K(M, J )
(
γ (t), γ̇ (t)

)
dt, γ : [0,1] → M, γ (0) = p, γ (1) = q

}
.

Similarly to the standard integrable case, B. Kruglikov [16] proved that the integrated pseudodistance of the Kobayashi
pseudometric coincides with the Kobayashi pseudodistance defined by chains of pseudoholomorphic discs.

We now define the Kobayashi hyperbolicity.

Definition 1.7.

(1) The manifold (M, J ) is Kobayashi hyperbolic if the Kobayashi pseudodistance d(M, J) is a distance.
(2) The manifold (M, J ) is local Kobayashi hyperbolic at p ∈ M if there exist a neighborhood U of p and a positive con-

stant C such that

K(M, J )(q, v) � C‖v‖,
for every q ∈ U and every v ∈ Tq M .

(3) A Kobayashi hyperbolic manifold (M, J ) is complete hyperbolic if it is complete for the distance d(M, J ) .

2. Gromov hyperbolicity

In this section we give some backgrounds about Gromov hyperbolic spaces. Furthermore, according to Z.M. Balogh and
M. Bonk [1], proving that a domain D with some curvature is Gromov hyperbolic reduces to providing sharp estimates for
the Kobayashi metric K(D, J ) near the boundary of D .

2.1. Gromov hyperbolic spaces

Let (X,d) be a metric space.

Definition 2.1. The Gromov product of two points x, y ∈ X with respect to the basepoint ω ∈ X is defined by

(x|y)ω := 1

2

(
d(x,ω) − d(y,ω) − d(x, y)

)
.

The Gromov product measures the failure of the triangle inequality to be an equality and is always nonnegative.

Definition 2.2. The metric space X is Gromov hyperbolic if there is a nonnegative constant δ such that for any x, y, z,ω ∈ X
one has

(x|y)ω � min
(
(x|z)ω, (z|y)ω

)− δ. (2.1)
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We point out that (2.1) can also be written as follows:

d(x, y) + d(z,ω) � max
(
d(x, z) + d(y,ω),d(x,ω) + d(y, z)

)+ 2δ, (2.2)

for x, y, z,ω ∈ X .
There is a family of metric spaces for which Gromov hyperbolicity may be defined by means of geodesic triangles.

A metric space (X,d) is said to be geodesic space if any two points x, y ∈ X can be joined by a geodesic segment, that is the
image of an isometry g : [0,d(x, y)] → X with g(0) = x and g(d(x, y)) = y. Such a segment is denoted by [x, y]. A geodesic
triangle in X is the subset [x, y] ∪ [y, z] ∪ [z, x], where x, y, z ∈ X . For a geodesic space (X,d), one may define equivalently
(see [11]) the Gromov hyperbolicity as follows:

Definition 2.3. The geodesic space X is Gromov hyperbolic if there is a nonnegative constant δ such that for any geodesic
triangle [x, y] ∪ [y, z] ∪ [z, x] and any ω ∈ [x, y] one has

d
(
ω, [y, z] ∪ [z, x])� δ.

2.2. Gromov hyperbolicity of strictly pseudoconvex domains in almost complex manifolds of dimension four

Let D = {ρ < 0} be a relatively compact J -strictly pseudoconvex smooth domain in an almost complex manifolds (M, J )
of dimension four. Although the boundary of a compact complex manifold with pseudoconvex boundary is always con-
nected, this is not the case in almost complex setting. Indeed D. McDuff obtained in [19] a compact almost complex manifold
(M, J ) of dimension four, with a disconnected J -pseudoconvex boundary. Since D is globally defined by a smooth function,
J -plurisubharmonic on a neighborhood of D and strictly J -plurisubharmonic on a neighborhood of the boundary ∂ D , it
follows that the boundary ∂ D of D is connected. Moreover this also implies that there are no J -complex line contained
in D and so that (D,dD, J ) is a metric space.

A C1 curve α : [0,1] → ∂ D is horizontal if α̇(s) ∈ T J
α(s)∂ D for every s ∈ [0,1]. This is equivalent to α̇n ≡ 0. Thus we define

the Levi length of a horizontal curve by

L J ρ − length(α) :=
1∫

0

L J ρ
(
α(s), α̇(s)

) 1
2 ds.

We point out that, due to (1.6),

L J ρ − length(α) =
1∫

0

gR
(
α(s), α̇(s)

) 1
2 ds.

Since T J ∂ D is a contact structure, a theorem due to Chow [7] states that any two points in ∂ D may be connected by a C1

horizontal curve. This allows to define the Carnot–Carathéodory metric as follows:

dH (p,q) := {L J ρ − length(α), α : [0,1] → ∂ D horizontal, α(0) = p, α(1) = q
}
.

Equivalently, we may define locally the Carnot–Carathéodory metric by means of vector fields as follows. Consider two
gR -orthogonal vector fields v, J v ∈ T J ∂ D and the sub-Riemannian metric associated to v, J v:

gSR(p, w) := inf
{

a2
1 + a2

2, a1 v(p) + a2( J v)(p) = w
}
.

For a horizontal curve α, we set

gSR − length(α) :=
1∫

0

gSR
(
α(s), α̇(s)

) 1
2 ds.

Thus we define

dH (p,q) := {gSR − length(α), α : [0,1] → ∂ D horizontal, α(0) = p, α(1) = q
}
.

We point out that for a small horizontal curve α, we have

α̇(s) = a1(s)v
(
α(s)
)+ a2(s) J

(
α(s)
)

v
(
α(s)
)
.

Consequently

gR
(
α(s), α̇(s)

)= [a2
1(s) + a2

2(s)
]

gR
(
α(s), v

(
α(s)
))

.
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Although the role of the bundle T J ∂ D is crucial, it is not essential to define the Carnot–Carathéodory metric with gSR instead
of gR . Actually, two Carnot–Carathéodory metrics defined with different Riemannian metrics are bi-Lipschitz equivalent (see
[14]).

According to A. Bellaiche [2] and M. Gromov [14] and since T ∂ D is spanned by vector fields of T J ∂ D and Lie Brackets
of vector fields of T J ∂ D , balls with respect to the Carnot–Carathéodory metric may be anisotropically approximated. More
precisely

Proposition 2.4. There exists a positive constant C such that for ε small enough and p ∈ ∂ D:

Box

(
p,

ε

C

)
⊆ BH (p, ε) ⊆ Box(p, Cε), (2.3)

where BH (p, ε) := {q ∈ ∂ D, dH (p,q) < ε} and Box(p, ε) := {p + v ∈ ∂ D, |vt | < ε, |vn| < ε2}.

