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In this paper, we are interested in computing the different convex envelopes of functions
depending on polynomials, especially those having it is main part change sign on rank-
one matrices. Our main result applies to functions of the type W (F ) = ϕ(P (F )), W (F ) =
ϕ(P (F )) + f (det F ) or W (F ) = ϕ(P (F )) + g(adjn F ) defined on the space of matrices,
where ϕ, f : R → R and g : R

3 → R are three continuous functions, and P = P0 + P1 +
· · · + Pd is a polynomial such that Pd has the property of changing sign on rank-one
matrices. Then the polyconvex, quasi-convex and rank-one convex envelopes of W are
equal.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The basic problem of the calculus of variations is to minimize functionals of the type:

Min I(u) =
∫
Ω

W
(∇u(x)

)
dx

over a space of admissible functions, where Ω ⊂ R
n is a smooth domain, u : Ω → R

m is the dependent variable and
∇u = (

∂ui
∂x j

) denote the jacobien matrix of u. In nonlinear elasticity (see [2,8]), u stands for the displacement vector and ∇u

is the deformation gradient.
To have existence of solutions to the minimization problem by using the direct method in the calculus of variations, one

needs to have the weak lower semi-continuity of the functional I:

u j ⇀ u in W 1,p(
Ω,R

m) ⇒ 1

|Ω|
∫
Ω

W
(∇u(x)

)
dx � 1

|Ω|
∫
Ω

W
(∇u j(x)dx

)
.

This property is equivalent to the quasi-convexity of the integrand W (see [3]):

W (F ) � 1

|Ω|
∫
Ω

W
(

F + ∇ψ(x)
)

dx

for any matrix F and any test function ψ ∈ W 1,∞
0 (Ω). The quasi-convexity was introduced by C.B. Morrey (see [12]), but it

is very difficult to check it for a given function is quasi-convex. Two other notions were introduced, one necessary and the
other sufficient. The sufficient one is polyconvexity, it was introduced by J. Ball [2] when dealing with problems in nonlinear
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elasticity, the second one is known as rank-one-convexity. We say that a function is polyconvex if it can be written as a
convex expression of the minors of the matrix and We say that a function W is rank-one convex if:

W
(
λA + (1 − λ)B

)
� λW (A) + (1 − λ)W (B)

provided that (A − B) is a rank-one matrix.
If the quasi-convexity is not satisfied by the function W , the functional I do not satisfy the weak lower semi-continuity

property, and the direct method of the calculus of variations can not be applied to the minimization problem. One way to
overcome the situation is to consider the so-called relaxed problem:

inf
∫
Ω

Q W
(∇u(x)

)
dx

where Q W stands for the quasi-convex envelope of the function W , which is the largest quasi-convex function less than W .
For more details, see [10]. This process is like the quasi-saddlification used for relaxation of constained problems of optimal
design in the absence of analytic description of a G-closure see [16]. The difficult part of the problem is to compute explicitly
this envelope.

In the present work, we are interested in the relaxation of a class of integrands defined on the space of matrices
depending on polynomial functions having the property of changing sign on the cone of rank-one matrices. We would like
to compute explicitly the quasi-convex envelope of the associated functional. In Section 2 we deal with functions depending
only on polynomials. Our main result in this situation is the following.

Theorem 1.1. Let P (X) = P0(X) + P1(X) + · · · + Pd(X) be a polynomial function defined on the space of n × m real matrices, where
each Pi is the part of the polynomial of degree i, such that there exist two rank-one matrices E1, E2 verifying

Pd(E1) > 0, Pd(−E1) > 0, Pd(E2) < 0, Pd(−E2) < 0,

and let ϕ be a real-valued function bounded from bellow, μ = inf ϕ > −∞. Then if we consider the function W defined on the space
R

n,m of n × m matrices by the expression:

W (F ) = ϕ
(

P (F )
)
,

we have

C W (F ) = P W (F ) = Q W (F ) = RW (F ) = μ, ∀F ∈ R
n,m.

If the integrand is a sum of two terms, one depending on a polynomial and the other on the determinant of the matrix,
then we prove in Section 3 that

Theorem 1.2. Let P (X) : R
n,n → R, P = P0 + P1 + · · · + Pd be a polynomial function of degree d such that there exists a vector

T ∈ R
n satisfying:

Pd(0, T ,0, . . . ,0) < 0, Pd(0,−T ,0, . . . ,0) < 0, Pd(T ,0, . . . ,0) > 0, Pd(−T ,0, . . . ,0) > 0,

and let f , ϕ be two real-valued functions such that f is continuous and ϕ is bounded from below, μ = infϕ . If we set

W (F ) = ϕ
(

P (F )
) + f (det F ),

then

P W (F ) = Q W (F ) = RW (F ) = μ + C f (det F ).

Finally, in Section 4, we take, instead of the determinant, the function adjn F and we prove that

Theorem 1.3. Let P = P0 + P1 + · · · + Pd be a polynomial of any degree defined on the space R
2,3 such that there exists a vector

L ∈ R
2 satisfying the following condition

Pd(L,αL,0)T > 0, Pd(−L,−αL,0)T > 0, Pd(0,αL, L)T < 0, Pd(0,−αL,−L)T < 0, ∀α ∈ R,

and let ϕ : R → R, f : R
3 → R be two continuous functions such that ϕ is bounded from below, μ = infϕ , and

W (F ) = ϕ
(

P (F )
) + f

(
adj2(F )

)
.

Then

P W (F ) = Q W (F ) = RW (F ) = μ + C f
(
adj2(F )

)
.



528 O. Boussaid / J. Math. Anal. Appl. 349 (2009) 526–543
In the different cases, the general method consist to show that the polyconvex and the rank-one convex envelopes are
equals.

Several works deal with the topic of computing these relaxed integrands.

(1) The optimal disigh problem: The quasi-convexification of the optimal disigh problem is given in [13] and [14]. For f
defined by

F ∈ M
m,n 	→ f (F ) =

{
1 + ‖F‖2 if F �= 0,

0 if F = 0,

we have
(a) If n = 1, then

C f (F ) = P f (F ) = Q f (F ) = R f (F ) =
{

1 + ‖F‖2
2 if ‖F‖2

2 � 1,

2‖F‖2 if ‖F‖2
2 � 1.

(b) If n > 1, then P f (F ) = Q f (F ) = R f (F ) = h(F ), where

h(F ) =
{

1 + ‖F‖2
2 if ‖F‖2

2 + 2‖adj2 F‖2 � 1,

2(‖F‖2
2 + 2‖adj2 F‖2)

1
2 − 2‖adj2 F‖2 if ‖F‖2

2 + 2‖adj2 F‖2 � 1.

