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1. Introduction and main results

For a prime p > 3, the Riesz products on the ring Z, of p-adic integers were studied in [7] by Fan and Zhang. This paper
is devoted to the Riesz products on the ring Z; of dyadic integers. The main difference between p =2 and p > 3 lies in the
lack of dissociate property in the former case. Without this property, the proofs for many results in the case of p =2 are
rather lengthy although they lead to similar results as p > 3.

Let p > 2 be a prime number and let Q, be the field of p-adic numbers (see [12,18-20] for more information about

p-adic numbers). Every p-adic number x € Q, admits a unique expansion x = Z;’-i_n xjpj, xj€{0,1,..., p—1}. We denote
by {x} the p-adic fraction part of x, i.e., the rational number Z-’:]fn Xj pJ. We further denote by | - | p the absolute value
on Qp, which is non-Archimedean. The unit ball Z, = {x € Q: |x|, < 1} is called the ring of p-adic integers.
Consider the ring Zp as an additive group. The dual group of Z, is denoted by

Zp={1}U {Ynr: n>1, 1<k <p" and ptk}
where y; (%) := exp(2mi{p~"kx}) (see [19,20]). We shall consider the subset of characters

I'={yn1: n>1} CZP.
For simplicity, we write ;.1 as y,». Denote by W (I") the set of all characters y € ip of the form

V=WV Va's Vi€l (1
where €j=0,1 or —1 for any 1 < j<n. I' is called dissociate (in the sense of Hewitt-Zuckerman [8,9]) if each element
of W(I') has a unique representation of the form (1).

Denote by dx the normalized Haar measure on the additive group Zp. Let a = (an)n>1 be a sequence of complex numbers
with |a| < 1. For n > 1, we define
n

Pan(®) = [ [(1+Reary(x). (2)

k=1
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If p > 3, one can show that I" is dissociate. By this dissociate property, it is proved [7] that P, ,(x)dx converge in the weak*
sense to (g, @ measure which is called Riesz product on Zp and is written formally as
o0
ta=[[(1+Reayn(x). (3)
n=1
However, I" is not dissociate in the case of p = 2. This can be easily seen, for example, from the fact that y, has at least
two different representations y» and y; yz‘l. Though without the dissociate property, we managed to prove the convergence
of the sequence of measures {Py,(x)dx} directly (Section 2). The limit measure of the form (3) for p =2 is also called a
Riesz product.
Let us state our main results. The first result concerns the almost everywhere convergence of certain lacunary series.
Let { fi}k>1 be a sequence of analytic functions defined in some complex domain containing the unit disc {z € C: |z| < 1}.
Let {a}ik>1 be any sequence of complex numbers. We consider the following lacunary series

Zak[fkoyk(x) —Epo fieo Vi (4)

k=1

Theorem 1.1. Let {cgk)} be the Taylor coefficients of f}, at the point zero. Suppose
o0
Z\/l + logjsup|cj.k)| < 0.
o k=1
j=1
Then for any sequence {ct}k>1 € 12, the series (4) converges for Lq-a.e. X.

Equipping Z; with the dyadic norm |- |, one can talk about Hausdorff dimension of any subset E C Z;, (see [13]). The
Hausdorff dimension of 114, denoted by dimy i4q, is defined as the infimum of dimy E’s such that pug(E) =1 (see [5] for
more details).

From Theorem 1.1, we deduce the Hausdorff dimension of the Riesz product.

Theorem 1.2. The Hausdorff dimension of the Riesz products (4 is equal to
— Eyu,logPgp

. 1 -
d‘mH“uzl—@nlljgo ;.

The shift transformation T on Z,, which takes Zﬁio a,2" to Zﬁio an+12", has the following analytic expression

X X
Tx=-—1{=¢.
-l
Recall that a probability measure j is T-invariant (resp. T-quasi-invariant) if j = o T~! (resp. p < o T~ ! and o
T < ).

We recall that in [7] we have proved that for the case p > 3, none of Riesz product is T-invariant, except the trivial case
of Haar measure which corresponds to a,;, =0 for all n. For the case p =2, we have the following theorem.

Theorem 1.3. Let g be a Riesz product defined by (3). Assume that |ai| < 1 for allk > 1. If a1, a2, a3 € R, then g is T-invariant if
and only ifa, =0 forany k > 1.

