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Firstly, the analysis of [A. Büyükaksoy, G. Cinar, A.H. Serbest, Scattering of plane waves
by the junction of transmissive and soft–hard half planes, ZAMP 55 (2004) 483–499] for
the scattering of plane waves by the junction of transmissive and soft–hard half planes
is extended to the case of a line source. The introduction of the line source changes the
incident field and the method of solution requires a careful analysis in calculating the
scattered field. The graphical results are presented using MATHEMATICA. We observe that
the graphs of the plane wave situation [A. Büyükaksoy, G. Cinar, A.H. Serbest, Scattering
of plane waves by the junction of transmissive and soft–hard half planes, ZAMP 55 (2004)
483–499] can be recovered by shifting the line source to a large distance. Subsequently,
the problem is further extended to the case of scattering due to a point source using
the results obtained for a line source excitation. The introduction of a point source (three
dimensions) involves another variable which then requires the calculation of an additional
integral appearing in the inverse transform.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The Wiener–Hopf (WH) technique provides a significant extension of the large class of problems that can be solved by
Fourier, Laplace and Mellin integral transform [1]. The WH technique provides us an approach for considering the diffraction
of waves by a single half plane [1]. However there are problems in dealing with other configurations which are first attacked
by using matrix version of WH equations. A comprehensive procedure for tackling the matrix version of these equations is
not yet available because it is not normally easy to split the matrix into the appropriate half planes. The noncommutativity
of the factor matrices and the requirement of the radiation conditions also present further problems. Nevertheless the
development and improvement of this technique is progressing steadily [2]. For example the Wiener–Hopf Hilbert method
introduced by Hurd [3], Rawlins [4] and Rawlins and Williams [5] is a powerful tool in the case when kernel matrix has only
branch point singularities, while the Daniele–Kharapkov method proposed by Daniele [6] and Kharapkov [7] is effective for
the class of matrices having only pole singularities and branch-cut singularities besides pole singularities [8–12].

Diffraction from a two part surface is an important topic in diffraction theory and constitute a canonical problem for
diffraction due to abrupt changes in material properties. Recently, Büyükaksoy et al. [13] considered the scattering of plane
waves by a two part surface. They developed a high frequency solution for the diffraction of plane waves by the junction of
two half planes. One half plane is characterized by partially transmissive boundary conditions and the other is soft at the
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top and hard at the bottom. In [13], using the Fourier transform technique, the related boundary value problem is reduced
to matrix Wiener–Hopf equation, which is solved by the usual Wiener–Hopf procedure [1].

In this paper, we have attempted two problems. In the first problem, we have extended the problem of plane wave
scattering [13] to the problem of scattering due to a line source situated at (x0, y0). It is perhaps the first attempt to
look at the line source geometry discussed by [13] involving the matrix Wiener–Hopf approach. The introduction of line
source changes the incident field and the method of solution requires a careful analysis in calculating the scattered field.
It is observed that when the source is shifted to a large distance our results differ from those of [13] by a multiplicative
factor which agrees with, already known, facts given in the literature [2,14]. These observations can also be verified through
the graphical results shown in this paper. It is observed that the graphs of plane wave situation [13] can be recovered by
shifting the line source to a large distance. The problem of line source scattering is further extended to the case of point
source excitation. The introduction of point source (three dimensions) introduces another variable which then requires the
calculation of an additional integral appearing in the inverse transform. The analytic solution of these integrals is obtained
using the method of steepest descent and the scattered field is presented.

2. The line source scattering

2.1. Mathematical formulation of the problem

We consider the problem of scattering of an acoustic wave from a line source located at (x0, y0) by the junction of the
soft–hard half plane located at y = 0, x > 0, and the penetrable half plane located at y = 0, x < 0, respectively so that their
edges lie along the z-axis. The geometry of the problem is shown in Fig. 1. Thus we can say that the field is independent of
the z-axis. For the harmonic acoustic vibrations of time dependence we require the solution of the wave equation(

∂2

∂x2
+ ∂2

∂ y2
+ k2

)
ϕt(x, y) = δ(x − x0)δ(y − y0), (1)

where ϕt is the total velocity potential, and the boundary conditions at the soft and hard surfaces are

ϕt
(
x,0+)= 0, x > 0, (2)

∂ϕt(x,0−)

∂ y
= 0, x > 0, (3)

and at the partially transmissive surface are [15]

∂ϕt(x,0+)

∂ y
+ ik

η
ϕt
(
x,0+)= 0, x < 0, (4)

∂ϕt(x,0−)

∂ y
− ik

η
ϕt
(
x,0−)= 0, x < 0, (5)

ϕt
(
x,0+)− ϕt

(
x,0−)= 0, x < 0. (6)

In the above relations η is the normal specific impedance of the material relative to the impedance of the surrounding
medium, k is the wave number, and a time factor e−iωt is assumed and suppressed. The boundary conditions in (4)–(6)
represent the situation in which the pressure on both sides of the sheet is equal and producing the jump discontinuity in

Fig. 1. Geometry of the problem.
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the normal component of the fluid velocity across it. These are the valid conditions from the mathematical viewpoint and
are acoustic counterpart of an electrically resistive sheet in which ϕ is then the tangential component of the electric field.