The splitting v = vt + vn is taken at p. We point out that choosing local coordinates such that p = 0, J (0) = Jst and
T J

0 ∂ D = {z1 = 0}, then Box(p, ε) = ∂ D ∩ Q (0, ε), where Q (0, ε) is the classical polydisc Q (0, ε) := {z ∈ C
2, |z1| < ε2,

|z2| < ε}.
As proved by Z.M. Balogh and M. Bonk [1], (2.3) allows to approximate the Carnot–Carathéodory metric by a Riemannian

anisotropic metric:

Lemma 2.5. There exists a positive constant C such that for any positive κ ,

1

C
dκ (p,q) � dH (p,q) � Cdκ (p,q),

whenever dH (p,q) � 1/κ for p,q ∈ ∂ D. Here, the distance dκ (p,q) is taken with respect to the Riemannian metric gκ defined by

gκ (p, v) :=L J ρ(p, vh) + κ2|vn|2,
for p ∈ ∂ D and v = vt + vn ∈ T p∂ D.

The crucial idea of Z.M. Balogh and M. Bonk [1] to prove the Gromov hyperbolicity of D is to introduce a function on
D × D , using the Carnot–Carathéodory metric, which satisfies (2.1) and which is roughly similar to the Kobayashi distance.

For p ∈ D we define a boundary projection map π : D → ∂ D by

δ(p) = ∥∥p − π(p)
∥∥= dist(p, ∂ D).

We notice that π(p) is uniquely determined only if p ∈ D is sufficiently close to the boundary. We set

h(p) := δ(p)
1
2 .

Then we define a map g : D × D → [0,+∞) by

g(p,q) := 2 log

(
dH (π(p),π(q)) + max{h(p),h(q)}√

h(p)h(q)

)
,

for p,q ∈ D . The map π is uniquely determined only near the boundary. But an other choice of π gives a function g that
coincides up to a bounded additive constant that will not disturb our results. The motivation of introducing the map g is
related with the Gromov hyperbolic space Con(Z) defined by M. Bonk and O. Schramm in [4] (see also [13]) as follows. Let
(Z ,d) be a bounded metric space which does not consist of a single point and set

Con(Z) := Z × (0,diam(Z)
]
.

Let us define a map g̃ : Con(Z) × Con(Z) → [0,+∞) by

g̃
(
(z,h), (z′,h′)

) := 2 log

(
d(z, z′) + max{h,h′}√

hh′

)
.

M. Bonk and O. Schramm in [4] proved that (Con(Z), g̃) is a Gromov hyperbolic (metric) space.
In our case the map g is not a metric on D since two different points p �= q ∈ D may have the same projection;

nevertheless

Lemma 2.6. The function g satisfies (2.2) (or equivalently (2.1)) on D.
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Proof. Let ri j be real nonnegative numbers such that

ri j = r ji and ri j � rik + rkj,

for i, j,k = 1, . . . ,4. Then

r12r34 � 4 max(r13r24, r14r23). (2.4)

Consider now four points pi ∈ D , i = 1, . . . ,4. We set hi = δ(pi)
1
2 and di, j = d(H, J )(π(pi),π(p j)). Then applying (2.4) to

ri j = di, j + min(hi,h j), we obtain(
d1,2 + min(h1,h2)

)(
d3,4 + max(h3,h4)

)
� 4 max

((
d1,3 + max(h1,h3)

)(
d2,4 + min(h2,h4)

)
,
(
d1,4 + min(h1,h4)

)(
d2,3 + max(h2,h3)

))
.

Then:

g(p1, p2) + g(p3, p4) � max
(

g(p1, p3) + g(p2, p4), g(p1, p4) + g(p2, p3)
)+ 2 log 4,

which proves the desired statement. �
As a direct corollary, if a metric d on D is roughly similar to g , then the metric space (D,d) is Gromov hyperbolic.

Corollary 2.7. Let d be a metric on D verifying

−C + g(p,q) � d(p,q) � g(p,q) + C (2.5)

for some positive constant C , and every p,q ∈ D. Then d satisfies (2.2) and so the metric space (D,d) is Gromov hyperbolic.

Z.M. Balogh and M. Bonk [1] proved that if the Kobayashi metric (with respect to Jst) of a bounded strictly pseudoconvex
domain satisfies (0.1), then the Kobayashi distance is rough similar to the function g . Their proof is purely metric and does
not use complex geometry or complex analysis. We point out that the strict pseudoconvexity is only needed to obtain (1.5)
or the fact that T ∂ D is spanned by vector fields of T Jst∂ D and Lie Brackets of vector fields of T Jst∂ D . In particular their
proof remains valid in the almost complex setting and, consequently, Theorem A implies.

Theorem 2.8. Let D be a relatively compact strictly J -pseudoconvex smooth domain in an almost complex manifold (M, J ) of dimen-
sion four. There is a nonnegative constant C such that for any p,q ∈ D,

g(p,q) − C � d(D, J )(p,q) � g(p,q) + C .

According to Corollary 2.7 we finally obtain the following theorem (see also (1) of Theorem B).

Theorem 2.9. Let D be a relatively compact strictly J -pseudoconvex smooth domain in an almost complex manifolds (M, J ) of di-
mension four. Then the metric space (D,d(D, J )) is Gromov hyperbolic.

Example 2.10. There exist a neighborhood U of p and a diffeomorphism z : U → B ⊆ R
4, centered at p, such that the

function ‖z‖2 is strictly J -plurisubharmonic on U and ‖z∗( J ) − Jst‖C2(U ) � λ0. Hence the unit ball B equipped with the
metric d(B(0,1),z∗ J ) is Gromov hyperbolic.

As a direct corollary of Example 2.10 we have (see also (2) of Theorem B):

Corollary 2.11. Let (M, J ) be a four-dimensional almost complex manifold. Then every point p ∈ M has a basis of Gromov hyperbolic
neighborhoods.

3. Sharp estimates of the Kobayashi metric

In this section we give a precise localization principle for the Kobayashi metric and we prove Theorem A.
Let D = {ρ < 0} be a domain in an almost complex manifold (M, J ), where ρ is a smooth defining strictly J -

plurisubharmonic function. For a point p ∈ D we define

δ(p) := dist(p, ∂ D), (3.1)

and for p sufficiently close to ∂ D , we define π(p) ∈ ∂ D as the unique boundary point such that:
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δ(p) = ∥∥p − π(p)
∥∥. (3.2)

For ε > 0, we introduce

Nε := {p ∈ D, δ(p) < ε
}
. (3.3)

3.1. Sharp localization principle

F. Forstneric and J.-P. Rosay [9] obtained a sharp localization principle of the Kobayashi metric near a strictly Jst-
pseudoconvex boundary point of a domain D ⊂ C

n . However their approach is based on the existence of some holomorphic
peak function at such a point; this is purely complex and cannot be generalized in the nonintegrable case. The sharp
localization principle we give is based on some estimates of the Kobayashi length of a path near the boundary.