The condition on aq, ay, az is technical. If one of ay, ay, az is not in R, we do not know whether there exists a non-trivial
sequence {dn}p>1 such that the Riesz product associated to the coefficients a,’s is T-invariant or not.

In this paper, we will also discuss other properties, such as the mutually absolute continuity of two Riesz products, the
invariance and the quasi-invariance with respect to the shift transformation, and the quasi-Bernoulli property of the Riesz
products (Section 5).

We organize the paper as follows. In Section 2, we prove the existence of (4. In Section 3, we study the convergence of
lacunary series (4) and prove Theorems 1.1 and 1.2. The invariance of pq will be given in Section 4. Some other properties
of 114 are stated in the last section.

2. Construction of Riesz products

In this section, we prove the convergence of the sequence {P, (x)dx} of measures. We begin with two lemmas.
For m>1, let

Tn={yi" - ya" €1,....émo1=—-1,0,1; g =—1,1}.
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Lemma 2.1. If y; k € I, thenn=m.

Proof. For any y, x € I'm and for any sequence (€1, ..., €yn) With ¥, = yfl - yem we have

| k (€
exp(an{ﬁxD:exp(an{(;+2—2+ +2—m) }) Vx € Z;.

If n #m, then by taking the value at x =1 of both sides, we get

k €1 € €m k  em+---4+e-2m1 7
:z_n_ > €.

But this is impossible because the numerator of the fraction reduced to a common denominator, is an odd number. So, we
must have n=m. O

Lemma 2.2. Let n > 1. Let F be a function on Z; depending only on the first n — 1 coordinates. Then for any odd integer k,

/ F(x)y x)dx =

Zy
Proof. Since the Haar measure is a probability measure, the integral in question is equal to

F(X0,X1, -, Xn—2) VK (X0, X1, ..., Xn—1) dXg dX1 - - - dXp_1.
@22y

Write

VE®) =y (X0, X1, .. -,Xn—z)eXD< n_l) =Dy (X0, X1, ..., Xn—2),

where y depends only on the first n — 1 coordinates. Thus by Fubini Theorem,
/F(x)y (x)dx = f Fy dxodxy - -+ dxp—2 / (=11 dxp_1.
Zp (@271 Z/2Z

Then the lemma follows by using

1 1
—D¥ldxy_1=1-— —-1)-==0. O
/( ) Xn—1 2-i-( ) 3
727,

Now we prove that the sequence {Pqn(x)dx} of measures admits a weak™ limit.
For any y € Z;, let

Pan(y) = / Pan(X)y (X) dx.
Zy

To prove the convergence of {Pqn(x)dx}, it suffices to prove that for any character y € Zz, Pa n(y) admits a limit as n tends
to 4oo0. First notice that Pu n(1)=1. For any Y« € Zz and for any N > n, by Lemma 2.2,

Pan(Vng) = f Pa.N () Vn k(X) dx

Zn

Z/Vn,k(x)l’a,n(x)dx
Zy

:/ Yok D @ a ™y dx
VA €1,€2,....€n

where a(© stands for 1, % or % according to € =0, 1 or —1. We have the following three facts:

e If ¢, =0, then by Lemma 2.1, there does not exist any sequence (€1, €3, ..., €;) satisfying v, = yf“ VAN
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e For any sequence (€1, €2,...,€y) With Y, # y{“ - ya ", the integral

/yn,k(x)yl61 cyandx =0.
Z
o Let Enp:={(€1,...,€n): €1#0; €n+---+¢€1-2""1 =k or 2" —k} where €j €{—1,0,1} for 1< j <n. For any sequence

(€1,€2,...,€) With ypp =y, -y, ", by Lemma 2.1 again, we have

kte€n+---+e -2
2n
which implies (€1, €, ..., €n) € Ep.

€ 73,

By the above three facts, we have
= e
o~ _ Ej
PaN(Vnk) = Z l_[aj .
(€1,....€n)€En  j=1

Hence 'ﬁa,N(yn,k) admits a limit as N tends to +oo, which proves the existence and uniqueness of y. Therefore, the
following proposition follows.