It is assumed that the wave number k has positive imaginary part. The lossless case can be obtained by making Im k → 0
in the final expressions. For the analysis purpose it is convenient to express the total field as follows [2,15,16]:

ϕt(x, y) = ϕ0(x, y) + ϕ(x, y), (7)

where ϕ0(x, y) is regarded as the unperturbed field that would exist if the whole plane y = 0+ were a soft boundary. Hence
the complementary part ϕ(x, y) represents the diffracted field. In Eq. (7), we have

ϕ0(x, y) =
{

ϕ i(x, y) + ϕr(x, y) for y > 0,

0 for y < 0,
(8)

where ϕ i is the incident field satisfying the equation(
∂2

∂x2
+ ∂2

∂ y2
+ k2

)
ϕ i(x, y) = δ(x − x0)δ(y − y0), (9)

and ϕr is the corresponding reflected field. The scattered field ϕ(x, y) satisfies the Helmholtz equation(
∂2

∂x2
+ ∂2

∂ y2
+ k2

)
ϕ(x, y) = 0. (10)

For analytic convenience, we shall assume that k has small imaginary part for which k = kr + iki , where kr and ki are
both positive. It is appropriate to define the following Fourier transform pair as follows:

ϕ̄(α, y) =
∞∫

−∞
ϕ(x, y)eiαx dx (11a)

and

ϕ(x, y) = 1

2π

∞∫
−∞

ϕ̄(α, y)e−iαx dα. (11b)

Using Eq. (11a), Eq. (10) can be written as

d2ϕ̄

dy2
+ K 2ϕ̄ = 0, (12)

where K (α) = √
k2 − α2. The square root function is defined in the complex α-plane cut such that K (0) = k.

The solution of Eq. (12) satisfying the radiation conditions can be written as

ϕ̄(α, y) =
{

A(α)eiK (α)y, y > 0,

B(α)e−iK (α)y, y < 0,
(13)

where A(α) and B(α) are the unknown coefficients to be determined.
Using Eq. (11a), from Eq. (9) we obtain the incident field and the corresponding reflected field as follows:

ϕ̄ i(α, y) = 1

2iK
eiαx0+iK (α)|y−y0| (14)

and

ϕ̄r(α, y) = − 1

2iK
eiαx0+iK (α)|y+y0|. (15)

Taking Fourier transform of the boundary conditions (2)–(6), we obtain

ϕ̄+
(
α,0+)= −

∞∫
0

ϕ0
(
x,0+)eiαx dx, (16)

∂ϕ̄+(α,0−)

∂ y
= 0, (17)

∂ϕ̄−(α,0+)

∂ y
+ ik

η
ϕ̄−
(
α,0+)= −

0∫ [
∂ϕ̄0(x,0+)

∂ y
+ ik

η
ϕ̄0
(
x,0+)]eiαx dx, (18)
−∞
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∂ϕ̄−(α,0−)

∂ y
− ik

η
ϕ̄−
(
α,0−)= 0, (19)

ϕ̄−
(
α,0+)− ϕ̄−

(
α,0−)= −

0∫
−∞

ϕ0
(
x,0+)eiαx dx. (20)

In order to obtain the unique solution it is necessary to take into account the following edge conditions

ϕ(x,0) = O
(
x

1
4
)

as x → 0, (21)

∂ϕ(x,0)

∂ y
= O

(
x− 3

4
)

as x → 0. (22)

The substitution of Eq. (13) into boundary conditions (16)–(20) and the Fourier inversion of the resulting integral equations
yield

A(α) = ϕ̄−
(
α,0+)− ∞∫

0

ϕ0
(
x,0+)eiαx dx, (23)

B(α) = ϕ̄′−(α,0−)

K (α)
, (24)

A(α) − B(α) = Λ̄+(α) −
0∫

−∞
ϕ0
(
x,0+)eiαx dx, (25)

[
2k

η
+ K (α)

]
A(α) + K (α)B(α) = Λ̄′+(α) − 2k

η

[ ∞∫
−∞

ϕ0
(
x,0+)eiαx dx

]
− 1

i

0∫
−∞

ϕ′
0(x,0)eiαx dx, (26)

where prime “′” denotes the differentiation with respect to y and ϕ̄−(α,0+), ϕ̄′−(α,0−), Λ̄+(α) and Λ̄′+(α) are defined by

ϕ̄−
(
α,0+)=

0∫
−∞

ϕ
(
x,0+)eiαx dx, (27)

ϕ̄′−
(
α,0−)= i

0∫
−∞

∂ϕ(x,0−)

∂ y
eiαx dx, (28)

Λ̄+(α) =
∞∫

0

[
ϕ
(
x,0+)− ϕ

(
x,0−)]eiαx dx, (29)

Λ̄′+(α) =
∞∫

0

[
∂ϕ(x,0+)

∂ y
− ∂ϕ(x,0−)

∂ y

]
eiαx dx. (30)

Due to the analytic properties of the Fourier integrals ϕ̄−(α,0+), ϕ̄′−(α,0−), Λ̄+(α) and Λ̄′+(α) are regular functions of α
in the half planes Im(α) < Im(k cos θ0) and Im(α) > Im(−k), respectively. By using the edge conditions (21)–(22) it can be
easily shown that when we let |α| → ∞ in their respective regions of regularity we have

ϕ̄−
(
α,0+)= O

(
α− 5

4
)

(31)

and

ϕ̄′−
(
α,0−)= O

(
α− 1

4
)
. (32)

The elimination of A(α) and B(α) between Eqs. (23)–(26) leads to the following matrix Wiener–Hopf equation valid in the
strip Im(−k) < Im(α) < Im(k cos θ0)[

1 − 1
K (α)

2k
η + K (α) 1

][
ϕ̄−(α,0+)

ϕ̄′−(α,0−)

]
=
[

Λ̄+(α)

Λ̄′+(α)

]
+
[q

r

]
, (33)

q = −
0∫

ϕ0
(
x,0+)eiαx dx +

∞∫
ϕ0
(
x,0+)eiαx dx, (34)
−∞ 0
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r = −2k

η

[ ∞∫
−∞

ϕ0
(
x,0+)eiαx dx

]
− 1

i

0∫
−∞

ϕ′
0(x,0)eiαx dx +

(
2k

η
+ K (α)

) 0∫
−∞

ϕ0
(
x,0+)eiαx dx, (35)

with

M(α) =
[

1 − 1
K (α)

2k
η + K (α) 1

]
. (36)