(2) In [9] and [10], B. Dacorogna has relaxed some funcionals depending either on determinant, euclidean norme or the
function adjn F .
(a) For f : M

m,n → R such that f (F ) = g(Φ(F )), where Φ : M
m,n → R is a quasi-affine function (i.e. Φ quasi-convex

and −Φ is quasi-convex), g a real function. Then

P f = Q f = R f = C g,

and in general

Q f > C f .

(b) Let f : M
n+1,n → R and g : R

n+1 → R such that f (F ) = g(adjn F ). Then

P f = Q f = R f = C g,

and in general

Q f > C f .

(c) Let f : M
2,2 → R, g and h : R → R where h is a convex function such that

F = (Fij)1�i, j�2, f (F ) = g(F11) + h(det F )

then

P f = Q f = R f = C g + h.

(d) Let g : R+ → R such that

g(0) = inf
{

g(x): x � 0
}

and f : M
m,n → R is such that

f (F ) = g
(‖F‖2

)
,

then in general

P f > C f = C g.

If there exists a real α � 0, verifying:

g(α) = g(0) and C g(x) = g(x), ∀x � α,

then

C f = P f .

(3) The Saint Venant–Kirchhoff energy is given by:

F ∈ M
n,n 	→ W (F ) = λ

(tr Ē)2 + μ tr(Ē)2,

2
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In [15], H. Ledret and A. Raoult have computed Q W in terms of the singular values of the matrix:

0 � v1(F ) � v2(F ) � v3(F ).

For all x ∈ R let [x]2+ = x2 if x � 0 and [x]2+ = 0 if x � 0, we define the function Ψ over the set:

Σ = {
v = (v1, v2, v3) ∈ R

3: 0 � v1 � v2 � v3
}

by:

Ψ (v) = E

8

[
v2

3 − 1
]2
+ + E

8(1 − υ2)

[
v2

2 + υv2
3 − (1 + υ)

]2
+

+ E

8(1 − υ2)(1 − 2υ)

[
(1 − υ)v2

1 + υ
(

v2
2 + v2

3

) − (1 + υ)
]2
+,

then the quasi-convex envelope of W is given by:

Q W (F ) = Ψ
(

v1(F ), v2(F ), v3(F )
)
.

In the case n = 2, we have:

Q W (F ) = E

8(1 − υ2)

[(
v2(F )

)2 − 1
]2
+

+ E(1 − υ)

8(1 + υ)(1 − 2υ)

[(
v1(F )

)2 + ν

1 − ν

(
v2(F )

)2 − 1

1 − ν

]2

+
.

(4) The James–Eriksen energy can be writen as: F = (Fij)1�i, j�2 ∈ M
2,2

ϕ(F ) = k1
(

F 2
11 + F 2

12 + F 2
21 + F 2

22 − 2
)2 + k2(F11 F12 + F21 F22)

2 + k3

(
F 2

11 + F 2
21 − F 2

12 − F 2
22

2
− ε2

)2

,

where k1,k2,k3 � 0. In [6] we have:
– if k1 = 0, then

Cϕ = Pϕ = Q ϕ = Rϕ = 0;
– if k3 = 0, then

Cϕ = Pϕ = Q ϕ = Rϕ.

If we let for F ∈ M
2,2 C = F T F , then:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rϕ(F ) = 0 if Tr(C) � 2 and 2|C12| � 2 − Tr(C),

Rϕ(F ) = k1(Tr C − 2)2 + k2C2
12 if Tr C � 2 and k2|C12| � 2k1(Tr C − 2),

Rϕ(F ) = k1(Tr C − 2)2 + k2C2
12 − (2k1(Tr C − 2) − k2|C12|)

4k1 + k2
if

⎧⎨
⎩

Tr C � 2 and k2|C12| � 2k1(Tr C − 2),

where

Tr C � 2 and 2|C12| � 2 − Tr C .

(5) In [5] we have considered functions of the type:

W (F ) = f
(

F 1, F 2, . . . , F n−1) + ϕ(adjn F )

where f : (Rn)n−1 → R is a convex function and ϕ : R
n+1 → R is continuous, then

P W (F ) = Q W (F ) = RW (F ) = f
(

F 1, F 2, . . . , F n−1) + Cϕ(adjn F ).

More relaxation results can be found in [4–7,11,17].

2. Case of functions depending only on polynomials

Let us denote by P (X) a polynomial function defined on the space R
n,m of n × m matrices. P (X) can be expressed as

follow:

P (X) = P0(X) + P1(X) + · · · + Pd(X)

such that P0(X) is of degree zero (a real constant), P1 is of degree one, and Pd(X) is of degree d.
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Lemma 2.1. Let P (X) ∈ R[X1, X2, . . . Xnm] such that

P (X) = P0(X) + P1(X) + · · · + Pd(X).

Suppose that there exists a rank-one matrix E ∈ R
n,m such that

Pd(E) > 0, Pd(−E) > 0.

Let α ∈ R and F ∈ R
n,m be such that P (F ) � α. Then there exist two matrices B, C ∈ R

n,m, a real λ ∈ [0,1] such that

F = λB + (1 − λ)C,

rank(B − C) � 0,

P (B) = P (C) = α.

Proof. We first choose Bt = F + t E . Then for t = 0, we have P (B0) = P (F ) � α and when t tends to +∞, we get:

lim
t→+∞ P (Bt) = lim

t→+∞
[

P0(Bt) + P1(Bt) + · · · + Pd(Bt)
]

= lim
t→+∞

[
P0(F + t E) + P1(F + t E) + · · · + Pd(F + t E)

]
= lim

t→+∞

[
td

(
1

td
P0 + 1

td−1
P1

(
1

t
F + E

)
+ · · · + Pd

(
1

t
F + E

))]

= lim
t→+∞ td P d(E) = +∞.

By continuity, there exists a real t0 ∈ ]0,+∞] such that P (Bt0 ) = α. For this value of t , we let for λ ∈ [0,1[,

Cλ = F − λ

1 − λ
t0 E.

Clearly, with this choice of Cλ , we have for all λ ∈ [0,1[,
λBt0 + (1 − λ)Cλ = F ,

rank(Bt0 − Cλ) = rank E � 1.

We just have to choose λ such that P (Cλ) = α. For λ = 0, one has

P (C0) = P (F ) � α

and

lim
t→1− P (Cλ) = lim

t→1−
[

P0(Cλ) + P1(Cλ) + · · · + Pd(Cλ)
]

= lim
t→1− y

[
P0 + P1

(
F − λ

1 − λ
t0 E

)
+ · · · + Pd

(
F − λ

1 − λ
t0 E

)]

= lim
t→1−

(
λt0

1 − λ

)d[(
1 − λ

λt0

)d

P0 +
(

1 − λ

λt0

)d−1

P1

(
1 − λ

λt0
F − E

)
+ · · ·

+
(

1 − λ

λt0

)
Pd−1

(
1 − λ

λt0
F − E

)
+ Pd

(
1 − λ

λt0
F − E

)]

= lim
t→1−

(
λt0

1 − λ

)d(
Pd(−E)

) = +∞.