Proposition 2.3. The Riesz product 14 of the form (3) is well defined as the weak* limit of Py n(x) dx.
Let Bp(y) ={x€Zy: |x— y|» <27™"}. As an application of Lemma 2.2, we also have the following proposition.
Proposition 2.4. For any ball B, (y), we have
Ma(Bn(J’)) =2""Pau(y). (5)

Proof. Let F be the characteristic function of the ball B,(y) which is a function depending only on the first n coordinates.
Applying Lemma 2.2 to this function F shows that for any odd integer k and for any m > n,
/ yrlfl (x)dx=0.
Bn(y)
So,

fdua(x):NILmoo / Pgn(x)dx = / Pg.n(x)dx.

Bn(y) Bn(y) Bn(y)

Then the proposition follows immediately since the integrand at the right side is constant on the ball B,(y). O

We can consider the equality (5) as the definition of the Riesz product. Actually it is easy to see that the functions
27"Pgn(x) are consistent in the sense of Kolmogorov. These two ways of defining Riesz products lead to the same Riesz
products. We point out that both methods can be generalized to produce measures on the product space [[5c Z/myZ for
any sequence of integers (mMp)p>1 with my, > 2.

3. Almost everywhere convergence and Hausdorff dimension

In this section, we will prove Theorem 1.1. For the case p > 3, the series (4) can be decomposed into a sum of a
finite number of martingales. But for the present case p = 2, the decomposition will be more complicated. The idea here is
inspired by Peyriére’s work [17] on the circle Riesz products. However, the contexts are different now. We prove Theorem 1.1
for the special case fy(z) =z first, then we will give the proof for the general case.

3.1. Case: fy(z2)=z

Let B, =0 (y1, ¥2, ..., Yn) be the o-algebra generated by the characters y1, ..., ¥ (convention: Bo = {#, Z,}).
Lemma 3.1. For any n > 1, we have

1,
Ey, (Vn-H (*) |%n) =5 (an-H + Gn+1Yn (X))
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Proof. It suffices to prove that for any ball B,(y),

1 _
/ Ynt1(X) didg(X) = 5 / (an+1 +any1¥n (X)) ditq(X).
Bn(y) Bn(y)

In fact, by Lemma 2.2, we have

/ Va1 () dpa(x) = f Yn+1(X) Pant1 (%) dx
Bn(y) Bn(y)
= / Pa.n(X)¥nt1 (%) (Re ant1¥ny1(%))

Bn(y)

1
=5 / Pa,n(x)(an+1 +ant1 Vn(x)) dx

Bn(y)

== f (an+1 + n41 Vn(X)) dpa(®),
Bn(y)

where the third equality is because ynZH X =wmk). O
By Lemma 3.1,

1
Euayn Eua(Eua(yﬂ%n l)) —an+ anEuaVn 1-

By induction, we obtain
1 1 _
52nln—1+ -+ Sonn_1 -+~ 02fl, (6)
which is useful in what follows. We also remark that the equality (6) implies
1

1
]EMa Yn= an +

Va=to1Vy = =Ny Ve

Proposition 3.2. There exists a constant C such that for any a = {aj}j>1 € 12, we have

1
! )
[/sup dﬂa(X):| <C(Z|a1|2) -
n>1 i>1

Proof. Put yp(x) = 0 by convention. From Lemma 3.1, we see that {y,(x) — %(Ezn + anYn—1(X))}In>1 is a sequence of
martingale-differences. Furthermore, we observe that y;(x) —E,,y; can be decomposed into the following sum:

ZO‘J Vi) —En,))
j=1

] 1
Vi) —Eu, Y=y — aj Vi-1(X)

1 1 1
+ a](V} 1(x) — a] 1—501 1Vj- 2(X)>

1 1 1
+ 27— 553jaj-1" 03()/2(?() — Eaz — 5a2y1 (X))

1 1_
+2] ]a_)a] 1° 02()/1(X)—ia1>.

Now we define two sequences of numbers uj and vj,. Forany j>1,ujo=vjo:=1.For j>1and 1<k<j—1,

Vik:= o5 @jdj=1"dj—k+1

Uj k= =20jaj 1 Qj_420j k1.