In order to obtain the explicit solution of Eq. (33), we first need to factorize the kernel matrix M(α) as the product of two
non-singular matrices say M+(α) and M−(α) whose entries are the regular functions of α in the upper and lower half
planes, respectively. The kernel matrix M(α) is factorized by [13] using the Daniele–Kharapkov method [7]. Further details
can be found in [13]. The Daniele–Kharapkov method suggests that we have to pre-multiply the matrix given in Eq. (36)
with the following constant matrix

C =
[

1 0

− 2k
η 1

]
, (37)

and then write it in the form necessary for the application of Kharapkov method. Thus, we have

W(α) = CM(α) =
[

1 0
0 1

]
+ 1

K (α)

[
0 −1

k2 − α2 2k
η

]
=
[

F+ G+
H+ J+

][
F− G−
H− J−

]
. (38)

The matrix W(α) is a special form which can be factorized through the Kharapkov method. Omitting the details [13] we
give the final expression for W+(α) as

W+(α) =
(

2

η

) 1
4 1√

κ+(α)

⎡⎣ cosh �(α) − k
η

sinh�(α)√
α2−σ 2

− sinh�(α)√
α2−σ 2

(k2 − α2)
sinh�(α)√

α2−σ 2
cosh �(α) + k

η
sinh�(α)√

α2−σ 2

⎤⎦=
[

F+ G+
H+ J+

]
, (39)

so that

W−(α) = W+(−α), (40)

�(α) = 1

4
ln

{
(σ 2 + kα − √

α2 − σ 2
√

k2 − σ 2 )(α + √
k2 − α2 )

σ 2(k + α)

}
, (41)

and

σ = k

√
1 − 1

η2
. (42)

In Eq. (39), κ+(α) and κ−(α) = κ+(−α) are the split functions regular and free of zeros in the upper and lower half planes,
respectively, resulting from the factorization of

κ(α) = K (α)

k + ηK (α)
(43)

as

κ(α) = κ−(α)κ+(α). (44)

Noticing that κ+(α) and κ−(α) can be expressed in terms of Maliuzhinetz function [17] as follows

κ−(k cos θ) = 2
3
2

√
2

η
sin

θ

2

{
Mπ ( 3π

2 − θ − ψ)Mπ (π
2 − θ + ψ)

M2
π (π

2 )

}{[
1 + √

2 cos

( π
2 − θ + ψ

2

)]

×
[

1 + √
2 cos

( 3π
2 − θ − ψ

2

)]}−1

(45)

with

sin ψ = 1

η
(46)

and

Mπ (z) = exp

{
− 1

8π

z∫
π sin u − 2

√
2 sin u

2 + 2u

cos u
du

}
, (47)
0
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and when we let |α| → ∞ in the upper half plane, we obtain

W+(α) ≈ 1√
2

{
k − √

k2 − σ 2

σ 2

} 1
4
[
α

1
4 α− 3

4

α
5
4 α

1
4

]
, (48)

W−(α) = W+(−α). (49)

With this factorization of the kernel matrix, Eq. (33) can be rearranged as

W+(α)W−(α)

[
ϕ̄−(α,0+)

ϕ̄′−(α,0−)

]
= C

[
Λ̄+(α)

Λ̄′+(α)

]
+ C

[q
r

]
(50)

or

W−(α)

[
ϕ̄−(α,0+)

ϕ̄′−(α,0−)

]
= W−1+ (α)C

[
Λ̄+(α)

Λ̄′+(α)

]
+ W−1+ (α)C

[q
r

]
. (51)

Eq. (51) is the matrix Wiener–Hopf equation. To make it regular in the upper and lower half planes we need to split the
term

W−1+ (α)C
[q

r

]
.

This can be achieved by using the additive decomposition theorem [1, p. 14]. This term can be decomposed as follows:

W−1+ (α)C
[q

r

]
=
[ T

S

]
=
[

T+ + T−
S+ + S−

]
. (52)

Using Eqs. (37) and (39), we arrive at

W−1+ (α)C
[q

r

]
=
[

J+q − G+(− 2k
η + r)

−H+q + F+(− 2k
η + r)

]
=
[ T

S

]
=
[

T+ + T−
S+ + S−

]
, (53)

where

T±(α) = ± 1

2π i

∞+ic∫
−∞+ic

T (ξ)

ξ − α
dξ = ± 1

2π i

∞+ic∫
−∞+ic

[ J+(ξ)q(ξ) − G+(ξ)(− 2k
η + r(ξ))

ξ − α

]
dξ, (54)

S±(α) = ± 1

2π i

∞+id∫
−∞+id

S(ξ)

ξ − α
dξ = ± 1

2π i

∞+id∫
−∞+id

[−H+(ξ)q(ξ) + F+(ξ)(− 2k
η + r(ξ))

ξ − α

]
dξ. (55)

Using Eqs. (34), (35) and (39) in Eqs. (54) and (55), the explicit expressions for T−(α) and S−(α) are given as follows:

T−(α) = 1

2π i

∞+ia∫
−∞+ia

[ (
η
2 )

1
4
√

κ+(ξ) exp(iξx0 + iK (ξ)|y0|) sinh�(ξ)√
ξ2−σ 2

ξ − α

]
dξ (56)

and

S−(α) = 1

2π i

∞+ia∫
−∞+ia

[ (
η
2 )

1
4
√

κ+(ξ) exp(iξx0 + iK (ξ)|y0|){cosh�(ξ) − k
η

sinh�(ξ)√
ξ2−σ 2

}
ξ − α

]
dξ. (57)

Using Eq. (52) in Eq. (51) and separating into positive and negative portions, we arrive at

W−(α)

[
ϕ̄−(α,0+)

ϕ̄′−(α,0−)

]
−
[ T−

S−

]
= W−1+ (α)C

[
Λ̄+(α)

Λ̄′+(α)

]
+
[ T+

S+

]
. (58)