By continuity again, there exists a real λ0 ∈ [0,1[ such that P (Cλ0 ) = α which concludes the proof of Lemma 2.1. �
Theorem 2.1. Let P (X) = P0(X) + P1(X) + · · · + Pd(X) a polynomial function defined on the space of n × m real matrices such that
there exist two rank-one matrices E1, E2 verifying

Pd(E1) > 0, Pd(−E1) > 0, Pd(E2) < 0, Pd(−E2) < 0,

and let ϕ be a real-valued function bounded from bellow, μ = inf ϕ > −∞. Then if we consider the function W defined on the space
R

n,m of n × m matrices by the expression:

W (F ) = ϕ
(

P (F )
)
,

we have

C W (F ) = P W (F ) = Q W (F ) = RW (F ) = μ, ∀F ∈ R
n,m.
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Proof. For ε > 0 we take αε such that

μ + ε � ϕ(αε).

Let F ∈ R
n,m .

• Suppose first that P (F ) � αε . Thanks to Lemma 2.1, we have the existence of two matrices Bε and Cε and a real
λε ∈ [0,1] such that

F = λε Bε + (1 − λε)Cε,

rank(Bε − Cε) � 0,

P (Bε) = P (Cε) = αε.

By the rank one convexity of RW , we have:

RW (F ) � λε RW (Bε) + (1 − λε)RW (Cε)

� λεϕ
(

P (Bε)
) + (1 − λε)ϕ

(
P (Cε)

)
= ϕ(αε) � μ + ε.

As ε is arbitrary, we conclude that:

P (F ) � αε ⇒ RW (F ) � μ.

• Suppose now that P (F ) � αε . Then −P (F ) � −αε . By Lemma 2.1 applied to −P instead of P and E2 instead of E1, we
can find two matrices Bε and Cε , a real λε ∈ [0,1] such that

F = λε Bε + (1 − λε)Cε,

rank(Bε − Cε) � 0,

P (Bε) = P (Cε) = αε,

and we conclude as in the first case. Therefore we have

∀F ∈ R
n,m: μ � C W (F ) � P W (F ) � Q W (F ) � RW (F ) � μ.

Then

∀F ∈ R
n,m: C W (F ) = P W (F ) = Q W (F ) = RW (F ) = μ. �

Examples.

(1) As an application of the previous relaxation result, we take

P (F ) =
n∑

i=1

(|F1|i − |F2|i
)
, F = (F1, F2) ∈ R2,2.

If we take ϕ(x) = (x − α)2, then minϕ = 0. Let W (F ) = ϕ(P (F )). As a consequence of Theorem 2.1, we have

P W (F ) = Q W ( f ) = RW ( f ) = 0.

(2) In a more general situation we take

P (F ) =
∑

i, j∈K

aij(Fi .F j)
2 −

∑
i, j /∈K

aij(Fi .F j)
2,

where Fi are the entries of the matrix F , Fi .F j stands for the scalar product, K is any nonempty subset of {1,2, . . . ,n}×
{1,2, . . . ,n} and aij are positive constants. We take ϕ(x) = (x − α)2. Let W (F ) = ϕ(P (F )) then we have

P W (F ) = Q W ( f ) = RW ( f ) = 0.
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3. Cases including determinant

Now we consider the case of functions having a term depending on determinant, of the form:

W (F ) = ϕ
(

P (F )
) + f (det F ).

In this case, we prove that the polyconvex, quasi-convex and rank-one convex envelopes are equal to the function
infϕ + C f (det F ), where infϕ > −∞ and C f is the convexification of the function f . Before proving this, we give some
preliminary results.

Lemma 3.1. For n ∈ N, F ∈ R
n,n, we denote F = (F1, F2, . . . , Fn), where F1, F2, . . . , Fn are the column vectors of F . Let P (X) :

R
n,n → R be a polynomial function

P (X) = P0(X) + P1(X) + · · · + Pd(X),

α ∈ R is a real number, F is an n × n matrix such that F2 �= 0, P (F ) � α, and

Pd(F2,0,0, . . . ,0) > 0; Pd(−F2,0,0, . . . ,0) > 0.

Then, there exist two matrices B and C such that

F = λB + (1 − λ)C,

rank(B − C) � 0,

det B = det C = det F ,

P (B) = P (C) = α.

Proof. We choose

Bt = (F1 + t F2, F2, . . . , Fn), Ct =
(

F1 − λ

(1 − λ)
t F2, F2, . . . , Fn

)
.

Clearly, we have F = λB + (1 − λC), det Bt = det Ct = det F and rank(Bt − Ct) = 1, ∀t ∈ R. For t ∈ [0,+∞[ we let

η(t) = P
(

Bt
)
.

η is a continuous function of the variable t on the interval [0,+∞[, η(0) = P (F ) � α and

lim
t→+∞μ(t) = lim

t→+∞
[

P0 + P1(Bt) + · · · + Pd(Bt)
]

= lim
t→+∞ td

[
1

td
P0 + 1

td−1
P1

(
F1

t
+ F2,

F2

t
, . . . ,

Fn

t

)
+ · · · + Pd

(
F1

t
+ F2,

F2

t
, . . . ,

Fn

t

)]

= lim
t→+∞ td Pd(F2,0, . . . ,0) = +∞.

By continuity, there exists a real t0 such that η(t0) = α. For this value t0, we consider the second equation and we let for
λ ∈ [0,1[:

ξ(λ) = P

(
F1 − λ

1 − λ
t0 F2, F2, . . . , Fn

)
.

The function ξ is continuous and such that ξ(0) = P (F ) � α, Moreover

lim
λ→1− ξ(t) = lim

t→+∞
[

P0 + P1(Ct0 ) + · · · + Pd(Ct0 )
]

= lim
λ→1−

(
1

ε

)d[
εd P0 + εd−1 P1(εF1 − F2εF2, . . . , εFn) + · · · + Pd(εF1 − F2, εF2, . . . , εFn)

]
= lim

λ→1− εd Pd(−F2,0, . . . ,0) = +∞,

where ε = 1−λ
λt0

verifies limλ→1−ε = 0.

By continuity again, there exists a real λ ∈ [0,1[ such that ξ(λ) = α, and hence

P (B) = P (C) = α.

The proof of the lemma is finished. �
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Lemma 3.2. Let P (X) : R
n,n → R be a polynomial function

P (X) = P0(X) + P1(X) + · · · + Pd(X),

α ∈ R is a real number, F is an n × n matrix such that F1 �= 0, P (F ) � α, and

Pd(0, F1,0, . . . ,0) < 0, Pd(0,−F1,0, . . . ,0) < 0.

Then, there exist two matrices B and C such that

F = λB + (1 − λ)C,

rank(B − C) � 1,

det B = det C = det F ,

P (B) = P (C) = α.

