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1. Introduction and main results

For a prime p � 3, the Riesz products on the ring Zp of p-adic integers were studied in [7] by Fan and Zhang. This paper
is devoted to the Riesz products on the ring Z2 of dyadic integers. The main difference between p = 2 and p � 3 lies in the
lack of dissociate property in the former case. Without this property, the proofs for many results in the case of p = 2 are
rather lengthy although they lead to similar results as p � 3.

Let p � 2 be a prime number and let Qp be the field of p-adic numbers (see [12,18–20] for more information about
p-adic numbers). Every p-adic number x ∈ Qp admits a unique expansion x = ∑∞

j=−n x j p j , x j ∈ {0,1, . . . , p − 1}. We denote

by {x} the p-adic fraction part of x, i.e., the rational number
∑−1

j=−n x j p j . We further denote by | · |p the absolute value
on Qp , which is non-Archimedean. The unit ball Zp = {x ∈ Qp: |x|p � 1} is called the ring of p-adic integers.

Consider the ring Zp as an additive group. The dual group of Zp is denoted by

Ẑp = {1} ∪ {
γn,k: n � 1, 1 � k < pn and p � k

}
where γn,k(x) := exp(2π i{p−nkx}) (see [19,20]). We shall consider the subset of characters

Γ = {γn,1: n � 1} ⊂ Ẑp .

For simplicity, we write γn,1 as γn . Denote by W (Γ ) the set of all characters γ ∈ Ẑp of the form

γ = γ
ε1

1 γ
ε2

2 · · ·γ εn
n , γ j ∈ Γ (1)

where ε j = 0,1 or −1 for any 1 � j � n. Γ is called dissociate (in the sense of Hewitt–Zuckerman [8,9]) if each element
of W (Γ ) has a unique representation of the form (1).

Denote by dx the normalized Haar measure on the additive group Zp . Let a = (an)n�1 be a sequence of complex numbers
with |an| � 1. For n � 1, we define

Pa,n(x) =
n∏

k=1

(
1 + Re akγk(x)

)
. (2)
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If p � 3, one can show that Γ is dissociate. By this dissociate property, it is proved [7] that Pa,n(x)dx converge in the weak∗
sense to μa , a measure which is called Riesz product on Zp and is written formally as

μa =
∞∏

n=1

(
1 + Re anγn(x)

)
. (3)

However, Γ is not dissociate in the case of p = 2. This can be easily seen, for example, from the fact that γ2 has at least
two different representations γ2 and γ1γ

−1
2 . Though without the dissociate property, we managed to prove the convergence

of the sequence of measures {Pa,n(x)dx} directly (Section 2). The limit measure of the form (3) for p = 2 is also called a
Riesz product.

Let us state our main results. The first result concerns the almost everywhere convergence of certain lacunary series.
Let { fk}k�1 be a sequence of analytic functions defined in some complex domain containing the unit disc {z ∈ C: |z| � 1}.

Let {αk}k�1 be any sequence of complex numbers. We consider the following lacunary series

∞∑
k=1

αk
[

fk ◦ γk(x) − Eμa fk ◦ γk
]
. (4)

Theorem 1.1. Let {c(k)
j } be the Taylor coefficients of fk at the point zero. Suppose

∞∑
j=1

√
1 + log j sup

k�1

∣∣c(k)
j

∣∣ < ∞.

Then for any sequence {αk}k�1 ∈ l2 , the series (4) converges for μa-a.e. x.

Equipping Z2 with the dyadic norm | · |2, one can talk about Hausdorff dimension of any subset E ⊂ Z2 (see [13]). The
Hausdorff dimension of μa , denoted by dimH μa , is defined as the infimum of dimH E ’s such that μa(E) = 1 (see [5] for
more details).

From Theorem 1.1, we deduce the Hausdorff dimension of the Riesz product.

Theorem 1.2. The Hausdorff dimension of the Riesz products μa is equal to

dimH μa = 1 − 1

log 2
lim

n→∞
Eμa log Pa,n

n
.

The shift transformation T on Z2, which takes
∑∞

n=0 an2n to
∑∞

n=0 an+12n , has the following analytic expression

T x = x

2
−

{
x

2

}
.

Recall that a probability measure μ is T -invariant (resp. T -quasi-invariant) if μ = μ ◦ T −1 (resp. μ 	 μ ◦ T −1 and μ ◦
T −1 	 μ).

We recall that in [7] we have proved that for the case p � 3, none of Riesz product is T -invariant, except the trivial case
of Haar measure which corresponds to an = 0 for all n. For the case p = 2, we have the following theorem.