The left-hand side of Eq. (58) is regular in the lower half plane Im(α) < Im(k cos θ0) and the right-hand side is regular in
the upper half plane Im(α) > Im(−k). Hence by analytic continuation principle both sides define an entire matrix-valued
function P(α). To find the exact value of P(α), we take into account the order relations in Eqs. (31), (32), (48) and (49)
which help us to conclude from the extended Liouville’s theorem that the P(α) is a constant matrix of the form

P(α) =
[ 0

p∗
]
, (59)

where p∗ can be evaluated as follows.
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From Eq. (58), we obtain[
ϕ̄−(α,0+)

ϕ̄′−(α,0−)

]
=
[

J− −G−
−H− F−

][
T−

S− + p∗

]
. (60)

The above equation can further be simplified to get[
ϕ̄−(α,0+)

ϕ̄′−(α,0−)

]
=
[

J−T− − G−(S− + p∗)
−H−T− + F−(S− + p∗)

]
. (61)

The unknown constant p∗ can be specified by taking into account the order relations in Eqs. (31) and (32). By using (40)
one obtains[

ϕ̄−(α,0+)

ϕ̄′−(α,0−)

]
≈ √

2

{
k − √

k2 − σ 2

σ 2

}− 1
4

[p∗ − T̃−]
[

(−α)− 3
4

(−α)− 1
4

]
+ O

[
(−α)− 5

4

(−α)− 1
4

]
, (62)

with

T̃− = lim
α→∞αT−. (63)

The correct behavior of ϕ̄−(α,0+) and ϕ̄′−(α,0−) is recovered if we choose

p∗ = T̃−. (64)

Hence the explicit expressions for ϕ̄−(α,0+) and ϕ̄′−(α,0−) are given as

ϕ̄−
(
α,0+)=

(
η

2

) 1
4√

κ−(α)

[{
1

2π i

∞+ia∫
−∞+ia

(
1

ξ − α

)(
η

2

) 1
4√

κ+(ξ) exp iξx0 + iK (ξ)|y0|
(

sinh �(ξ)√
ξ2 − σ 2

)
dξ

}

×
{

cosh �(−α) + k

η

sinh �(−α)√
α2 − σ 2

}
+
{

sinh �(−α)√
α2 − σ 2

}{
1

2π i

∞+ia∫
−∞+ia

(
1

ξ − α

)(
η

2

) 1
4√

κ+(ξ)

× exp
(
iξx0 + iK (ξ)|y0|

)(
cosh �(ξ) − k

η

sinh �(ξ)√
ξ2 − σ 2

)
dξ + p∗

}]
, (65)

and

ϕ̄′−
(
α,0−)=

(
η

2

) 1
4√

κ−(α)

[{
1

2π i

∞+ia∫
−∞+ia

(
1

ξ − α

)(
η

2

) 1
4√

κ+(ξ) exp
(
iξx0 + iK (ξ)|y0|

)( sinh �(ξ)√
ξ2 − σ 2

)
dξ

}

×
{
−(k2 − α2) sinh �(−α)√

α2 − σ 2

}
+
{

cosh �(−α) − k

η

sinh �(−α)√
α2 − σ 2

}{
1

2π i

∞+ia∫
−∞+ia

(
1

ξ − α

)(
η

2

) 1
4√

κ+(ξ)

× exp
(
iξx0 + iK (ξ)|y0|

)(
cosh �(ξ) − k

η

sinh �(ξ)√
ξ2 − σ 2

)
dξ + p∗

}]
. (66)

2.2. The far field solution

Now by substituting Eqs. (65) and (66) into Eqs. (23) and (24) and then resulting equations in Eq. (13) and taking the
inverse Fourier transform, we obtain for y > 0,

ϕ(x, y) = 1

2π

∞∫
−∞

(
η

2

) 1
4√

κ−(α)

[{
1

2π i

∞+ia∫
−∞+ia

(
1

ξ − α

)(
η

2

) 1
4√

κ+(ξ) exp
(
iξx0 + iK (ξ)|y0|

)( sinh �(ξ)√
ξ2 − σ 2

)
dξ

}

×
{

cosh �(−α) + k

η

sinh �(−α)√
α2 − σ 2

}
+
{

sinh �(−α)√
α2 − σ 2

}{
1

2π i

∞+ia∫
−∞+ia

(
1

ξ − α

)(
η

2

) 1
4√

κ+(ξ)

× exp
(
iξx0 + iK (ξ)|y0|

)(
cosh �(ξ) − k

η

sinh �(ξ)√
ξ2 − σ 2

)
dξ + p∗

}]
eiK (α)y−iαx dα, (67)
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and for y < 0

ϕ(x, y) = 1

2π

∞∫
−∞

(
η

2

) 1
4√

κ−(α)

[{
1

2π i

∞+ia∫
−∞+ia

(
1

ξ − α

)(
η

2

) 1
4√

κ+(ξ) exp
(
iξx0 + iK (ξ)|y0|

)( sinh �(ξ)√
ξ2 − σ 2

)
dξ

}

×
{
−(k2 − α2) sinh �(−α)√

α2 − σ 2

}
+
{

cosh �(−α) − k

η

sinh �(−α)√
α2 − σ 2

}{
1

2π i

∞+ia∫
−∞+ia

(
1

ξ − α

)(
η

2

) 1
4√

κ+(ξ)

× exp
(
iξx0 + iK (ξ)|y0|

)(
cosh �(ξ) − k

η

sinh �(ξ)√
ξ2 − σ 2

)
dξ + p∗

}]
e−iK (α)y−iαx dα. (68)

To determine the far field behavior of the scattered field we introduce the following substitutions

x = ρ cos θ, y = ρ sin θ (0 < θ < π), (69)

x0 = ρ0 cos θ0, y0 = ρ0 sin θ0 (π < θ0 < 0) (70)

and the transformation

α = −k cos(θ + it1). (71)