The proof of the lemma is the same as in the above case. We have just to take −P instead of P , −α instead of α, and
then choose Bt and Ct as follows

Bt = (F1, F2 + t F1, F3, . . . , Fn), Ct =
(

F1, F2 − λ

(1 − λ)
t F1, F3, . . . , Fn

)
.

Lemma 3.3. Let P (X) : R
n,n → R, P = P0 + P1 +· · ·+ Pd be a polynomial function of degree d such that there exists a vector T ∈ R

n

satisfying:

Pd(0, T ,0, . . . ,0) < 0, Pd(0,−T ,0, . . . ,0) < 0, Pd(T ,0, . . . ,0) < 0, Pd(−T ,0, . . . ,0) < 0.

Then, for every n × n matrix F such that det(F1, T , F3, . . . , Fn) �= 0 there exist two real matrices B, C ∈ R
n,n, and a real λ ∈ [0,1]

such that

F = λB + (1 − λ)C,

rank(B − C) � 1,

det B = det C = det F ,

Pd(B2,0, . . . ,0) > 0, Pd(0, B1,0, . . . ,0) < 0, Pd(−B2,0, . . . ,0) > 0, Pd(0,−B1,0, . . . ,0) < 0,

Pd(C2,0, . . . ,0) > 0, Pd(0, C1,0, . . . ,0) < 0, Pd(−C2,0, . . . ,0) > 0, Pd(0,−C1,0, . . . ,0) < 0,

B1(x) �= 0, B2(x) �= 0, C1(x) �= 0, C2(x) �= 0.

Proof. We choose B(x) and C(x) as follows

B(x) = (
F1 − (1 − λ)xT , F2 − (1 − λ)αxT , F3, . . . , Fn

)
,

C(x) = (F1 + λxT , F2 + λαxT , F3, . . . , Fn),

with

α = −det
(T , F2, F3, . . . , Fn)

det(F1, T , F3, . . . , Fn)
.

Clearly, with this choice we have F = λB(x) + (1 − λ)C(x), rank(B(x) − C(x)) � 0, det B(x) = det C(x) = det F , and

lim
x→+∞ Pd

(
0, F1 − (1 − λ)xT ,0, . . . ,0

) = lim
x→+∞(1 − λ)dxd Pd(0,−T ,0, . . . ,0) = −∞,

lim
x→+∞ Pd

(
0,−(

F1 − (1 − λ)xT
)
,0, . . . ,0

) = lim
x→+∞(1 − λ)dxd Pd(0, T ,0, . . . ,0) = −∞,

lim
x→+∞ Pd

(
F2 − (1 − λ)αxT ,0, . . . ,0

) = lim
x→+∞(1 − λ)dαdxd Pd(−T ,0, . . . ,0) = +∞,

lim
x→+∞ Pd

(−(
F2 − (1 − λ)αxT

)
,0, . . . ,0

) = lim
x→+∞(1 − λ)dαdxd Pd(T ,0, . . . ,0) = +∞.

If α � 0 and d is odd we consider the following equations:

lim
x→+∞ Pd

(
F2 − (1 − λ)αxT ,0, . . . ,0

) = lim
x→+∞(1 − λ)d(−1)dαdxd Pd(T 0, . . . ,0) = +∞,

lim Pd
(−(F2 − (1 − λ)αxT ),0, . . . ,0

) = lim (1 − λ)d(−1)dαdxd Pd(−T ,0, . . . ,0) = +∞.

x→+∞ x→+∞
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Hence, we can choose a real x1 such that for all x � x1, we get B1(x) �= 0, B2(x) �= 0 and:

Pd
(

B2(x),0, . . . ,0
)
> 0, Pd

(−B2(x),0, . . . ,0
)
> 0,

Pd
(
0, B1(x),0, . . . ,0

)
< 0, Pd

(
0,−B1(x),0, . . . ,0

)
< 0.

In the same way, we can choose another real x2 such that ∀x � x2, we get C1(x) �= 0, C2(x) �= 0 and:

Pd
(
C2(x),0, . . . ,0

)
> 0, Pd

(−C2(x),0, . . . ,0
)
> 0,

Pd
(
0, C1(x),0, . . . ,0

)
< 0, Pd

(
0,−C1(x),0, . . . ,0

)
< 0.

To finish the proof, we have to choose x � max(x1, x2). �
The main result of this section is the following:

Theorem 3.1. Let P (X) : R
n,n → R, P = P0 + P1 + · · · + Pd be a polynomial function of degree d such that there exists a vector

T ∈ R
n satisfying:

Pd(0, T ,0, . . . ,0) < 0, Pd(0,−T ,0, . . . ,0) < 0, Pd(T ,0, . . . ,0) > 0, Pd(−T ,0, . . . ,0) > 0,

and let f , ϕ be two real-valued functions such that f is continuous and ϕ is bounded from below, μ = infϕ . If we set

W (F ) = ϕ
(

P (F )
) + f (det F ),

then

P W (F ) = Q W (F ) = RW (F ) = μ + C f (det F ).

Proof. The function F 	→ μ + C f (det F ) is a polyconvex function less than W , then

μ + C f (det F ) � P W (F ), ∀F ∈ R
n,n.

Let F ∈ R
n,n , ε > 0 be fixed.

(1) Step one. We show that if

Pd(0, F1,0, . . . ,0) < 0, Pd(0,−F1,0, . . . ,0) > 0, Pd(F2,0, . . . ,0) < 0, Pd(−F2,0, . . . ,0) > 0,

then

RW (F ) � μ + f (det F ).

• We suppose first that F1 �= 0 and F2 �= 0.
There exists a real constant α such that

μ + ε � ϕ(α).

Then, using Lemma 3.1 if P (F ) � α, or Lemma 3.2 if P (F ) � α, there exist two matrices B and C so that

F = λB + (1 − λ)C,

rank(B − C) � 1,

det B = det C = det F ,

P (B) = P (C) = α.

Therefore we have

RW (F ) � λRW (B) + (1 − λ)RW (C)

� λϕ
(

P (B)
) + λ f (det B) + (1 − λ)

(
ϕ

(
P (C)

) + f (det C)
)

= ϕ(α) + λ f (det F ) + (1 − λ) f (det F ) � μ + f (det F ) + ε.

As ε is arbitrary we conclude that

RW (F ) � μ + f (det F ).
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• We assume now that F1 = 0 or F2 = 0. Let F ε be a sequence of matrices such that F ε → F and F ε
i �= 0, i = 1,2. This

choice is possible since we can choose F ε = (εT , F2, . . . , Fn) if F1 = 0, F2 �= 0, F ε = (F1, εT , F3, . . . , Fn) if F2 = 0,
F1 �= 0, and F ε = (εT , εT , F3, . . . , Fn) if F1 = F2 = 0. where T is the same vector as in Theorem 3.1.
By hypothesis and continuity of Pd , the part of P of degree d, we can have for ε sufficiently small

Pd
(

F ε
2 ,0, . . . ,0

)
> 0, Pd

(
0, F ε

1 ,0, . . . ,0
)
< 0,

Pd
(−F ε

2 ,0, . . . ,0
)
> 0, Pd

(
0,−F ε

1 ,0, . . . ,0
)
< 0.