2k
Then for any j > 1 and any 0 <k < j— 1, we have

1 1 1
Iuj,k+1|<5|‘/j,k|<2kﬁ, IVj,I<+1|<§|Vj,k|<2kj,
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and
Ep (Vi ik ®1Bjk-1) = Ujks1 + Vg1 Vi1 (),
j—1
J/](X) - ]Elln Vi= Z(qul(yj—k(x) —Uj k1 — Vjkt1Vjk—1 (X)),
k=0
1VikVik® = tjrer = Vikp1Vjk— l(X)”LZ(M <27 k=1 -
Hence

sup
n>1

Z sup

Za, ViV i—k(®) = Uj ka1 = Viks1Vjko1 (X))
ke On>1

j=1

n
Z oj (Vj ) —Ey, VJ
j=1

where yj_ () =0 (j<k),and uj=vjr=0 (j <k).
By Doob’s inequality and (7), we obtain

sup

Zal i — fa(y)

j=1

o0
<c22 (k=1) Z|a]|2 2. o
j=1

2(na) k=0
From Proposition 3.2, we get the following theorem which is nothing but the special case f(z) =z of Theorem 1.1.

Theorem 3.3. Assume that & = {j} j>1 € [2. Then the series
o]
Y aj(yj0 —EBy,y))
j=1

converges for j1q-a.e. x.

Now we prove the convergence of the lacunary series (4) in the general case.
3.2. Proof of Theorem 1.1

Lemma 3.4. For any integer n,
y,fﬂ (x), n even,

B, (M1 (0)By) = v
v (42 CO1B) Yy, ? 9+ ey, ). nodd.

Proof. It is trivial if n is even. If n is odd, write n =2m + 1. We have

Epe (V1 1Bk) = Y By (Vis1 (0B

Then the desired result follows by Lemma 3.1. O

Lemma 3.5. Let m > 1 be an integer. For any integer n, if n = 0 mod 2™, then

Eptq (Veem@1B1) = 77" (0 = Vi (0 ®)
ifn= jmod 2™ for some 1 < j < 2™ — 1, then

—j

Epe (Vo CO1B) = 1 00+ iy 0 (9)

where |ug| + |vi| < 1.

Proof. The first assertion is trivial. We will prove the second assertion by induction. The case m =1 is nothing but
Lemma 3.4. Suppose the lemma is established for m > 1, let us consider the case m 4+ 1 and 2™*+! { n. Notice that

B, (an+m+1 (®)1Bi) =Ey, (Euu (anerﬂ (®)|Bie4m) | Br)-
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If n=2j mod 2™*! for some 1< j<2™—1, then 2 5 = j mod 2™. Hence by (9),

Enq (Viepme1 (O1Bi) =Ep, (yk+m(x)|%k)

ﬂ,j n_j

2 2 +1

= uka ")+ Vk Vk ()
n—2j n—2j
om+1

o
=y @+ vy

where [up |+ v | < 1.
If n=2j+1 mod 2™ for some 0 < j < 2™ — 2, then % = j mod 2™ and % = j+ 1 mod 2™. Thus by Lemma 3.4

and (9),
%k)

n—1 n+1

1_ n-1 ntl
Ey, (anerH (*) |%k) =E,, <§ak+m+1 Vk_fm (%) + Eak+m+1 )/k_,_zm (*)

n 1_

= %alﬁ—m—o—l (uk Vi i (X) + V,(:)J/k (X))
1 @ %{m(jﬂ) @ m{m(jﬂ)
+ Eak+m+l (uk Yk )+ v, (X))
1_ (1) n;g«jﬁ]) 1) . 2$ﬁ1>+
= Sk4mir (ue Vi )+ v, ¥, ®))
1 @, @, Gt
+ S aeem (177, @+ vV ®)
n—Q2j+1) n=@j+) |4
=uy, " W+ " ®

1 a 2 2 _ 1 2 _ 1 )
where |u( N1 <1, w1+ 1v? 1 <1 and uf = JGempaul” + Jagimgiug ), v = dGempvy + %ak+m+1v,§ ) It is clear
that |u) |+|v | <1,

Now, if n=2™*1 —1 mod 2™*1, then 25! =2™ — 1 mod 2™, ! =0 mod 2™. Hence by Lemma 3.4, (8) and (9),

.)