Proposition 3.1. There exists a positive constant r such that for every p ∈ D sufficiently close to the boundary and for every sufficiently
small neighborhood U of π(p) there is a positive constant c such that for every v ∈ T p M:

K(D∩U , J )(p, v) �
(
1 − cδ(p)r)K(D∩U , J )(p, v). (3.4)

We will give later a more precise version of Proposition 3.1, where the constants c and r are given explicitly (see
Lemma 3.4).

Proof. We consider a local diffeomorphism z centered at π(p) from a sufficiently small neighborhood U of π(p) to z(U )

such that

(1) z(p) = (δ(p),0),
(2) the structure z∗ J satisfies z∗ J (0) = Jst and is diagonal,
(3) the defining function ρ ◦ z−1 is locally expressed by

ρ ◦ z−1(z) = −2�e z1 + 2�e
∑

ρ j,kz j zk +
∑

ρ j,k z j zk + O
(‖z‖3),

where ρ j,k and ρ j,k are constants satisfying ρ j,k = ρk, j and ρ j,k = ρk, j .

According to Lemma 4.8 in [17], there exists a positive constant c1 (C1/4 in the notations of [17]), independent of p, such
that, shrinking U if necessary, for any q ∈ D ∩ U and any v ∈ TqR

4:

K(D, J )(q, v) � c1
‖dqχ(v)‖

χ(q)
,

where χ(q) := |z1(q)|2 + |z2(q)|4.
Let u :Δ → D be a J -holomorphic discs satisfying u(0) = p ∈ D . Assume that u(Δ) �⊂ D ∩ U and let ζ ∈ Δ such that

u(ζ ) ∈ D ∩ ∂U . We consider a C∞ path γ : [0;1] → D from u(ζ ) to the point p; so γ (0) = u(ζ ) and γ (1) = p. Without loss
of generality we may suppose that γ ([0,1[) ⊆ D ∩ U . From this we get that the Kobayashi length of γ satisfies

L(D, J )(γ ) :=
1∫

0

K(D, J )
(
γ (t), γ̇ (t)

)
dt � c1

1∫
0

‖dγ (t)χ(γ̇ (t))‖
χ(γ (t))

dt.

This leads to

L(D, J )(γ ) � c1

χ(u(sζ ))∫
χ(p)

dt

t
= c1

∣∣∣∣log
χ(u(sζ ))

χ(p)

∣∣∣∣= c1 log
χ(u(sζ ))

χ(p)
,

for p sufficiently small. Since there exists a positive constant c2(U ) such that for all z ∈ D ∩ ∂U :

χ(z) � c2(U ),

and since χ(p) = δ(p)2 it follows that

L(D, J )(γ ) � c1 log
c2(U )

δ(p)2
. (3.5)

We set c3(U ) = c1 log(c2(U )).
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According to the decreasing property of the Kobayashi distance, we have

d(D, J )
(

p, u(ζ )
)
� d(Δ, Jst)(0, ζ ) = log

1 + |ζ |
1 − |ζ | . (3.6)

Due to (3.5) and (3.6) we have

ec3(U ) − δ(p)2c1

ec3(U ) + δ(p)2c1
� |ζ |,

and so for p sufficiently close to its projection point π(p):

1 − 2e−c3(U )δ(p)2c1 � |ζ |.
This finally proves that

u(Δs) ⊂ D ∩ U

with s := 1 − 2e−c3(U )δ(p)2c1 . �
3.2. Sharp estimates of the Kobayashi metric

In this subsection we give the proof of Theorem A.

Proof of Theorem A. Let p ∈ D ∩ Nε0 with ε0 small enough and set δ := δ(p). Considering a local diffeomorphism z : U →
z(U ) ⊂ R

4 such that Proposition 3.1 holds, me may assume that:

(1) π(p) = 0 and p = (δ,0).
(2) D ∩ U ⊂ R

4.
(3) The structure J is diagonal and coincides with Jst on the complex tangent space {z1 = 0}:

JC =

⎛⎜⎜⎜⎝
a1 b1 0 0

b1 a1 0 0

0 0 a2 b2

0 0 a2 a2

⎞⎟⎟⎟⎠ , (3.7)

with {
al = i + O

(‖z1‖2),
bl = O

(‖z1‖
)
,

for l = 1,2.
(4) The defining function ρ is expressed by

ρ(z) = −2�e z1 + 2�e
∑

ρ j,kz j zk +
∑

ρ j,kz j zk + O
(‖z‖3),

where ρ j,k and ρ j,k are constants satisfying ρ j,k = ρk, j and ρ j,k = ρk, j .

Since the structure J is diagonal, the Levi form of ρ at the origin with respect to the structure J coincides with the Levi
form of ρ at the origin with respect to the structure Jst on the complex tangent space. It follows essentially from [10].

Lemma 3.2. Let v2 = (0, v2) ∈ R
4 be a tangent vector to ∂ D at the origin. We have

ρ2,2|v2|2 =L Jstρ(0, v2) =L J ρ(0, v2). (3.8)

Proof. Let u :Δ → C
2 be a J -holomorphic disc such that u(0) = 0 and tangent to v2,

u(ζ ) = ζ v2 +O
(|ζ |2).

Since J is a diagonal structure, the J -holomorphy equation leads to

∂u1

∂ζ
= q1(u)

∂u1

∂ζ
, (3.9)

where q1(z) = O (‖z‖). Moreover, since d0u1 = 0, (3.9) gives
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∂2u1

∂ζ∂ζ
(0) = 0.

This implies that

∂2ρ ◦ u

∂ζ∂ζ
(0) = ρ2,2|vt |2.

Thus, the Levi form with respect to J coincides with the Levi form with respect to Jst on the complex tangent space of ∂ Dδ

at the origin. �
Remark 3.3. More generally, even if J (0) = Jst, the Levi form of a function ρ with respect to J at the origin does not
coincide with the Levi form of ρ with respect to Jst. According to Lemma 3.2 if the structure is diagonal then they are equal
at the origin on the complex tangent space; but in real dimension greater than four, the structure cannot be (generically)
diagonal. K. Diederich and A. Sukhov [8] proved that if the structure J satisfies J (0) = Jst and dz J = 0 (which is always
possible by a local diffeomorphism in arbitrary dimensions), then the Levi forms coincide at the origin (for all the directions).

Lemma 3.2 implies that since the domain D is strictly J pseudoconvex at π(p) = 0, we may assume that ρ2,2 = 1.