We then conclude as in the first case that

RW
(

F ε
)
� μ + f

(
det F ε

)
.

Letting ε go to 0, we get:

RW (F ) � μ + f (det F ).

(2) Step two. In this case we suppose that the hypothesis of the first step is not satisfied.
• If det(F1, T , F3, . . . , Fn) �= 0, thanks to Lemma 3.3, there exist two matrices B, C , and a real λ ∈ [0,1] such that

F = λB + (1 − λ)C,

rank(B − C) � 1,

det B = det C = det F ,

Pd(B2,0, . . . ,0) > 0, Pd(−B2,0, . . . ,0) > 0,

Pd(0, B1,0, . . . ,0) < 0, Pd(0,−B1,0, . . . ,0) < 0,

Pd(C2,0, . . . ,0) > 0, Pd(−C2,0, . . . ,0) > 0,

Pd(0, C1,0, . . . ,0) < 0, Pd(0,−C1,0, . . . ,0) < 0,

B1 �= 0, B2 �= 0, C1 �= 0, C2 �= 0.

Then by using the first step for the matrices B and C , we have

RW (F ) � λRW (B) + (1 − λ)RW (C)

� λ
[
μ + f (det B)

] + (1 − λ)
[
μ + f (det C)

]
= λ

[
μ + f (det F )

] + (1 − λ)
[
μ + f (det F )

]
= μ + f (det F ).

• Let det(F1, T , F3, . . . , Fn) = 0. Consider the sequence F ε such that limε→0 F ε = F , and

det
(

F ε
1 , T , F ε

3 , . . . , F ε
n

) �= 0.

By making use of the first step, we have

RW
(

F ε
)
� μ + f

(
det F ε

)
.

Letting ε go to 0, we get:

RW (F ) � μ + f (det F ).

Finally, we have proved that

∀F ∈ R
n,n: RW (F ) � μ + f (det F ).

The function F → RW (F ) − μ is rank-one convex and bounded from above by the function f (det F ), so that

RW (F ) − μ = R(RW (F ) − μ) � R
(

f (det F )
) = C f (det F ),

then

RW (F ) = C f (det F ) + μ.

Which end the proof. �
In the general case n � 3, by using the same techniques, we prove the following corollary:



536 O. Boussaid / J. Math. Anal. Appl. 349 (2009) 526–543
Corollary 3.1. Let P (X) : R
n,n → R, P = P0 + P1 + · · · + Pd be a polynomial function of degree d such that there exists a vector

T ∈ R
n satisfying:

Pd(0, T ,0, . . . ,0) < 0, Pd(0,−T ,0, . . . ,0) < 0,

and

Pd(T ,0,0, . . . ,0) > 0, Pd(−T ,0,0, . . . ,0) < 0,

and let f , ϕ be two real-valued functions such that f is continuous and ϕ is bounded from below, μ = infϕ , and h : R
n,n−2 → R be

a convex function. If we set

W (F ) = ϕ
(

P (F )
) + f (det F ) + h(F3, F4, . . . , Fn),

then

P W (F ) = Q W (F ) = RW (F ) = μ + C f (det F ) + h(F3, F4, . . . , Fn).

The proof of the corollary is the same as the proof of Theorem 3.1 by using in addition the following result:

Theorem 3.2. Let f be a real-valued continuous function and h : R
n,n−1 → R a convex function. W : R

n,n → R a function defined by

W (F ) = f (det F ) + h(F2, F3, . . . , Fn),

then

P W (F ) = Q W (F ) = RW (F ) = C f (det F ) + h(F2, F3, . . . , Fn).

The proof of Theorem 3.2 is essentially based on the following decomposition lemma.

Lemma 3.4. Let b, c be real constants, λ ∈ ]0,1[, and F ∈ R
n,n such that

rank(F2, F3, . . . , Fn) = n − 1,

and

det F = λb + (1 − λ)c.

Then, there exist two real matrices B and C in R
n,n such that

F = λB + (1 − λ)C, rank(B − C) � 1, det B = b, det C = c,

and

(B2, B3, . . . , Bn) = (C2, C3, . . . , Cn) = (F2, F3, . . . , Fn).

Proof. Let T be a vector in R
n such that T /∈ 〈F2, F3, . . . , Fn〉, where 〈F2, F3, . . . , Fn〉 denote the vector space generated by

the vectors F2, F3, . . . , Fn . We choose

B = (F1 + αT , F2, F3, . . . , Fn)t , C =
(

F1 − λ

1 − λ
αT , F2, F3, . . . , Fn

)t

,

then, it is sufficient to choose α = b−det F
det(T ,F2,F3,...,Fn)t to have the result. �

Proof of Theorem 3.2.

• Suppose first that rank(F2, F3, . . . , Fn) = n − 1.

Let ε > 0, F ∈ R
n,n and b, c ∈ R, λ ∈ [0,1] be such that

det F = λb + (1 − λc),

and

C f (det F ) + ε � λ f (b) + (1 − λ) f (c).

Let B and C two matrices in R
n,n as in Lemma 3.4, then

RW (F ) � λRW (B) + (1 − λ)RW (C) � C f (det F ) + ε + h(F2, F3, . . . , Fn).

Since ε is arbitrary we conclude that

RW (F ) � C f (det F ) + h(F2, F3, . . . , Fn).
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• Suppose now that rank(F2, F3, . . . , Fn) < n − 1, let F2, F3, . . . , Fm such that

rank(F2, F3, . . . , Fm) = m − 1,

and

∀i ∈ {m + 1,m + 2, . . . ,n}: Fi ∈ 〈F2, F3, . . . , Fm〉.

Let X1, X2, . . . , Xn−m , n − m vectors in R
n such that

rank(F2, F3, . . . , Fm, Xm+1, Xm+2, . . . , Xn) = n − 1.

Consider the sequence of matrices F ε defined by

F ε = (F1, . . . , Fm, Fm+1 + εX1, Fm+2 + εX2, . . . , Fn + εXn−m),

the matrices F ε satisfy, rank(F ε
2 , F ε

3 , . . . , F ε
n ) = n − 1.

By using the first step we get

RW
(

F ε
)
� C f

(
det F ε

) + h
(

F ε
2 , F ε

3 , F ε
n

)
,

letting ε go to 0 we obtain

RW (F ) � C f (det F ) + h(F2, F3, . . . , Fn).