Theorem 1.3. Let μa be a Riesz product defined by (3). Assume that |ak| < 1 for all k � 1. If a1,a2,a3 ∈ R, then μa is T -invariant if
and only if ak = 0 for any k � 1.

The condition on a1,a2,a3 is technical. If one of a1,a2,a3 is not in R, we do not know whether there exists a non-trivial
sequence {an}n�1 such that the Riesz product associated to the coefficients an ’s is T -invariant or not.

In this paper, we will also discuss other properties, such as the mutually absolute continuity of two Riesz products, the
invariance and the quasi-invariance with respect to the shift transformation, and the quasi-Bernoulli property of the Riesz
products (Section 5).

We organize the paper as follows. In Section 2, we prove the existence of μa . In Section 3, we study the convergence of
lacunary series (4) and prove Theorems 1.1 and 1.2. The invariance of μa will be given in Section 4. Some other properties
of μa are stated in the last section.

2. Construction of Riesz products

In this section, we prove the convergence of the sequence {Pa,n(x)dx} of measures. We begin with two lemmas.
For m � 1, let

Γm = {
γ

ε1
1 · · ·γ εm

m : ε1, . . . , εm−1 = −1,0,1; εm = −1,1
}
.
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Lemma 2.1. If γn,k ∈ Γm, then n = m.

Proof. For any γn,k ∈ Γm and for any sequence (ε1, . . . , εm) with γn,k = γ
ε1

1 · · ·γ εm
m , we have

exp

(
2π i

{
k

2n
x

})
= exp

(
2π i

{(
ε1

2
+ ε2

22
+ · · · + εm

2m

)
x

})
, ∀x ∈ Z2.

If n �= m, then by taking the value at x = 1 of both sides, we get

k

2n
−

(
ε1

2
+ ε2

22
+ · · · + εm

2m

)
= k

2n
− εm + · · · + ε1 · 2m−1

2m
∈ Z2.

But this is impossible because the numerator of the fraction reduced to a common denominator, is an odd number. So, we
must have n = m. �
Lemma 2.2. Let n � 1. Let F be a function on Z2 depending only on the first n − 1 coordinates. Then for any odd integer k,∫

Z2

F (x)γ k
n (x)dx = 0.

Proof. Since the Haar measure is a probability measure, the integral in question is equal to∫
(Z/2Z)n

F (x0, x1, . . . , xn−2)γ
k

n (x0, x1, . . . , xn−1)dx0 dx1 · · · dxn−1.

Write

γ k
n (x) = γ (x0, x1, . . . , xn−2)exp

(
2πki

xn−1

2

)
= (−1)xn−1γ (x0, x1, . . . , xn−2),

where γ depends only on the first n − 1 coordinates. Thus by Fubini Theorem,∫
Z2

F (x)γ k
n (x)dx =

∫
(Z/2Z)n−1

Fγ dx0 dx1 · · · dxn−2

∫
Z/2Z

(−1)xn−1 dxn−1.

Then the lemma follows by using∫
Z/2Z

(−1)xn−1 dxn−1 = 1 · 1

2
+ (−1) · 1

2
= 0. �

Now we prove that the sequence {Pa,n(x)dx} of measures admits a weak∗ limit.
For any γ ∈ Ẑ2, let

P̂a,n(γ ) =
∫
Z2

Pa,n(x)γ (x)dx.

To prove the convergence of {Pa,n(x)dx}, it suffices to prove that for any character γ ∈ Ẑ2, P̂a,n(γ ) admits a limit as n tends
to +∞. First notice that P̂a,n(1) ≡ 1. For any γn,k ∈ Ẑ2 and for any N > n, by Lemma 2.2,

P̂a,N (γn,k) =
∫
Z2

Pa,N (x)γn,k(x)dx

=
∫
Z2

γn,k(x)Pa,n(x)dx

=
∫
Z2

γn,k(x)
∑

ε1,ε2,...,εn

a(ε1)
1 · · ·a(εn)

n γ
ε1

1 · · ·γ εn
n dx

where a(ε) stands for 1, a
2 or a

2 according to ε = 0,1 or −1. We have the following three facts:

• If εn = 0, then by Lemma 2.1, there does not exist any sequence (ε1, ε2, . . . , εn) satisfying γn,k = γ
−ε1 · · ·γ −εn

n .
1
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• For any sequence (ε1, ε2, . . . , εn) with γn,k �= γ
−ε1

1 · · ·γ −εn
n , the integral∫

Z2

γn,k(x)γ ε1
1 · · ·γ εn

n dx = 0.