Consider the following biholomorphism Φ (for the standard structure Jst) that removes the harmonic term 2�e(ρ2,2z2
2):

Φ(z1, z2) := (z1 − ρ2,2z2
2, z2
)
. (3.10)

The complexification of the structure Φ∗ J admits the following matricial representation:

(Φ∗ J )C =

⎛⎜⎜⎜⎜⎝
a1(Φ

−1(z)) b1(Φ−1(z)) c1(z) c2(z)

b1(Φ
−1(z)) a1(Φ−1(z)) c2(z) c1(z)

0 0 a2(Φ
−1(z)) b2(Φ−1(z))

0 0 b2(Φ
−1(z)) a2(Φ−1(z))

⎞⎟⎟⎟⎟⎠ , (3.11)

where{
c1(z) := 2ρ2,2z2

(
a1
(
Φ−1(z)

)− a2
(
Φ−1(z)

))
,

c2(z) := 2ρ2,2z2b1
(
Φ−1(z)

)− ρ2,2z2b2
(
Φ−1(z)

)
.

In what follows, we need a quantitative version of Proposition 3.1. So we consider the following polydisc Q (δ,α) :=
{z ∈ C

2, |z1| < δ1−α, |z2| < cδ
1−α

2 } centered at the origin, where c is chosen such that

Φ(D ∩ U ) ∩ ∂ Q (δ,α) ⊂ {z ∈ C
2, |z1| = δ1−α

}
. (3.12)

Lemma 3.4. Let 0 < α < 1 be a positive number. There is a positive constant β such that for every sufficiently small δ we have

K(D∩U , J )(p, v) = K(Φ(D∩U ),Φ∗ J )(p, v) �
(
1 − 2δβ

)
K(φ(D∩U )∩Q (δ,α),Φ∗ J )(p, v), (3.13)

for p = (δ,0) and every v ∈ T pR
4 .

Proof. The proof is a quantitative repetition of the proof of Proposition 3.1; we only notice that according to (3.12) we have
c2 = δ1−α , implying β = 2αc1. �

Let 0 < α < α′ < 1 to be fixed later, independently of δ. For every sufficiently small δ, we consider a smooth cut off
function χ : R

4 → R:{
χ ≡ 1 on Q (δ,α),

χ ≡ 0 on R
4 \ Q (δ,α′),

with α′ < α. We point out that χ may be chosen such that

‖dzχ‖ � c

δ1−α′ , (3.14)

for some positive constant c independent of δ. We consider now the following endomorphism of R
4:

q′(z) := χ(z)q(z),



836 F. Bertrand / J. Math. Anal. Appl. 345 (2008) 825–844
Fig. 1. Extension of the almost complex structure J .

for z ∈ Q (δ,α′) , where

q(z) := (Φ∗ J (z) + Jst
)−1(

Φ∗ J (z) − Jst
)
.

According to the fact that q(z) = O (|z1 +ρ2,2z2
2|) (see (3.11)) and according to (3.14), the differential of q′ is upper bounded

on Q (δ,α′) , independently of δ. Moreover the dz2 ⊗ ∂
∂z1

and the dz2 ⊗ ∂
∂z1

components of the structure Φ∗ J are O (|z1 +
ρ2,2z2

2||z2|) by (3.11); this is also the case for the endomorphism q′ . We define an almost complex structure on the whole
space R

4 by

J ′(z) = Jst
(
Id + q′(z)

)(
Id − q′(z)

)−1
,

which is well defined since ‖q′(z)‖ < 1. It follows that the structure J ′ is identically equal to Φ∗ J in Q (δ,α) and coincides
with Jst on R

4 \ Q (δ,α′) (see Fig. 1). Notice also that since χ ≡ dχ ≡ 0 on ∂ Q (δ,α′) , J ′ coincides with Jst at first order on
∂ Q (δ,α′) . Finally the structure J ′ satisfies

J ′ = Jst + O
(∣∣z1 + ρ2,2z2

2

∣∣)
on Q (δ,α′). To fix the notations, the almost complex structure J ′ admits the following matricial interpretation:

J ′
C

=

⎛⎜⎜⎜⎜⎝
a′

1 b′
1 c′

1 c′
2

b′
1 a′

1 c′
2 c′

1

0 0 a′
2 b′

2

0 0 b′
2 a′

2

⎞⎟⎟⎟⎟⎠ , (3.15)

with ⎧⎪⎨⎪⎩
a′

l = i + O
(‖z‖2),

b′
l = O

(‖z‖),
c′

l = O
(|z2|‖z‖),

for l = 1,2.
Furthermore, according to the decreasing property of the Kobayashi metric we have for p = (δ,0):

K(Φ(D∩U )∩Q (δ,α),Φ∗ J )(p, v) = K(Φ(D∩U )∩Q (δ,α), J ′)(p, v) � K(Φ(D∩U )∩Q (δ,α′), J ′)(p, v). (3.16)

Finally, (3.13) and (3.16) lead to

K(D∩U , J )(p, v) �
(
1 − 2δβ

)
K(Φ(D∩U )∩Q (δ,α′), J ′)(p, v). (3.17)
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This implies that in order to obtain the lower estimate of Theorem A it is sufficient to prove lower estimates for
K(Φ(D∩U )∩Q (δ,α′), J ′)(p, v).

We set Ω := Φ(D ∩ U ) ∩ Q (δ,α′) . Let Tδ be the translation of C
2 defined by

Tδ(z1, z2) := (z1 − δ, z2),

and let ϕδ be a linear diffeomorphism of R
4 such that the direct image of J ′ by ϕδ ◦ Tδ ◦ Φ , denoted by J ′ δ , satisfies

J ′ δ(0) = Jst. (3.18)

To do this we consider a linear diffeomorphism such that its differential at the origin transforms the basis (e1, (Tδ ◦
Φ)∗ J ′(0)(e1), e3, (Tδ ◦ Φ)∗ J ′(0)e3) into the canonical basis (e1, e2, e3, e4) of R

4. According to (3.10) and (3.11), we have

(Tδ ◦ Φ)∗ J ′(0) = Φ∗ J ′(δ,0) = J ′(δ,0).

This means that the endomorphism (Tδ ◦ Φ)∗ J ′(0) is block diagonal. This and the fact that J ′(δ,0) = J ′
st + O (δ) imply that

the desired diffeomorphism is expressed by

ϕδ(z) := (z1 + O
(
δ|z1|
)
, z2 + O

(
δ|z2|
))

, (3.19)

for z ∈ Tδ(Ω), and that:

(
J ′ δ)

C
(z) =

⎛⎜⎜⎜⎜⎝
a′

1,δ(z) b′
1,δ(z) c′

1,δ(z) c′
2,δ(z)

b′
1,δ(z) a′

1,δ(z) c′
2,δ(z) c′

1,δ(z)

0 0 a′
2,δ(z) b′

2,δ(z)

0 0 b′
2,δ(z) a′

2,δ(z)

⎞⎟⎟⎟⎟⎠ , (3.20)

where⎧⎪⎪⎨⎪⎪⎩
a′

k,δ(z) := a′
k

(
Φ−1 ◦ T −1

δ ◦ ϕ−1
δ (z)

)+ O (δ),

b′
k,δ(z) := b′

k

(
Φ−1 ◦ T −1

δ ◦ ϕ−1
δ (z)

)+ O (δ),

c′
k,δ(z) := c′

k

(
T −1

δ ◦ ϕ−1
δ (z)

)+ O (δ),

for k = 1,2. Furthermore we notice that the structure J ′ δ is constant and equal to Jst + O (δ) on R
4 \ (ϕδ ◦ Tδ ◦ (Ω)).