The function F → C f (det F ) + h(F2, F3, . . . , Fn) is polyconvex and less than W , then

C f (det F ) + h(F2, F3, . . . , Fn) � P W (F ),

which finishes the proof. �
Examples. As a nontrivial application of Theorem 3.1 we take the following example:

W (F ) = (
F11 + F12 − F21 − F22 + |F |p − 1

)2 + det F ,

where p > 1 is any integer. Then,

P W (F ) = Q W (F ) = RW (F ) = det F .

4. Situations including the function adjn F

In this situation, we consider functions of the form:

W (F ) = ϕ
(

P (F )
) + f

(
adjn(F )

)
,

where F ∈ R
n,n+1 and adjn(F ) is the vector of all n-minors of F . In the sequel we will use the following notation.

For F ∈ R
n,n+1, F = (F1, F2, . . . , Fn+1)

T where F1, F2, . . . Fn+1 ∈ R
n are the rows of the matrix F , we denote

det F̂ i = det(F1, F2, . . . Fi−1, Fi+1 . . . Fn+1).

For example, in the case n = 2, we have F = (F1, F2, F3)
T and then the vector adj2(F ) has the following expression:

(det F̂1,det F̂2,det F̂3) = (
det(F2, F3)

T ,det(F1, F3)
T ,det(F2, F3)

T )
.

Before proceeding, let us give some preliminary results.

Lemma 4.1. Let P = P0 + P1 + · · · + Pd be a polynomial defined on the space R
2,3 and F ∈ R

2,3 is a real matrix, det F̂2 �= 0, such
that

Pd

(
−F3,−det F̂1

det F̂2
F3,0t

)T

> 0, Pd

(
F3,

det F̂1

det F̂2
F3,0

)T

> 0.

If α is a real number such that P (F ) � α, then there exist two real matrices B, C , and a real λ ∈ [0,1] such that

F = λB + (1 − λ)C,

rank(B − C) � 1,

adj2 B = adj2 C = adj2 F ,

P (B) = P (C) = α.
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Proof. We choose B and C as follows

Ba =
(

F1 + aF3, F2 + a
det F̂1

det F̂2
F3, F3

)T

,

Cλ =
(

F1 − λ

1 − λ
aF3, F2 − λ

1 − λ
a

det F̂1

det F̂2
F3, F3

)T

.

The matrices Ba and Cλ verifies F = λBa + (1 − λ)Cλ , adj2 Ba = adj2 Cλ = adj2 F , and rank(Ba − Cλ) � 1, for each value of a
and λ ∈ ]0,1[. For a = 0, we have P (B0) = P (F ) � α and

lim
a→+∞ P (Ba) = lim

a→+∞ad Pd

(
F3,

det F̂1

det F̂2
F3,0

)T

= +∞.

Then, there exists a real a0 such that P (Ba0 ) = α. We consider the matrix

Cλ =
(

F1 − λ

1 − λ
a0 F3, F2 − λ

1 − λ
a0

det F̂1

det F̂2
F3, F3

)T

.

For λ = 0, P (C0) = P (F ) � α and

lim
λ→1− P (Cλ) = lim

λ→1−

(
λ

1 − λ

)d

ad
0 Pd

(
−F3,−det F̂1

det F̂2
F3,0

)T

= +∞.

By continuity, there exist a real λ ∈ [0,1[ such that P (Cλ) = α. �
Lemma 4.2. Let F ∈ R

2,3 be a real matrix, det F̂2 �= 0, P = P0 + P1 + · · · + Pd a polynomial defined on the space R
2,3 such that

Pd

(
0,

det F̂3

det F̂2
F1, F1

)T

< 0, Pd

(
0,−det F̂3

det F̂2
F1,−F1

)T

< 0.

If α is a real number such that P (F ) � α, then there exist two real matrices B, C , and a real λ ∈ [0,1] so that

F = λB + (1 − λ)C,

rank(B − C) � 1,

adj2 B = adj2 C = adj2 F ,

P (B) = P (C) = α.

The proof is the same as in the previous lemma. We have just to take −P instead of P , −α instead of α, and to choose
the matrices B and C as follows

B =
(

F1, F2 + a
det F̂3

det F̂2
F1, F3 + aF1

)T

,

C =
(

F1, F2 − λ

1 − λ
a

det F̂3

det F̂2
F1, F3 − λ

1 − λ
aF1

)T

.

Lemma 4.3. Let P (X) be a polynomial of degree d, defined as above such that there exists a vector L ∈ R
2 satisfying for each α ∈ R:

Pd(L,αL,0)T > 0, Pd(0,αL, L)T < 0, Pd(−L,−αL,0)T > 0, Pd(0,−αL,−L)T < 0.

If F ∈ R
2,3 is such that det

( F1
L

) �= 0, then there exist two matrices B, C ∈ R
2,3 , and a real λ ∈ [0,1] such that

F = λB + (1 − λ)C,

rank(B − C) � 1,

adj2 B = adj2 C = adj2 F ,

Pd

(
B3,

det B̂1

det B̂2
B3,0

)T

> 0, Pd

(
C3,

det Ĉ1

det Ĉ2
C3,0

)T

> 0,

Pd

(
−B3,−det B̂1

ˆ B3,0

)T

> 0, Pd

(
−C3,−det Ĉ1

ˆ C3,0

)T

> 0,

det B2 det C2
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Pd

(
0,

det B̂3

det B̂2
B1, B1

)T

< 0, Pd

(
0,

det Ĉ3

det Ĉ2
C1, C1

)T

< 0,

Pd

(
0,−det B̂3

det B̂2
B1,−B1

)T

< 0, Pd

(
0,−det Ĉ3

det Ĉ2
C1,−C1

)T

< 0.

Proof. We choose B and C as

B(a) =
(

F1 + aL, F2 + a
det(F2, L)T

det(F1, L)T
L, F3 + a

det(F3, L)T

det(F1, L)T
L

)T

,

C(a) =
(

F1 − aL, F2 − a
det(F2, L)T

det(F1, L)T
L, F3 − a

det(F3, L)T

det(F1, L)T
L

)T

.

Then

F = 1

2
B + 1

2
C, rank(B − C) � 1,

and for all a ∈ R

adj2 B = adj2 C = adj2 F .

If we denote by L3
1 the number det(F3,L)T

det(F1,L)T , then

Pd

(
B3(a),

det B̂1(a)

det B̂2(a)
B3(a),0

)T

= Pd

(
F3 + aL3

1L,
det F̂1

det F̂2
(F3 + aL3

1L),0

)T

.