The explicit expression for the constant p∗ is determined from Eqs. (56), (63) and (64) which give it as

p∗ = 1

2π i

√
2π

kρ0

(
η

2

) 1
4 k

π
sin θ0

√
κ+(k cos θ0)√

k2 cos2 θ − σ 2
sinh �(k cos θ0)exp

(
ikρ0 + i

π

4

)
, (72)

where t1, given in Eq. (71) is real. The contour of integration over α in Eqs. (67) and (68) goes into the branch of hyperbola
around −ik if π

2 < θ < π . We further observe that, in deforming the contour into a hyperbola the pole α = ξ may be
crossed. If we also make the transformation ξ = k cos(θ0 + iτ1) the contour over ξ also goes into a hyperbola. The two
hyperbolae will not cross each other if θ < θ0. However, if the inequality is reversed there will be a contribution from the
pole which, in fact, cancels the incident wave in the shadow region. Omitting the details of calculations, using the method
of steepest descent, the field due to a line source at a large distance from the edge is given for both cases y > 0 and y < 0,
respectively. For y > 0, we have

ϕ(ρ, θ) ≈ e
−iπ

2

2π

(
η

2

) 1
4√

κ+(k cos θ)
exp(ikρ + ikρ0)√

ρρ0

[{
cosh �(k cos θ) + k

η

sinh �(k cos θ)√
k2 cos2 θ − σ 2

}

×
{

i

(
η

2

) 1
4

sin
θ

2
sin

θ0

2

√
κ+(k cos θ0)√

k2 cos2 θ0 − σ 2
sinh �(k cos θ0)

}
+ sinh �(k cos θ)√

k2 cos2 θ − σ 2

×
{(

i

(
η

2

) 1
4

sin
θ

2
sin

θ0

2

√
κ+(k cos θ0)

)(
cosh �(k cos θ0) − k

η

sinh �(k cos θ0)√
k2 cos2 θ0 − σ 2

)
+ sin

θ

2
sin

θ0

2
(cos θ0 + cos θ0)p

}][
F

(√
2kρ cos

θ − θ0

2

)
+ F

(√
2kρ cos

θ + θ0

2

)]
. (73)

For y < 0, the far field is given as follows:

ϕ(ρ, θ) ≈ e
−iπ

2

2π

(
η

2

) 1
4√

κ+(k cos θ)
exp(ikρ + ikρ0)

k
√

ρρ0

[{
−k2 sin2 θ

sinh �(k cos θ)√
k2 cos2 θ − σ 2

}

×
{

i

(
η

2

) 1
4 sin θ0

2

2 cos θ
2

√
κ+(k cos θ0)√

k2 cos2 θ0 − σ 2
sinh �(k cos θ0)

}
+
{

cosh �(k cos θ) − k

η

sinh �(k cos θ)√
k2 cos2 θ − σ 2

}

×
{(

i

(
η

2

) 1
4 sin θ0

2

2 cos θ
2

√
κ+(k cos θ0)

)(
cosh �(k cos θ0) − k

η

sinh �(k cos θ0)√
k2 cos2 θ0 − σ 2

)

+ sin θ0
2

2 cos θ
2

(cos θ0 + cos θ0)p

}][
F

(√
2kρ cos

θ − θ0

2

)
+ F

(√
2kρ cos

θ + θ0

2

)]
. (74)

We observe that the unknown constant p∗ goes into p as determined by [13] at this stage and F (z) stands for the Fresnel
function as defined in [1,16]

F (z) = e−iz2

∞∫
z

eit2
dt.
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Fig. 2. The amplitude of the diffracted field (y > 0) versus the observation angle for different values of η (imaginary) for (panel (a)) ρ0 = 0.001, (panel (b))
ρ0 = 0.01, (panel (c)) ρ0 = 0.05 and (panel (d)) ρ0 = 0.5. The other parameters are θ0 = π/2, ρ = 1 and k = 1.

2.3. Computational results

In this section we will present some graphical results (Figs. 2–6) showing the effects of resistivity η and the line source
parameter ρ0 on the diffraction phenomenon. By increasing the parameter η, whether it is real or pure imaginary, and fixing
the parameter ρ0 the diffracted field increases for both the cases y > 0 and y < 0. Also by increasing the parameter ρ0 and
fixing the parameter η the diffracted field decreases for both the cases y > 0 and y < 0, respectively.

3. The point source scattering

3.1. Mathematical formulation

For the case of point source scattering we suppose that a point source is occupying the position (x0, y0, z0). Thus we
require the solution of the equation(

∂2

∂x2
+ ∂2

∂ y2
+ ∂2

∂z2
+ k2

)
Φt(x, y, z) = δ(x − x0)δ(y − y0)δ(z − z0), (75)

subject to the following boundary conditions, for x > 0

Φt
(
x,0+, z

)= 0, (76)

∂Φt(x,0−, z)

∂ y
= 0, (77)

and for x < 0

∂Φt(x,0+, z)

∂ y
+ ik

η
Φt
(
x,0+, z

)= 0, (78)

∂Φt(x,0−, z) − ik
Φt
(
x,0−, z

)= 0, (79)

∂ y η
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Fig. 3. The amplitude of the diffracted field (y > 0) versus the observation angle for different values of η (real) for (panel (a)) ρ0 = 0.001, (panel (b))
ρ0 = 0.01, (panel (c)) ρ0 = 0.05 and (panel (d)) ρ0 = 0.5. The other parameters are θ0 = π/2, ρ = 1 and k = 1.

Fig. 4. The amplitude of the diffracted field (y > 0) versus the observation angle for different values of ρ0 for (panel (a)) η = −0.25i, (panel (b)) η = −0.25.
The other parameters are θ0 = π/2, ρ = 1 and k = 1.