1 s 1 _@mony s %—(zm—h+
=m0y, T @)y T W)

n—1

1_ n-1 1 ntl
E o (Vemi ®)1Bk) = Ey, <§ak+m+1 Yiegm ® + 5 Betm+1 Vi ®)

n+1
2

1 >
+ Eak+m+l Ve, ®
1 @ n—@m+l_q) @ n—@m+1_ D
_ = om+1 om+1
= iak+m+l (uk Yk ®) + v ¥ (X))
1 @ =0 %2:1’”“
+ 5 Gktm+1Yy (*x)
n—(2m+1—1) n— (zm+:71)+1
—m om+ " om+
=U Yy )+ Vi v )
where |Ll(3)| + |V(3)| <1land u” =1g 3 m We also h " "
PRI k = 20k+m1ly ", Vi = zak+m+lvk )+ ak+m+l e also have |u/| + v}/ < a

Proposition 3.6. There exists a constant C such that for any positive integer n and & = {aj}j>1 € 12,

IE Sr)

j=>1
Proof. Let d be the smallest integer such that d > log;n. Then n = j for some 1< j < 24 — 1 (the case n =0 is trivial).
Hence "Z;df =0. By Lemma 3.5, we have

Zaj(y}l(x) —Eg, (yf))‘ dua(x)} <CHW1 +10gn)(

j=1

Epg (vj4a@1Bj) =uj+ vy

where |uj|+ |v;| < 1. Thus

Epo (V] @IB;) = Epy (viha) = vi(¥i 0 — Enev)-
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Hence by Proposition 3.2, we obtain

sup Z“Hd (Bua (V]4a@01%85) = Epy (vfq)) <C D laji. (10)
m>1 = L2(1ta) >

Notice that {yJVHd(x) — IEM(y]”Hd(x)|%j+(,_1)d)},>1 is also a sequence of martingale-differences for any 1< j<d—1.
Thus by the same method in the proof of Proposition 6.5 in [7], we have

Z Ajtd (y]ner X)) —Ey, (an+d (X)l%f))

sup <C [d) lajl>. (11)
m>21 12(1tq) i>1

Combining (10) and (11), we get the desired result. O

Proof of Theorem 1.1. Using the Taylor expansion of fi, we write
Fe(ne0) = By, fil(vie ) Zc(")wk ey
j=1
where
Pr,jX) = J/kj (0 —Ey, ij ®).
Denote by
N
Fne) =) [ fiu(r®) = Ep, fi(e))]
k=1
the partial sum of the series in question, and

F*(x) = sup|Fn(x)|.
N>1
Observe that

N
Z OlkC <Pk i1

k=1

o0
<2

j=1

|Fn ()] <

N o)

k
PSRN
k=1 j=1
Then we have

Zakc( )(pk x|

k=

F*(x) < Z sup

j>1

Thus, by Proposition 3.6,

o0

[P0 ] 2y <C YV +10g] | D Jenc? |

i1 k=1

o0 o0
C(Z\/l—i—logjsup‘c;k)!) kaklz < 00.
= k=1 k=1

Hence we obtain the p14-a.e. convergence of the series (4). O

3.3. Hausdorff dimension

We apply Theorem 1.1 to calculate the Hausdorff dimension of 4. Recall that the Hausdorff dimension of a measure u
is defined by dimy pu = inf{dimy E: E Borel set and w(E®) = 0} (see [5]). The dimension dimy u is equal to the essential
supremum of the lower local density
log 14(Bn (%))

log B (x)]

where |B;(x)| denotes the Haar measure of B,(x) (see [5]).

D(u,x) = 11m1nf
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For the Riesz product uq, we have

1 . log Pg.n(X)

D(q,x) =1— —— limsup ————.
D(ia, x) log2 p n

n—oo

By Theorem 1.1 and Kronecker Lemma,

,1 n
- Z[log(l + Reaiyk(x)) — Ey, log(1 + Reag i (x))]
k=1

tends to zero for pug-a.e x. It follows that

) 1 . E, logPan
dim =1— — limsup —He—=-21
H Ma log 2 n—>oop n

4. Proof of invariance

In this section we will prove Theorem 1.3. R
Recall that the measure f, is said to be T-invariant if for any y € Z;,
Ra(y¥) = pao T71(Y).
We are going to express this condition in terms of the coefficients a,’s.
On one hand, by Lemma 2.2,

Pra (V) = f Yok Pan () dx. (12)
Ly

On the other hand, for any y, € Zz \ {1}, by Lemma 2.2, we have

Ha © T-1 (Vnk) = / Yk (TX)Pg nt1(x) dx. (13)
Zy
For j=0 or 1, denote

2

j iy 1+Rea j
by 1= ap e T, Cj2=+7m(]).