We consider now the following anisotropic dilation Λδ of C
2:

Λδ(z1, z2) :=
(

z1

z1 + 2δ
,

√
2δz2

z1 + 2δ

)
.

Its inverse is given by

Λ−1
δ (z) =

(
2δ

z1

1 − z1
,
√

2δ
z2

1 − z1

)
. (3.21)

Let

Ψδ := Λδ ◦ ϕδ ◦ Tδ.

We have the following matricial representation for the complexification of the structure J̃ δ := (Λδ)∗ J δ :

⎛⎜⎜⎜⎜⎝
A′

1,δ(z) B ′
1,δ(z) C ′

1,δ(z) C ′
2,δ(z)

B ′
1,δ(z) A′

1,δ((z) C ′
2,δ(z) C ′

1,δ(z)

D ′
1,δ(z) D ′

2,δ(z) A′
2,δ(z) B ′

2,δ(z)

D ′
2,δ(z) D ′

1,δ(z) B ′
2,δ(z) A′

2,δ(z)

⎞⎟⎟⎟⎟⎠ , (3.22)

with
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′
1,δ(z) := a′

1,δ

(
Λ−1

δ (z)
)+ 1√

2δ
z2c′

1,δ

(
Λ−1

δ (z)
)
,

A′
2,δ(z) := a′

2,δ

(
Λ−1

δ (z)
)− 1√

2δ
z2c′

1,δ

(
Λ−1

δ (z)
)
,

B ′
1,δ(z) := (1 − z1)

2

(1 − z1)2
b′

1,δ

(
Λ−1

δ (z)
)+ 1√

2δ

(1 − z1)
2z2

(1 − z1)2
c′

2,δ

(
Λ−1

δ (z)
)
,

B ′
2,δ(z) := 1 − z1

1 − z1
b′

2,δ

(
Λ−1

δ (z)
)− 1√

2δ

(1 − z1)z2

1 − z1
c′

2,δ

(
Λ−1

δ (z)
)
,

C ′
1,δ(z) := 1√

2δ
(1 − z1)c′

1,δ

(
Λ−1

δ (z)
)
,

C ′
2,δ(z) := 1√

2δ

(1 − z1)
2

1 − z1
c′

2,δ

(
Λ−1

δ (z)
)
,

D ′
1,δ(z) := z2

1 − z1

(
a′

2,δ

(
Λ−1

δ (z)
)− a′

1,δ

(
Λ−1

δ (z)
))− 1√

2δ

z2
2

1 − z1
c′

1,δ

(
Λ−1

δ (z)
)
,

D ′
2,δ(z) := 1 − z1

(1 − z1)2

(
z2b′

2,δ

(
Λ−1

δ (z)
)− z2b′

1,δ

(
Λ−1

δ (z)
))− 1√

2δ

(1 − z1)|z2|2
(1 − z1)2

c′
2,δ

(
Λ−1

δ (z)
)
.

Direct computations lead to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′
1,δ(z) = a′

1

(
z̃1 + ρ2,2 z̃2

2, z̃2
)+ 1√

2δ
z2 O
(|z̃2|
∣∣z̃1 + ρ2,2 z̃2

2
∣∣)+ O (

√
δ ),

B ′
1,δ(z) = (1 − z1)

2

(1 − z1)2
b′

1

(
z̃1 + ρ2,2 z̃2

2, z̃2
)+ 1√

2δ

(1 − z1)
2

1 − z2
1

z2 O
(|z̃2|
∣∣z̃1 + ρ2,2 z̃2

2
∣∣)+ O (

√
δ ),

C ′
1,δ(z) = 1√

2δ
(1 − z1)O

(|z̃2|
∣∣z̃1 + ρ2,2 z̃2

2
∣∣)+ O (

√
δ ),

D ′
1,δ(z) = z2

1 − z1

[(
a′

2 − a′
1

)(
z̃1 + ρ2,2 z̃2

2, z̃2
)]+ 1√

2δ

z2
2

1 − z1
O
(|z̃2|
∣∣z̃1 + ρ2,2 z̃2

2
∣∣)+ O (

√
δ ),

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
z̃1 := 2δ

z1

1 − z1
+ δ + O

(
δ2
∣∣∣∣ z1

1 − z1

∣∣∣∣),
z̃2 := √

2δ
z2

1 − z1
+ O

(
δ3/2
∣∣∣∣ z2

1 − z1

∣∣∣∣).
Notice that:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂z1
z̃1 := 2δ

1

(1 − z1)2
+ ∂

∂z1
O

(
δ2
∣∣∣∣ z1

1 − z1

∣∣∣∣),
∂

∂z1
z̃2 := −√

2δ
z2

(1 − z1)2
+ ∂

∂z1
O

(
δ3/2
∣∣∣∣ z2

1 − z1

∣∣∣∣).
The crucial step is to control ‖ J̃ ′ δ − Jst‖C1(Ψδ(Ω)) by some positive power of δ. Working on a small neighborhood of the unit

ball B (see next Lemma 3.5), it is sufficient to prove that the differential of J̃ ′ δ is controlled by some positive constant of δ.
We first need to determine the behaviour of a point z = (z1, z2) ∈ Ψδ(Ω) near the infinite point (1,0). Let ω = (ω1,ω2) ∈ Ω

be such that Ψδ(ω) = z; then:

z1 = ω1 − δ + O (δ|ω1 − δ|)
ω1 + δ + O (δ|ω1 − δ|) ,

where the two terms O (δ|ω1 − δ|) are equal, and so∣∣∣∣ 1

1 − z1

∣∣∣∣= ∣∣∣∣ω1 + δ + O (δ|ω1 − δ|)
2δ

∣∣∣∣� c1δ
−α′

, (3.23)

for some positive constant c1 independent of z. Moreover there is a positive constant c2 such that

|z2| =
√

2δ

∣∣∣∣ ω2 + O (δ|ω2|) ∣∣∣∣� c2δ
α′/2. (3.24)
ω1 + δ + O (δ|ω1 − δ|)
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All the behaviours being equivalent, we focus for instance on the derivative ∂
∂z1

D ′
1,δ(z). In this computation we focus only

on terms that play a crucial role:

∂

∂z1
D ′

1,δ(z) = − z2

(1 − z1)2

[(
a′

2 − a′
1

)(
z̃1 + ρ2,2 z̃2

2, z̃2
)]+ z2

(1 − z1)

[
∂

∂z1

(
a′

2 − a′
1

)
.