Φt
(
x,0+, z

)− Φt
(
x,0−, z

)= 0, (80)

where Φt is the total acoustic field, defined as

Φt(x, y, z) = Φ0(x, y, z) + Φ(x, y, z), (81)

where Φ is the scattered field and Φ0 represents the effect due to a point source.
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Fig. 5. The amplitude of the diffracted field (y < 0) versus the observation angle for different values of η (imaginary) for (panel (a)) ρ0 = 0.001, (panel (b))
ρ0 = 0.01, (panel (c)) ρ0 = 0.05 and (panel (d)) ρ0 = 0.5. The other parameters are θ0 = π/2, ρ = 1 and k = 1.

Fig. 6. The amplitude of the diffracted field (y < 0) versus the observation angle for different values of ρ0 for (panel (a)) η = −0.25i, (panel (b)) η = −0.5i.
The other parameters are θ0 = π/2, ρ = 1 and k = 1.

Let us define the Fourier transform and the inverse Fourier transform with respect to the variable z as follows:

Φ̄(x, y,μ) =
∞∫

−∞
Φ(x, y, z)eikμz dz, (82a)

Φ(x, y, z) = k

2π

∞∫
Φ̄(x, y,μ)e−ikμz dμ. (82b)
−∞
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Taking Fourier transform of Eqs. (75) to (79), the problem with boundary conditions in the transformed domain μ takes the
following form(

∂2

∂x2
+ ∂2

∂ y2
+ k2γ 2

)
Φ̄t = aδ(x − x0)δ(y − y0), (83)

with γ =√1 − μ2, and a = eikμz0 .
The transformed boundary conditions take the form

Φ̄t
(
x,0+,μ

)= 0, (84)

∂Φ̄t(x,0−,μ)

∂ y
= 0, (85)

∂Φ̄t(x,0+,μ)

∂ y
+ ik

η
Φ̄t
(
x,0+,μ

)= 0, (86)

∂Φ̄t(x,0−,μ)

∂ y
− ik

η
Φ̄t
(
x,0−,μ

)= 0, (87)

Φ̄t
(
x,0+,μ

)− Φ̄t
(
x,0−,μ

)= 0. (88)

Thus we see that the problem (83) together with the boundary conditions (84)–(88) in the transformed domain μ is the
same as in the case of two dimensions formulated in Section 2 except that k2γ 2 replaces k2.

3.2. Solution of the problem

As mentioned before, the mathematical problem (83) together with the boundary conditions (84)–(88) in the transformed
domain μ is the same as in the case of two dimensions formulated in Section 2 except that k2γ 2 replaces k2 [18,19]. Thus
making use of Eqs. (73) and (74) we can calculate the scattered field due to a point source as follows.

For y > 0

Φ̄(ρ, θ,μ) ≈
(

e
−iπ

2

2π

(
η

2

) 1
4√

κ+(kγ cos θ)

)[{
cosh �(kγ cos θ) + kγ

η

sinh �(kγ cos θ)√
k2γ 2 cos2 θ − σ 2

}

×
{

i

(
η

2

) 1
4

sin
θ

2
sin

θ0

2

√
κ+(kγ cos θ0)√

k2γ 2 cos2 θ0 − σ 2
sinh �(kγ cos θ0)

}
+ sinh �(kγ cos θ)√

k2γ 2 cos2 θ − σ 2

×
{(

i

(
η

2

) 1
4

sin
θ

2
sin

θ0

2

√
κ+(kγ cos θ0)

)

×
(

cosh �(kγ cos θ0)

− kγ
η

sinh�(kγ cos θ0)√
k2γ 2 cos2 θ0−σ 2

)
+ sin

θ

2
sin

θ0

2
(cos θ + cos θ0)p∗∗

}]

×
[

F̃

(√
2kγρ cos

θ − θ0

2

)
+ F̃

(√
2kγρ cos

θ + θ0

2

)]
exp[ikγ (ρ + ρ0) + ikμz0]√

ρρ0
. (89)

For y < 0

Φ̄(ρ, θ,μ) ≈
(

e
−iπ

2

2π

(
η

2

) 1
4√

κ+(kγ cos θ)

)[{
−k2γ 2 sin2 θ

sinh �(kγ cos θ)√
k2γ 2 cos2 θ − σ 2

}{
i

(
η

2

) 1
4 sin θ0

2

2 cos θ
2

×
√

κ+(kγ cos θ0)√
k2γ 2 cos2 θ0 − σ 2

sinh �(kγ cos θ0)

}
+
(

cosh �(kγ cos θ) − kγ

η

sinh �(kγ cos θ)√
k2γ 2 cos2 θ − σ 2

)

×
{(

i

(
η

2

) 1
4 sin θ0

2

2 cos θ
2

√
κ+(kγ cos θ0)√

k2γ 2 cos2 θ0 − σ 2

)(√k2γ 2 cos2 θ0 − σ 2 cosh �(kγ cos θ0)

− kγ
η sinh �(kγ cos θ0)

)

+ sin θ0
2

2 cos θ
2

(cos θ + cos θ0)p∗∗
}][

F̃

(√
2kγρ cos

θ − θ0

2

)
+ F̃

(√
2kγρ cos

θ + θ0

2

)]
× exp[ikγ (ρ + ρ0) + ikμz0]

kγ
√

ρρ0
. (90)

The scattered field in the spatial domain can now be obtained by taking the inverse Fourier transform of Eqs. (89) and (90).
Thus, for y > 0,
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Φ(ρ, θ, z) ≈ k

2π

∞∫
−∞

(
e

−iπ
2

2π

(
η

2

) 1
4√

κ+(kγ cos θ)

)[{
cosh �(kγ cos θ) + kγ

η

sinh �(kγ cos θ)√
k2γ 2 cos2 θ − σ 2

}

×
{

i

(
η

2

) 1
4

sin
θ

2
sin

θ0

2

√
κ+(kγ cos θ0)√

k2γ 2 cos2 θ0 − σ 2
sinh �(kγ cos θ0)