2

Let ul(,j) be the Riesz products associated with the coefficients {b,ﬁj)}n%. Then the right side of (13) can be written as

! 1
ZZ / €Yk (TX) Py (T%) dx:ch_/yn,k(x)l’bm,n(x) dx. (14)
=042z, =0 7
Now we compute the integrals on the right hand sides of (12) and (14). Denote
En= {(61,...,6,1)5 €1,...,6p_1=-—1,0,1; an—],l},
Li={y" - w": (€1,....€n) € En},
Enp={c1.€....en) €En: g+ 462" =2"—kor —k}.

From the construction of Riesz products in Section 2 we see that if y;, x ¢ I, then the right sides of (12) and (14) are both
equal to zero. If Y x € I3, then for any sequence (e1, €, ..., €n) € Ey with y,k(x) = yf“ o ya ", we have (€1, €,...,€p) €
E; ,. Hence the right side of (12) is equal to

3 g .. .qlen),

S Y pIEn . pDEn

J=0 (e1,....en)€E)

Thus the Riesz products p, is T-invariant if and only if for any n € N and for any odd k € N with 1 <k <27,

1
Z agel) . 'ar(f”) — Z ¢ Z bg;)(el) . ,bﬁj)(én),
j=0

(€1,..., en)eE;Lk (€1,..., en)eEr’Lk
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ie.,

1 €
E agel)...al(f”)z E Cj E aéél)...a’(i‘%ezm(zz_‘— J'_2”“)]. (15)
i=0

(€1.-..€n)EE) | (€1,....€n)€EE,

Lemma 4.1. The equation €, + €,_1 -2+ --- + €1 - 2"~ 1 = 2" — 1 or —1 admits only n + 1 solutions:
1,1,...,1,1,1),
,0,...,0,0,-1),
©,0,...,0,-1,1),

(-1,1,...,1,1,1).

Proof. It is easy to see that there is only one sequence (1,1,...,1) satisfying the relation €, + €p_1 -2+ ---+¢€1-27 1 =
2" — 1. Now we consider the second relation.
If ,=—1, then €1 -2+ €n—2-22+---4+¢€ -2"1=0, ie, €n_1 +€n_2-2+--- + €1 - 272 =0, which implies that

€n—1 = 0. By induction, we have €;,_» =--- = €3 = €1 = 0. Thus we obtain the second sequence (0,0,...,0,0,—1).
If =1, then €n_q -2+ €222+ ---+¢€ - 2" 1 =2 ie, €11+ €2 -2+ -+ € - 2"2 = —1, which implies
that €;,_1 # 0. We continue to distinguish two cases: €,_1 = —1 or 1. If ;1 = —1, then we obtain the third sequence. If

€p—1 =1, we continue the above process. Finally we will obtain all other sequences. O
Lemma 4.2. If 1, is T-invariant, the for eachn > 1, ap41 =0 if and only ifa, = 0.

Proof. Suppose that p, is T-invariant. For k =1, by Lemma 4.1, (15) reads as

1 ) _ _ _ _
DDl G N I P S B B S L B
j=0 2

2 2 2 2 2 2 2
Qn ap  dp—1 ap a; a an ai
_5_{_7. 3 ++537+77
If ap+1 =0, then
an Gp  dp_1 an a; ai ap ai
oo T L et T LNt S
2+2 2 + +2 2 2+2 2
By absurdity, we suppose that a, # 0. Then
Gy _ 1 Ona Gn2 Iy G2 G G &
an 2 2 2 2 2 2 2 2

Notice that the modulus of the left side is equal to 1, but the modulus of the right side is smaller than 1. This contradiction
implies a, = 0.
Conversely, if a, =0, then

1 :
c-ia
cheZn'lan CYntl —0.