(
2δ

1

(1 − z1)2
− 4ρ2,2δ

z2
2

(1 − z1)3

)]
+ z2

(1 − z1)

[
∂

∂z2

(
a′

2 − a′
1

)
.
√

2δ
z2

(1 − z1)2

]
+ −1√

2δ

z2
2

(1 − z1)2
O
(|z̃2|
∣∣z̃1 + ρ2,2 z̃2

2
∣∣)

+ 1√
2δ

z2
2

1 − z1

∂

∂z1
O
(|z̃2|
∣∣z̃1 + ρ2,2 z̃2

2
∣∣)+ R(z).

According to (3.23), (3.24) and the fact that (a′
2 − a′

1)(z) = O |z|, it follows that for α′ small enough∣∣∣∣ ∂

∂z1
D ′

1,δ(z)

∣∣∣∣� cδs

for positive constants c and s. By similar arguments on other derivatives, it follows that there are positive constants, still
denoted by c and s such that∥∥d J̃ ′ δ∥∥

C0(Ψδ(Ω))
� cδs.

In view of the next Lemma 3.5, since Ψδ(Ω) is bounded, this also proves that∥∥ J̃ ′ δ − Jst
∥∥
C1(Ψδ(Ω))

� cδs. (3.25)

Moreover on B(0,2) \Ψδ(Ω), by similar and easier computations we see that ‖ J̃ ′ δ − Jst‖C1(B(0,2)\Ψδ(Ω)) is also controlled
by some positive constant of δ. This finally implies the crucial control:{

J̃ ′ δ(0) = Jst,∥∥ J̃ ′ δ − Jst
∥∥
C1(B(0,2))

� cδs.
(3.26)

In order to obtain estimates of the Kobayashi metric, we need to localize the domain Ψδ(Ω) = Ψδ(Φ(D ∩ U )∩Φ(Q (δ,α′)))
between two balls. This technical result is essentially due to D. Ma [18].

Lemma 3.5. There exists a positive constant C such that:

B
(
0, e−Cδα′ )⊂ Ψδ(Ω) ⊂ B

(
0, eCδα′ )

.

Proof. We have

Ψδ(z) =
(

z1 − δ + O (δ|z1 − δ|)
z1 + δ + O (δ|z1 − δ|) ,

√
2δ

z2 + O (δ|z2|)
z1 + δ + O (δ|z1 − δ|)

)
. (3.27)

Consider the following expression:

L(z) := ∣∣z1 + δ + O
(
δ|z1 − δ|)∣∣2(∥∥Ψδ(z)

∥∥2 − 1
)

= ∣∣z1 − δ + O
(
δ|z1 − δ|)∣∣2 + 2δ

∣∣z2 + O
(
δ|z2|
)∣∣2 − ∣∣z1 + δ + O

(
δ|z1 − δ|)∣∣2.

Since O (δ|z1 − δ|) in the first and last terms of the right-hand side of the previous equality are equal, this leads to

L(z) = 2δM(z) + δ2 O
(|z1|
)+ δ2 O

(|z2|2
)
,

where

M(z) := −2�e z1 + |z2|2.
Let z ∈ Ω = Φ(D ∩ U ) ∩ Q (δ,α′) . For δ small enough, we have∣∣z1 + δ + O

(
δ|z1 − δ|)∣∣2 � |z1|2 + δ2 + δ2 O

(|z1| + δ
)+ δO

(|z1|2 + δ|z1|
)+ δ2 O

(|z1| + δ
)2 + 2δ �e z1

� |z1|2 + δ2 + δO
(|z1|2

)+ δ2 O
(|z1|
)+ O

(
δ3)+ 2δ �e z1

� 3 (|z1|2 + δ2)+ 2δ �e z1. (3.28)

4
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Fig. 2. Boundary of Ω .

Moreover

2�e z1 > 2�e ρ1,1z2
1 + 2�e ρ1,2z1z2 +

∑
ρ j,k z j zk + O

(‖z‖3).
Since the defining function ρ is strictly J -plurisubharmonic, we know that, for z small enough,

∑
ρ j,k z j zk + O (‖z‖3) is

nonnegative. Hence:

2�e z1 � 2�e ρ1,1z2
1 + 2�e ρ1,2z1z2

for z sufficiently small and so there is a positive constant C1 such that:

2�e z1 � −C1|z1|‖z‖. (3.29)

Finally, (3.28) and (3.29) lead to∣∣z1 + δ + O
(
δ|z1 − δ|)∣∣2 � 1

2

(|z1|2 + δ2)
for z small enough. Hence we have∣∣∥∥Ψδ(z)

∥∥2 − 1
∣∣= |L(z)|

|z1 + δ + O (δ|z1 − δ|)|2 � 4δ|M(z)| + δ2 O (|z1|) + δ2 O (|z2|2)
|z1|2 + δ2

. (3.30)

The boundary of Ω is equal to V 1 ∪ V 2 (see Fig. 2), where{
V 1 := Φ(D ∩ U ) ∩ ∂ Q (δ,α′),

V 2 := Φ
(
∂(D ∩ U )

)∩ Q (δ,α′).

Let z ∈ V 1. According (3.30) we have

∣∣∥∥Ψδ(z)
∥∥2 − 1

∣∣� 4δ|M(z)| + δ2 O (|z1|) + δ2 O (|z2|2)
|z1|2 + δ2

� 4δ|z1| + 4δ|z2|2 + C2δ
3−α′

δ2−2α′ + δ2
� C3δ

2−α′

δ2−2α′ + δ2
� C4δ

α′
,

for some positive constants C1, C2, C3 and C4, and for α′ small enough.
If z ∈ V 2, then

M(z) = −2�e z1 + |z2|2 = O
(|z2|3 + |z1|‖z‖)

and so there is a positive constant C5 such that:

M(z) � C5δ
3
2 (1−α′). (3.31)

We finally obtain from (3.30) and (3.31):

∣∣∥∥Ψδ(z)
∥∥2 − 1

∣∣� 2C5
δ

5−3α′
2

2 2
+ C2

δ3−α′

2 2
� 2C5δ

1−3α′
2 + C2δ

1−α′ � (2C5 + C2)δ
1−3α′

2 .
|z1| + δ |z1| + δ
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This proves that:

B
(
0,1 − Cδα′)⊂ Ψδ(Ω) ⊂ B

(
0,1 + Cδα′)

,

for some positive constant C . �
Lemma 3.5 provides for every v ∈ T0C

2:

K
(B(0,eCδα

′
), J̃ ′ δ)(0, v) � K

(Ψδ(Ω), J̃ ′ δ)(0, v) � K
(B(0,e−Cδα

′
), J̃ ′ δ)(0, v). (3.32)

Lower estimate

In order to give a lower estimate of K
(B(0,eCδα

′
), J̃ ′ δ)(0, v) we need the following proposition:

Proposition 3.6. Let J̃ be an almost complex structure defined on B ⊆ C
2 such that J̃ (0) = Jst . There exist positive constants ε and

Aε = O (ε) such that if ‖ J̃ − Jst‖C1(B) � ε then we have

K(B,̃ J )(0, v) � exp

(
− Aε

2

)
‖v‖. (3.33)

Proof. Due to Lemma 1.5, there exist positive constants ε and Aε = O (ε) such that the function log‖z‖2 + Aε‖z‖ is J̃ -
plurisubharmonic on B if ‖ J̃ − Jst‖C1(B) � ε. Consider the function Ψ defined by

Ψ (z) := ‖z‖2e Aε‖z‖.

Let u :Δ → B be a J̃ -holomorphic disc such that u(0) = 0 and d0u(∂/∂x) = rv where v ∈ TqC
2 and r > 0. For ζ suffi-

ciently close to 0 we have

u(ζ ) = q + d0u(ζ ) +O
(|ζ |2).

Setting ζ = ζ1 + iζ2 and using the J̃ -holomorphy condition d0u ◦ Jst = J̃ ◦ d0u, we may write

d0u(ζ ) = ζ1d0u

(
∂

∂x

)
+ ζ2 J̃

(
d0u

(
∂

∂x

))
.

This implies∣∣d0u(ζ )
∣∣� |ζ |‖I + J̃‖

∥∥∥∥d0u

(
∂

∂x

)∥∥∥∥. (3.34)

We now consider the following function:

φ(ζ ) := Ψ (u(ζ ))

|ζ |2 = ‖u(ζ )‖2

|ζ |2 exp
(

Aε

∣∣u(ζ )
∣∣),

which is subharmonic on Δ \ {0} since log φ is subharmonic. According to (3.34) lim supζ→0 φ(ζ ) is finite. Moreover setting
ζ2 = 0 we have

lim sup
ζ→0

φ(ζ ) �
∥∥∥∥d0u

(
∂

∂x

)∥∥∥∥2

.

Applying the maximum principle to a subharmonic extension of φ on Δ we obtain the inequality:∥∥∥∥d0u

(
∂

∂x

)∥∥∥∥2

� exp Aε.

Hence, by definition of the Kobayashi infinitesimal metric, we obtain for every q ∈ D ∩ V , v ∈ Tq M:

K(D ,̃ J )(q, v) � exp

(
− Aε

2

)
‖v‖. (3.35)

This gives the desired estimate (3.33). �
In order to apply Proposition 3.6 to the structure J̃ ′ δ , it is necessary to dilate isotropically the ball B(0, eCδα′

) to the unit
ball B. So consider the dilation of C

2:
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Γ (z) = e−Cδα′
z,

K
(B(0,eCδα

′
), J̃ ′ δ)(0, v) = e−Cδα′

K
(B,Γ∗ J̃ ′ δ)(0, v). (3.36)

According to (3.32) we obtain

e−Cδα′
K

(B,Γ∗ J̃ ′ δ)(0, v) � K
(Ψδ(Ω), J̃ ′ δ)(0, v). (3.37)

Then applying Proposition 3.6 to the structure Γ∗ J̃ ′ δ = J̃ ′ δ(eCδα′
.) and to ε = cδs (see (3.26)) provides the existence of a

positive constant C1 such that:

K
(B,Γ∗ J̃ ′ δ)(0, v) � e−C1δs ‖v‖. (3.38)

Moreover

K(Ω, J ′)
(
(δ,0), v

)= K
(Ψδ(Ω), J̃ ′ δ )

(
0,d(δ,0)Ψδ(v)

)
, (3.39)

where

d(δ,0)Ψδ(v) = d0Λδ ◦ d0ϕδ ◦ d(δ,0)Tδ(v) =
(

1

2δ

(
v1 + O (δ)v1

)
,

1√
2δ

(
v2 + O (δ)v2

))
.

According to (3.17), (3.38), (3.37) and (3.39), we finally obtain

K(D, J )(p, v) � e−C2δβ′′( |v1|2
4δ2

+ |v2|2
2δ

) 1
2

, (3.40)

for some positive constant C2 and β ′′ .

Upper estimate

Now, we want to prove the existence of a positive constant C3 such that

K(D, J )(p, v) � eC3δα′( |v1|2
4δ2

+ |v2|2
2δ

) 1
2

.

According to the decreasing property of the Kobayashi metric it is sufficient to give an upper estimate for
K(Φ(D∩U )∩Q (δ,α), J )(p, v). Moreover, due to (3.32) and (3.39) it is sufficient to prove

K
(B(0,e−Cδα

′
), J̃ δ)

(0, v) � eC4δα′ ‖v‖. (3.41)

In that purpose we need to deform quantitatively a standard holomorphic disc contained in the ball B(0, e−Cδα′
) into a

J̃ δ-holomorphic disc, controlling the size of the new disc, and consequently its derivative at the origin. As previously by

dilating isotropically the ball B(0, e−Cδα′
) into the unit ball B, we may suppose that we work on the unit ball endowed

with J̃ δ satisfying (3.26).
We define for a map g with values in a complex vector space, continuous on Δ, and for z ∈ Δ the Cauchy–Green operator

by

TCG(g)(z) := 1

π

∫
Δ

g(ζ )

z − ζ
dx dy.

We consider now the operator Φ J̃ δ from C1,r(Δ,B(0,2)) into C1,r(Δ,R
4) by

Φ J̃ δ (u) :=
(

Id − TCGq J̃ δ (u)
∂

∂z

)
u,

which is well defined since J̃ δ satisfying (3.26). Let u :Δ → B be a J̃ δ-holomorphic disc in C1,r(Δ,B). According to the
continuity of the Cauchy–Green operator from Cr(Δ,R

4) into C1,r(Δ,R
4) and since J̃ δ satisfies (3.26), we get∥∥∥∥TCGq J̃ δ (u)

∂

∂z
u

∥∥∥∥
C1,r(Δ)

� c

∥∥∥∥q J̃ δ (u)
∂

∂z
u

∥∥∥∥
Cr (Δ)

� c‖q J̃ δ ‖C1(B)‖u‖C1,r(Δ) � c′∥∥ J̃ δ − Jst
∥∥
C1(B)