}
+ sinh �(kγ cos θ)√

k2γ 2 cos2 θ − σ 2

×
{(

i

(
η

2

) 1
4

sin
θ

2
sin

θ0

2

√
κ+(kγ cos θ0)

)(
cosh �(kγ cos θ0) − kγ

η

sinh �(kγ cos θ0)√
k2γ 2 cos2 θ0 − σ 2

)
+ sin

θ

2
sin

θ0

2
(cos θ + cos θ0)p∗∗

}][
F̃

(√
2kγρ cos

θ − θ0

2

)
+ F̃

(√
2kγρ cos

θ + θ0

2

)]
× exp[ikγ (ρ + ρ0) + ikμz0 − ikμz]

kγ
√

ρρ0
dμ, (91)

and for y < 0

Φ(ρ, θ,μ) ≈ k

2π

∞∫
−∞

(
e

−iπ
2

2π

(
η

2

) 1
4√

κ+(kγ cos θ)

)[{
−k2γ 2 sin2 θ

sinh �(kγ cos θ)√
k2γ 2 cos2 θ − σ 2

}{
i

(
η

2

) 1
4 sin θ0

2

2 cos θ
2

×
√

κ+(kγ cos θ0)√
k2γ 2 cos2 θ0 − σ 2

sinh �(kγ cos θ0)

}
+
(

cosh �(kγ cos θ) − kγ

η

sinh �(kγ cos θ)√
k2γ 2 cos2 θ − σ 2

)

×
{

i

(
η

2

) 1
4 sin θ0

2

2 cos θ
2

√
κ+(kγ cos θ0)√

k2γ 2 cos2 θ0 − σ 2

(√
k2γ 2 cos2 θ0 − σ 2 cosh �(kγ cos θ0)

− kγ
η sinh �(kγ cos θ0)

)

+ sin θ0
2

2 cos θ
2

(cos θ + cos θ0) p∗∗
}][

F̃

(√
2kγρ cos

θ − θ0

2

)
+ F̃

(√
2kγρ cos

θ + θ0

2

)]
× exp[ikγ (ρ + ρ0) + ikμz0 − ikμz]

kγ
√

ρρ0
dμ. (92)

The integrals appearing in expressions (91) and (92) can be evaluated asymptotically by the method of steepest descent
(see Appendix A), and the far field for y > 0 and y < 0 are finally given as follows.

For y > 0

Φ(ρ, θ, z) ≈ exp

[
−i

π

4
+ ikR1

][
g1(s1)ε1

√
a1+ρ + ρ0

R1(R11 + R1)
F̃ (τR1 ) + g1(s2)ε2

√
a2+ρ + ρ0

R1(R12 + R1)
F̃ (τR2 )

]
+
√

a1

2π
exp

[
−i

π

4
+ ikR11

]
g1

(
a1

R11

)
1

R11
H(−ε1) +

√
a2

2π
exp

[
−i

π

4
+ ikR12

]
g1

(
a2

R2

)
1

R12
H(−ε2), (93)

for y < 0

Φ(ρ, θ, z) ≈ exp

[
−i

π

4
+ ikR1

][
g2(s1)ε1

√
a1+ρ + ρ0

R1(R11 + R1)
F̃ (τR1 ) + g2(s2)ε2

√
a2+ρ + ρ0

R1(R12 + R1)
F̃ (τR2 )

]
+
√

a1

2π
exp

[
−i

π

4
+ ikR11

]
g2

(
a1

R11

)
1

R11
H(−ε1) +

√
a2

2π
exp

[
−i

π

4
+ ikR12

]
g2

(
a2

R2

)
1

R12
H(−ε2), (94)

where

s1 =
√

τ 2
R1

(2kR11 + τ 2
R1

) + k2a2
1

τ 2
R1

+ kR11
and s2 =

√
τ 2

R2
(2kR12 + τ 2

R2
) + k2a2

2

τ 2
R1

+ kR12
. (95)

In expressions (93) and (94) H(.) is the usual Heaviside function and the quantities μ1, f1(μ), g1(μ), a1, R11, τR1 , ε1
and R1 have already been explained in Appendix A. We wish to remark here that the other quantities for e.g., R12, τR2 , ε2
etc. may be seen from [18,19].

The unknown constant p∗∗ for the case of point source scattering is given as follows:

p∗∗ =
(

η

2

) 1
4 kγ

π i

√
κ+(kγ cos θ0)√

k2γ 2 cos2 θ − σ 2
sinh �(kγ cos θ0). (96)
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4. Concluding remarks

In this article, the line source and the point source scattering of acoustic waves by the junction of partially transmissive
and soft–hard half planes are studied. The boundary value problem is reduced to a matrix Wiener–Hopf equation by using
the Fourier transform technique. Then solution of the problem requires the Wiener–Hopf factorization of the kernel matrix
involved in the equation. This factorization is performed by Büyükaksoy et al. [13] which can be used for our analysis. The
problem is then solved completely. It is observed that our analysis differs from [13] by a multiplicative factor which agrees
well with the literature [2,14]. Finally the graphs (Figs. 2–6) for the line source situation are presented. It is also observed
that the graphs of [13] can be recovered, by shifting the line source at large distance.
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Appendix A

In this appendix, we evaluate the integral

I1 ≈ k

2π

∞∫
−∞

(
e

−iπ
2

2π

(
η

2

) 1
4√

κ+(kγ cos θ)

)[{
cosh �(kγ cos θ) + kγ

η

sinh �(kγ cos θ)√
k2γ 2 cos2 θ − σ 2

}{
i

(
η

2

) 1
4

sin
θ

2
sin

θ0

2

×
√

κ+(kγ cos θ0)√
k2γ 2 cos2 θ0 − σ 2

sinh �(kγ cos θ0)

}
+ sinh �(kγ cos θ)√

k2γ 2 cos2 θ − σ 2

{(
i

(
η

2

) 1
4

sin
θ

2
sin

θ0

2

√
κ+(kγ cos θ0)