5 2
j=0

But

1 )
i 1+ Rea 1 —Rea —7ij
cheanan _ + 1 n 1 o

2 2

#0.

j=0

Hence ay4+1=0. O
Lemma4.3. Ifay, a3, a3 € R, and [ is T-invariant, then as = 0.

Proof. Suppose that jt, is T-invariant. Then

ta(B3(6)) + ta(B3(7)) = pa(B2(3)).
ta(B3(2)) + ta(B3(3)) = ta(B2(1)).
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since T~1B»(3) = B3(6)LB3(7) and T~1B,(1) = B3(2)uB3(3). If a1, az, a3 € R, then by the fact that p1q(By (%)) = 27" Pan(x),
we have

It 1-o 1, 1-q 1.1+4a3:1—a1‘1
2 2 2772 2 2 2 2
It 1-a 1, 1-q 1.1—§a3:1—a1.1
2 2 2772 2 2 2 2

So,a3=0. O
Theorem 1.3 is a direct consequence of Lemmas 4.2 and 4.3.
5. Other properties

In this section, we give some other properties of Riesz products on the ring of dyadic integers. Since the proofs are
similar to the case p > 3, we state the results without proofs.

5.1. Quasi-Bernoulli property

Recall that a probability measure @ on Z; is T-quasi-Bernoulli if there exists a constant C > 0 such that
-1 ¢ ta(Bn(x) N T "B (y))
Ha(Bn (X)) ta(Bm(¥))

holds for all x,y € Z; and all integers n,m > 1 (the measure is Bernoulli if C = 1). For Riesz product u,, we have the
following theorem.

Theorem 5.1. Assume that |ag| < 1 for any k > 1. The Riesz product [, is T-quasi-Bernoulli if there exists a complex number a with
la] < 1 such that

o0
Z lay — al < 4-o0.
k=1

The notion of quasi-Bernoulli which was introduced by Brown, Michon and Peyriére [2], plays an important role in
multifractal analysis. It was proved in [2] that the multifractal formalism holds for all quasi-Bernoulli measures.

Are the conditions in Theorem 5.1 necessary for u, being T-quasi-Bernoulli? We point out that the above conditions
are sufficient and necessary for the case p > 3. Recall that the T-ergodicity of a measure & means w(A) =0 or 1 for all
T-invariant set A (i.e, A=T~1A). It is easy to see that if u is a T-quasi-Bernoulli measure, then p is ergodic and u is
equivalent to a T-invariant measure which is a limit of %ZZ;& woTk,

5.2. Mutually absolute continuity

Given two Riesz products p, and up defined by two different coefficients {a,} and {b,}, under what conditions, w, and
p are mutually absolutely continuous (mutually singular)?

Theorem 5.2. Assume that |a,| < 1, |bp| < 1 for alln > 1. We have g ~ wup if
0 2
cos“(sy — t;
Z|ak —bk|2<1 + M) < o0
2 — |an + ba|
k=1
where sp = arg(an + bn) and tn = arg(an — by). Furthermore, if sup, >4 lan| <1 and sup,>1 |ba| <1, then we have pq L iy if

[ee]
> lag = bl* = foc.
k=1

In contrast to the case p > 3, we need to add the supremum conditions for the mutually singular part. The second part
of Theorem 5.2, which holds for Riesz products on any compact abelian group, is due to Peyriére (see [16,17]). There are
many works on this topic of Riesz products defined on the circle R/Z (for example, [3,4,8,11,14,16,17,21]). But it is still an
open problem to find the exact condition for mutually absolute continuity of two Riesz products [6,10] both in the circle
case and in the p-adic case.
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5.3. Quasi-invariance

Recall that a measure p is T-quasi-invariant if o T~1 ~ p.

Theorem 5.3. Assume sup,,>1 |an| < 1. Then i, is T-quasi-invariant if and only if

o0
2
> lan — ang1|? < oo.

n=1

Each quasi-invariant Riesz product produces a non-singular measure-theoretic dynamics (see [1,15] for general theory of
non-singular measure-theoretic dynamics). It would be interesting to know if there exists a non-trivial T-invariant measure
which is absolutely continuous with respect to a quasi-invariant Riesz product measure.
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