We define the function μi+ , i = 1,2, μi− , i = 1,2 and ηi+ , i = 1,2, ηi− , i = 1,2 as follows:

μ1+(a) = Pd

(
B3(a),

det B̂1(a)

det B̂2(a)
B3(a),0

)T

, η1+(a) = Pd

(
0,

det B̂3(a)

det B̂2(a)
B1(a), B1(a)

)T

,

μ2+(a) = Pd

(
C3(a),

det Ĉ1(a)

det Ĉ2(a)
C3(a),0

)T

, η2+(a) = Pd

(
0,

det Ĉ3(a)

det Ĉ2(a)
C1(a), C1(a)

)T

,

μ1−(a) = Pd

(
−B3(a),−det B̂1(a)

det B̂2(a)
B3(a),0

)T

, η1−(a) = Pd

(
0,−det B̂3(a)

det B̂2(a)
B1(a),−B1(a)

)T

,

μ2−(a) = Pd

(
−C3(a),−det Ĉ1(a)

det Ĉ2(a)
C3(a),0

)T

, η2−(a) = Pd

(
0,−det Ĉ3(a)

det Ĉ2(a)
C1(a),−C1(a)

)T

.

Then we have:

μ1+(a) = Pd

(
F3 + a

det(F3, L)T

det(F1, L)T
L,

det F̂1

det F̂2
(F3 + a

det(F3, L)T

det(F1, L)T
L),0

)
,

μ2+(a) = Pd

(
F3 − a

det(F3, L)T

det(F1, L)T
L,

det F̂1

det F̂2
(F3 − a

det(F3, L)T

det(F1, L)T
L),0

)
,

η1+(a) = Pd

(
0,

det F̂1

det F̂2
(F1 + aL), F1 + aL

)T

,

η2+(a) = Pd

(
0,

det F̂1

det F̂2
(F1 − aL), F1 − aL

)T

.

Hence

μ1+(a) = (
L3

1

)d
ad Pd

(
1

aL3
1

F3 + L,
det F̂1

det F̂2
(

1

aL3
1

F3 + L),0

)
,

and

lim
a→+∞μ1+(a) = lim

a→∞

(
det(F3, L)T

det(F1, L)T

)d

ad Pd

(
L,

det F̂1

det F̂2
L,0

)
= +∞.

If det(F3,L)T

det(F1,L)T < 0, and the degree d of Pd is odd, then:

lim
a→+∞μ1+(a) = lim

a→∞

(
−det(F3, L)T

det(F , L)T

)d

ad Pd

(
−L,−det F̂1

ˆ L,0

)
= +∞.
1 det F2
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In the same way, we have

lim
a→+∞μ2+(a) = lim

a→∞

(
det(F3, L)T

det(F1, L)T

)d

ad Pd

(
−L,−det F̂1

det F̂2
L,0

)
= +∞,

lim
a→+∞η1+(a) = lim

a→+∞ad Pd

(
0,

det F̂1

det F̂2
L, L

)T

= −∞,

lim
a→+∞η2+(a) = lim

a→+∞ad Pd

(
0,−det F̂1

det F̂2
L,−L

)T

= −∞.

Similarly, we can have

lim
a→+∞μ1−(a) = lim

a→+∞μ2−(a) = +∞ and lim
a→+∞η1−(a) = lim

a→+∞η2−(a) = −∞.

So, we can choose a constant a1 such that ∀a � a1: μ1+(a) > 0, μ2+(a) > 0, η1+(a) < 0, η2+(a) < 0, μ1−(a) > 0,
μ2−(a) > 0, η1−(a) < 0 and η2−(a) < 0, and this leeds to the result. �
Theorem 4.1. Let P = P0 + P1 + · · · + Pd be a polynomial of any degree defined on the space R

2,3 such that there exists a vector
L ∈ R

2 satisfying the following condition

Pd(L,αL,0)T > 0, Pd(−L,−αL,0)T > 0, Pd(0,αL, L)T < 0, Pd(0,−αL,−L)T < 0, ∀α ∈ R,

and let ϕ : R → R, f : R
3 → R be two continuous functions such that ϕ is bounded from below, μ = infϕ , and

W (F ) = ϕ
(

P (F )
) + f

(
adj2(F )

)
.

Then

P W (F ) = Q W (F ) = RW (F ) = μ + C f
(
adj2(F )

)
.

Remark 4.1. The result remains true in the general case of n × (n + 1) matrices. The hypothesis on the polynomial is:

Pd(0,αL, L,0, . . . ,0)t < 0, Pd(0,−αL,−L,0, . . . ,0)t < 0,

and

Pd(L,αL,0, . . . ,0)t > 0, Pd(−L,−αL,0, . . . ,0)t > 0.

For the decomposition lemmas, we take the same form of the matrices B , C , we just keep the rows F4, F5, . . . , Fn of the
matrices.

Proof. • Let is begin by proving that if det F̂2 �= 0, then RW (F ) � μ + f (adj2(F )).

(1) Suppose first that

Pd

(
F3,

det F̂1

det F̂2
F3,0

)T

> 0, Pd

(
−F3,−det F̂1

det F̂2
F3,0

)T

> 0,

Pd

(
0,

det F̂3

det F̂2
F1, F1

)T

< 0, Pd

(
0,−det F̂3

det F̂2
F1,−F1

)T

< 0.

Let ε > 0. There exists αε ∈ R such that

μ + ε � ϕ
(

P (F )
)
.

Thanks to Lemma 4.1 (if P (F ) � αε) or Lemma 4.2 (if P (F ) � αε), there are two real matrices B, C , and a real λ ∈ [0,1]
so that

F = λB + (1 − λ)C,

rank(B − C) � 1,

adj2 B = adj2 C = adj2 F ,

P (B) = P (C) = αε.
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Then

RW (F ) � λRW (B) + (1 − λ)RW (C) � λW (B) + (1 − λ)W (C)

= λ
[
ϕ

(
P (B)

) + f
(
adj2(B)

)] + (1 − λ)
[
ϕ

(
P (C)

) + f
(
adj2(C)

)]
= λ

[
ϕ(αε) + f

(
adj2(F )

)] + (1 − λ)
[
ϕ(αε) + f

(
adj2(F )

)]
= ϕ(αε) + f

(
adj2(F )

)
� μ + ε + f

(
adj2(F )

)
,

as ε is arbitrary, we conclude that RW (F ) � μ + f (adj2(F )).
(2) Suppose that the hypothesis in the first case is not satisfied. Then, thanks to Lemma 4.3, we have the existence of two

matrices B, C , and a real λ ∈ [0,1] such that

F = λB + (1 − λ)C,

rank(B − C) � 1,

adj2 B = adj2 C = adj2 F ,

Pd

(
B3,

det B̂1

det B̂2
B3,0

)T

> 0, Pd

(
C3,

det Ĉ1

det Ĉ2
C3,0

)T

> 0,

Pd

(
−B3,−det B̂1

det B̂2
B3,0

)T

> 0, Pd

(
−C3,−det Ĉ1

det Ĉ2
C3,0

)T

> 0,

Pd

(
0,

det B̂3

det B̂2
B1, B1

)T

< 0, Pd

(
0,

det Ĉ3

det Ĉ2
C1, C1

)T

< 0,

Pd

(
0,−det B̂3

det B̂2
B1,−B1

)T

< 0, Pd

(
0,−det Ĉ3

det Ĉ2
C1,−C1

)T

< 0.