‖u‖C1,r (Δ) � c′′δs‖u‖C1,r(Δ),

for some positive constants c, c′ and c′′ . Hence(
1 − c′′δs)‖u‖ 1,r �

∥∥Φ δ̃ (u)
∥∥

1,r �
(
1 + c′′δs)‖u‖ 1,r , (3.42)
C (Δ) J C (Δ) C (Δ)
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Fig. 3. Deformation of a standard holomorphic disc.

for any J̃ δ-holomorphic disc u :Δ → B. This implies that the map Φ J̃ δ is a C1 diffeomorphism from C1,r(Δ,B) onto

Φ J̃ δ (C
1,r(Δ,B)). Furthermore the following property is classical: the disc u is J̃ δ-holomorphic if and only if Φ J̃ δ (u) is

Jst-holomorphic. According to (3.42), there exists a positive constant c3 such that for w ∈ R
4 with ‖w‖ = 1 − c3δ

s , the
map hw :Δ → B(0,1 − c3δ

s) defined by hw(ζ ) = ζ w belongs to Φ J̃ δ (C
1,r(Δ,B)). In particular, the map Φ−1

J̃ δ
(hw) is a J̃ δ-

holomorphic disc from Δ to the unit ball B.
Consider now w ∈ R

4 such that ‖w‖ = 1 − c3δ
s , and hw the associated standard holomorphic disc. Let us estimate the

derivative of the J̃ δ-holomorphic disc u := Φ−1
J̃ δ

(hw) at the origin:

w = ∂h

∂x
(0) = ∂

∂x

(
Φ J̃ δ (u)

)
(0) = ∂

∂x
u(0) + ∂

∂x
TCGq J̃ δ (u)

∂u

∂z
= ∂

∂x
u(0) + TCZ

(
q J̃ δ (u)

∂u

∂z

)
(0), (3.43)

where TCZ denotes the Calderon–Zygmund operator. This is defined by

TCZ(g)(z) := 1

π

∫
Δ

g(ζ )

(z − ζ )2
dx dy,

for a map g with values in a complex vector space, continuous on Δ and for z ∈ Δ, with the integral in the sense of
principal value. Since TCZ is a continuous operator from Cr(Δ,R

4) into Cr(Δ,R
4), we have∥∥∥∥TCZ

(
q J̃ δ (u)

∂u

∂z

)
(0)

∥∥∥∥� c

∥∥∥∥q J̃ δ (u)
∂

∂z
u

∥∥∥∥
Cr (Δ)

� c′′′δs‖u‖C1,r(Δ), (3.44)

for some positive constant c and c′′′ . Moreover, according to (3.42) we have

‖u‖C1,r(Δ) = ∥∥Φ−1
J̃ δ

(hw)
∥∥
C1,r (Δ)

�
(
1 + c′′δs)‖hw‖C1,r(Δ) � 2‖w‖. (3.45)

Finally (3.43), (3.44) and (3.45) lead to(
1 − 2c′′′δs)‖w‖ �

∥∥∥∥ ∂

∂x

(
Φ−1

J̃ δ
(hw)
)
(0)

∥∥∥∥�
(
1 + 2c′′′δs)‖w‖. (3.46)

This implies that the map w �→ ∂
∂x (Φ−1

J̃ δ
hw)(0) is a small continuously differentiable perturbation of the identity. More

precisely, using (3.46), there exists a positive constant c4 such that for every vector v ∈ R
4 \ {0} and for r = 1 − c4δ

s , there
is a vector w ∈ R

4 satisfying ‖w‖ � 1 + c3δ
s and such that ∂

∂x (Φ−1
J̃ δ

hw)(0) = rv/‖v‖ (see Fig. 3).

Hence the J̃ δ-holomorphic disc Φ−1
J̃ δ

hw :Δ → B satisfies⎧⎪⎨⎪⎩
Φ−1

J̃ δ
hw(0) = 0,

∂

∂x
Φ−1

J̃ δ
hw(0) = r

v

‖v‖ .

This proves estimate (3.41), giving the upper estimate of Theorem A.
The lower estimate (3.40) and the upper estimate (3.41) imply estimate (0.1) of Theorem A. �



844 F. Bertrand / J. Math. Anal. Appl. 345 (2008) 825–844
References

[1] Z.M. Balogh, M. Bonk, Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv. 75 (2000) 504–533.
[2] A. Bellaïche, The tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, in: Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 1–78.
[3] A.-L. Biolley, Floer homology, symplectic and complex hyperbolicities, arXiv: math.SG/0404551.
[4] M. Bonk, O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266–306.
[5] D. Catlin, Estimates of invariant metrics on pseudoconvex domains if dimension two, Math. Z. 200 (1989) 429–466.
[6] E. Chirka, personal communication.
[7] W.L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939) 98–105.
[8] K. Diederich, A. Sukhov, Plurisubharmonic exhaustion functions and almost complex Stein structures, arXiv: math.CV/0603417.
[9] F. Forstneric, J.-P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987)

239–252.
[10] H. Gaussier, A. Sukhov, Estimates of the Kobayashi metric on almost complex manifolds, Bull. Soc. Math. France 133 (2005) 259–273.
[11] E. Ghys, P. de la Harpe (Eds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progr. Math., vol. 83, Birkhäuser Boston, Boston, 1990.
[12] I. Graham, Boundary behaviour of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in C

n with smooth boundary, Trans.
Amer. Math. Soc. 207 (1975) 219–240.

[13] M. Gromov, Hyperbolic groups, in: G. Gernsten (Ed.), Essays in Group Theory, in: Math. Sci. Res. Inst. Publ., Springer, 1987, pp. 75–263.
[14] M. Gromov, Carnot–Carathéodory spaces seen from within, in: Sub-Riemannian Geometry, in: Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79–

323.
[15] S. Ivashkovich, J.-P. Rosay, Schwarz-type lemmas for solutions of ∂-inequalities and complete hyperbolicity of almost complex manifolds, Ann. Inst.

Fourier 54 (2004) 2387–2435.
[16] B. Kruglikov, Existence of close pseudoholomorphic disks for almost complex manifolds and their application to the Kobayashi–Royden pseudonorm,

Funktsional. Anal. i Prilozhen. 33 (1999) 46–58 (in Russian); translation in Funct. Anal. Appl. 33 (1999) 38–48.
[17] K.H. Lee, Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point, Michigan

Math. J. 54 (2006) 179–205.
[18] D. Ma, Sharp estimates of the Kobayashi metric near strongly pseudoconvex points, in: The Madison Symposium on Complex Analysis, Madison, WI,

1991, in: Contemp. Math., vol. 137, Amer. Math. Soc., Providence, RI, 1992, pp. 329–338.
[19] D. McDuff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991) 651–671.
[20] A. Nijenhuis, W. Woolf, Some integration problems in almost-complex and complex manifolds, Ann. of Math. 77 (1963) 429–484.