)

×
(

cosh �(kγ cos θ0)

− kγ
η

sinh�(kγ cos θ0)√
k2γ 2 cos2 θ0−σ 2

)
+ sin

θ

2
sin

θ0

2
(cos θ + cos θ0)p∗∗

}][
F̃

(√
2kγρ cos

θ − θ0

2

)]
× exp[ikγρ + ikγρ0 + ikμz0 − ikμz]√

ρρ0
dμ. (A.1)

Substitute

μ1 =√2ρ cos
θ − θ0

2

and

f1(μ) =
(

e
−iπ

2

2π

(
η

2

) 1
4√

κ+(kγ cos θ)

)[{
cosh �(kγ cos θ) + kγ

η

sinh �(kγ cos θ)√
k2γ 2 cos2 θ − σ 2

}{
i

(
η

2

) 1
4

sin
θ

2
sin

θ0

2

×
√

κ+(kγ cos θ0)√
k2γ 2 cos2 θ0 − σ 2

sinh �(kγ cos θ0)

}
+ sinh �(kγ cos θ)√

k2γ 2 cos2 θ − σ 2

{(
i

(
η

2

) 1
4

sin
θ

2
sin

θ0

2

√
κ+(kγ cos θ0)

)

×
(

cosh �(kγ cos θ0)

− kγ
η

sinh�(kγ cos θ0)√
k2γ 2 cos2 θ0−σ 2

)
+ sin

θ

2
sin

θ0

2
(cos θ + cos θ0)p∗∗

}]
.

Eq. (A.1) will take the form

I1 = k

2π

∞∫
−∞

f1(μ) F̃
(
μ1
(
k
√

1 − μ2
) 1

2
)exp[ikγ (ρ + ρ0) − ikμ(z − z0)]√

ρρ0
dμ. (A.2)

Making use of the result

∞∫
z

eiλt2
dt = eiλz2 F (λ

1
2 z)

λ
1
2

, (A.3)

expression (A.2) will take the form [18,19]

I1 = k

2π

∞∫ ∞∫
f1(μ)(k

√
1 − μ2 )

1
2√

ρρ0
e−ik[μ(z−z0)−

√
1−μ2(ρ+ρ0+t2−μ2)] dμdt. (A.4)
μ1 −∞
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Let g1(μ) = f1(μ)(k
√

1−μ2)
1
2√

ρρ0
and consider the integral

I ′1 =
∞∫

−∞
g1(μ)e−ik[μ(z−z0)−

√
1−μ2(ρ+ρ0+t2−μ2)] dμ. (A.5)

In order to solve the integral (A.5) we introduce the following substitutions:

μ = cosβ, γ =
√

1 − μ2 = sin β,

z − z0 = R1 cosν, P = R1 sinν. (A.6)

I ′1 takes the form

I ′1 =
∞∫

−∞
g1(β)e−ikR1 cos(β+ν)(− sin β)dβ. (A.7)

We apply the method of steepest descent to solve the integral I ′1. For this, we deform the contour of integration so as to
pass through the point of steepest descent β = −ν , so that the major part of integrand is given by integration over the part
of deformed contour near −ν with g1(β) slowly varying around it. Therefore,

I ′1 ≈ π g1(−ν) sinνH(1)
0 (kR1) ≈ π g1(Ω)H(1)

0

[
k
{
(z − z0)

2 + P 2} 1
2
]
Ω, (A.8)

where Ω = P

[(z−z0)2+P 2] 1
2

.

Using (A.8), expression (A.4) will take the form

I1 = k

2

∞∫
μ1

g1(Ω)H(1)
0

[
k
{
(z − z0)

2 + (ρ + ρ0 + t2 − μ2
1

)2} 1
2
] ρ + ρ0 + t2 − μ2

1

{(z − z0)2 + (ρ + ρ0 + t2 − μ2
1)

2} 1
2

dt. (A.9)

If we make the substitutions

t2 = −a1 +
√

a2
1 + R2

11 sinh2 u, a1 = ρ + ρ0 − μ2
1 and R2

11 = (z − z0)
2 + a2

1, (A.10)

in (A.9), it will yield

I1 = k

4

∞∫
ε1

[
g1(Ω̃)H(1)

0 (kR11 cosh u)
(√

a2
1 + R2

11 sinh2 u + a1
) 1

2
]

du, (A.11)

where

Ω̃ =
√

a2
1 + R2

11 sinh2 u

R11 cosh u
and ε1 = sinh−1

{μ1

√
μ2

1 + 2a1

R11

}
.

The integral in expression (A.11) can be solved asymptotically for kR11 cosh u � 1. Therefore the Hankel function can be
replaced by the first term of its asymptotic expansion to give

I1 = k

4

∞∫
ε1

[
g1(Ω̃)

{√
2

πkR11 cosh u

} 1
2

ei(kR11 cosh u− π
4 )
(√

a2
1 + R2

11 sinh2 u + a1
) 1

2

]
du. (A.12)

If we let τ = √
2kR11 sinh u in the integral appearing in expression (A.12), then

I1 =
√

2k

π

e−i π
4 +ikR11

2

∞∫
τR1

g1(τ )e−iτ 2
dτ , (A.13)

where

g1(τ ) =
{√τ 2(τ 2 + 2kR11) + k2a2

1 + ka1

(τ 2 + kR11)(τ 2 + 2kR11)

} 1
2

g1(Ω̂), Ω̂ =
√

τ 2(τ 2 + 2kR11) + k2a2
1

τ 2 + kR11
,

τR1 =√k(R1 − R11) and ε1 = sgn(τR1 ). (A.14)

An asymptotic expansion of I1 then follows by putting τ equal to its lower limit value in the nonexponential part of the
integrand plus the contribution from τ = 0 if zero lies in the interval of integration. Hence in our case, for I1 it is given in
Eq. (93).
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