Then, by applying the first step to the matrices B and C , we get:

RW (F ) � λRW (B) + (1 − λ)RW (C)

� λ
(
μ + f

(
adj2(B)

)) + (1 − λ)
(
μ + f

(
adj2(C)

))
= μ + f

(
adj2(F )

)
.

• Now, we suppose that det F̂2 = 0, That means that the vectors F1 and F3 are collinear. Let α ∈ R be such that F3 = αF1,
and let T be a vector not collinear with them. Let F ε a sequence defined by

F ε
1 = F1 + εβT , F ε

2 = F2, F ε
3 = F3 + εT .

If we choose β such that 1 − αβ �= 0, then

det F̂ ε
2 = ε(1 − αβ)det(F1, T ) �= 0.

By using the first step, we have

RW
(

F ε
)
� μ + f

(
adjn

(
F ε

))
.

Letting ε go to 0 we get

RW (F ) � μ + f
(
adjn(F )

)
.

So we have proved that

∀F ∈ R
2,3: RW (F ) � μ + f

(
adj2(F )

)
.

Then ∀F ∈ R
2,3

RW (F ) − μ = R
(

RW (F ) − μ
)
� R f

(
adj2(F )

) = C f
(
adj2(F )

)
.

In other words, the function F → μ + C f (adj2(F )) is polyconvex and less than W . Therefore ∀F ∈ R
2,3

μ + C f
(
adj2(F )

)
� P W (F ) � Q W (F ) � RW (F ) � μ + C f

(
adj2(F )

)
. �
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Examples.

(1) As examples we take first a function W : R
2,3 → R defined by:

W (F ) = (
F11 − F12 + F21 − F12 + F31 − F13 + (F1.F2)

2 + (F1.F3)
2 − (F2.F3)

2 − 1
)2 + (∥∥adj3(F )

∥∥2)
,

where F = (F1, F2, F3)
T and Fi, i = 1,2,3, are the rows of the matrix F then our result asserts that:

P W (F ) = Q (F ) = RW (F ) = (∥∥adj3(F )
∥∥2)

.

(2) We take now a second example

W (F ) = (‖F1 + F2‖2 − ‖F2 + F3‖2 − 1
)2 + (‖adj3 F‖)2

.

Then we obtain:

P W (F ) = Q W (F ) = RW (F ) = (‖adj3 F‖)2
.

In the general case n � 3, by using the same techniques, we prove the following corollary:

Corollary 4.1. Let P (X) : R
n,n+1 → R, P = P0 + P1 + · · · + Pd be a polynomial function of degree d such that there exists a vector

T ∈ R
n satisfying for each α ∈ R:

Pd(0,αL, L,0, . . . ,0)t < 0, Pd(0,−αL,−L,0, . . . ,0)t < 0,

and

Pd(L,αL,0, . . . ,0)t > 0, Pd(−L,−αL,0, . . . ,0)t > 0,

and let f : R → R, ϕ : R
n+1 → R be two real functions such that f is continuous and ϕ is bounded from below, μ = infϕ , and

h : R
n,n−2 → R be a convex function. If we set

W (F ) = ϕ
(

P (F )
) + f (adjn F ) + h(F4, F5, . . . , Fn+1),

then

P W (F ) = Q W (F ) = RW (F ) = μ + C f (adjn F ) + h(F3, F4, . . . , Fn).

The proof of the corollary is the same as the proof of Theorem 4.1 by using in addition the following result:

Theorem 4.2. Let f : R
n+1 → R be a continuous function and h : R

n,n−1 → R a convex function. W : R
n,n+1 → R a function defined

by

W (F ) = f (adjn F ) + h(F3, F4, . . . , Fn+1),

then

P W (F ) = Q W (F ) = RW (F ) = C f (adjn F ) + h(F3, F4, . . . , Fn+1).

For the proof of Theorem 4.2 we refer the reader to [5].
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Appendix A

We recall now some basics notions of convexity.
Let ϕ be a real-valued Borel measurable function defined on the space R

n×m of n × m matrices.

• We say that ϕ is convex if:

ϕ
(
λF1 + (1 − λ)F2

)
� λϕ(F1) + (1 − λ)ϕ(F2)

for every real λ ∈ [0,1] and all matrices F1, F2 ∈ R
n×m .

• We say that ϕ is quasi-convex if:

1

|Ω|
∫

Ω

ϕ
(

F + ∇u(x)
)

dx � ϕ(F )

for every F and every test function u ∈ W 1,∞
(Ω,R

m).
0
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• ϕ is said to be polyconvex if there exists a convex function ψ such that

ϕ(F ) = ψ
(
T (F )

)
for every matix F ∈ R

n×m . T (F ) stands for the vector of all minors of F .
• ϕ is said to be rank-one convex if:

ϕ
(
λF1 + (1 − λ)F2

)
� λϕ(F1) + (1 − λ)ϕ(F2)

for every λ ∈ [0,1] and F1, F2 ∈ R
n,m such that rank(F1 − F2) � 1.

For more details on theses notions one can see [10].
It is well known that

ϕ convex ⇒ ϕ polyconvex ⇒ ϕ quasi-convex ⇒ ϕ rank-one convex.

However the converses are false in general (see [1,10]). The last one has been established by V. Sverak in the case m � 3,
[18], but the case m = 2 and n � 2 is still open. In the scalar case n = 1 or m = 1 all theses notions are equivalents.

We define now the different envelopes associated with different notions of convexity by setting:

Cϕ(F ) = {
sup f (F ): f � ϕ, f convex

}
,

Pϕ(F ) = {
sup f (F ): f � ϕ, f polyconvex

}
,

Q ϕ(F ) = {
sup f (F ): f � ϕ, f quasi-convex

}
,

Rϕ(F ) = {
sup f (F ): f � ϕ, f rank-one convex

}
.

As a direct result of the implications above, we have

Cϕ � Pϕ � Q ϕ � Rϕ

and all the envelopes coincide in the case n = 1 or m = 1. For a characterizations of the different envelopes see [10]. Let us
recall that:

C f (F ) = inf

{
n.m+1∑

i=1

λi f (Fi):
n.m+1∑

i=1

λi F i = F

}
,

P f (F ) = inf

{
τ (n,m)+1∑

i=1

λi f (Fi):
τ (n,m)+1∑

i=1

λi T (Fi) = T (F )

}
,

R f (F ) = inf

{
I∑

i=1

λi f (Fi):
I∑

i=1

λi F i = F and (λi, Fi)1�i�I satisfy (H I )

}
,

Q f (F ) = inf
ϕ∈W 1,∞

0 (Ω;Rm)

1

|Ω|
∫
Ω

f
(

F + ∇ϕ(x)
)

dx,

Ω ⊂ R
n is a bounded regular domain.
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