• Let En,k := {(ε1, . . . , εn): εn �= 0; εn + · · · + ε1 · 2n−1 = k or 2n − k} where ε j ∈ {−1,0,1} for 1 � j � n. For any sequence
(ε1, ε2, . . . , εn) with γn,k = γ

−ε1
1 · · ·γ −εn

n , by Lemma 2.1 again, we have

k + εn + · · · + ε1 · 2n−1

2n
∈ Z2,

which implies (ε1, ε2, . . . , εn) ∈ En,k .

By the above three facts, we have

P̂a,N (γn,k) =
∑

(ε1,...,εn)∈En,k

n∏
j=1

a
(ε j)

j .

Hence P̂a,N (γn,k) admits a limit as N tends to +∞, which proves the existence and uniqueness of μa . Therefore, the
following proposition follows.

Proposition 2.3. The Riesz product μa of the form (3) is well defined as the weak∗ limit of Pa,n(x)dx.

Let Bn(y) = {x ∈ Z2: |x − y|2 � 2−n}. As an application of Lemma 2.2, we also have the following proposition.

Proposition 2.4. For any ball Bn(y), we have

μa
(

Bn(y)
) = 2−n Pa,n(y). (5)

Proof. Let F be the characteristic function of the ball Bn(y) which is a function depending only on the first n coordinates.
Applying Lemma 2.2 to this function F shows that for any odd integer k and for any m > n,∫

Bn(y)

γ k
m(x)dx = 0.

So, ∫
Bn(y)

dμa(x) = lim
N→∞

∫
Bn(y)

Pa,N (x)dx =
∫

Bn(y)

Pa,n(x)dx.

Then the proposition follows immediately since the integrand at the right side is constant on the ball Bn(y). �
We can consider the equality (5) as the definition of the Riesz product. Actually it is easy to see that the functions

2−n Pa,n(x) are consistent in the sense of Kolmogorov. These two ways of defining Riesz products lead to the same Riesz
products. We point out that both methods can be generalized to produce measures on the product space

∏∞
n=1 Z/mnZ for

any sequence of integers (mn)n�1 with mn � 2.

3. Almost everywhere convergence and Hausdorff dimension

In this section, we will prove Theorem 1.1. For the case p � 3, the series (4) can be decomposed into a sum of a
finite number of martingales. But for the present case p = 2, the decomposition will be more complicated. The idea here is
inspired by Peyrière’s work [17] on the circle Riesz products. However, the contexts are different now. We prove Theorem 1.1
for the special case fk(z) = z first, then we will give the proof for the general case.

3.1. Case: fk(z) = z

Let Bn = σ(γ1, γ2, . . . , γn) be the σ -algebra generated by the characters γ1, . . . , γn (convention: B0 = {∅,Z2}).

Lemma 3.1. For any n � 1, we have

Eμa

(
γn+1(x)|Bn

) = 1

2

(
an+1 + an+1γn(x)

)
.
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Proof. It suffices to prove that for any ball Bn(y),∫
Bn(y)

γn+1(x)dμa(x) = 1

2

∫
Bn(y)

(
an+1 + an+1γn(x)

)
dμa(x).

In fact, by Lemma 2.2, we have∫
Bn(y)

γn+1(x)dμa(x) =
∫

Bn(y)

γn+1(x)Pa,n+1(x)dx

=
∫

Bn(y)

Pa,n(x)γn+1(x)
(
Re an+1γn+1(x)

)
= 1

2

∫
Bn(y)

Pa,n(x)
(
an+1 + an+1γn(x)

)
dx

= 1

2

∫
Bn(y)

(
an+1 + an+1γn(x)

)
dμa(x),

where the third equality is because γ 2
n+1(x) = γn(x). �

By Lemma 3.1,

Eμaγn = Eμa

(
Eμa (γn|Bn−1)

) = 1

2
an + 1

2
anEμaγn−1.

By induction, we obtain

Eμaγn = 1

2
an + 1

22
anan−1 + · · · + 1

2n
anan−1 · · ·a2a1, (6)

which is useful in what follows. We also remark that the equality (6) implies

γn = γn−1γ
−1

n = · · · = γ1γ
−1

2 · · ·γ −1
n .

Proposition 3.2. There exists a constant C such that for any α = {α j} j�1 ∈ l2 , we have[∫
sup
n�1

∣∣∣∣∣
n∑

j=1

α j
(
γ j(x) − Eμaγ j

)∣∣∣∣∣
2

dμa(x)

] 1
2

� C

(∑
j�1

|α j |2
) 1

2

.

Proof. Put γ0(x) = 0 by convention. From Lemma 3.1, we see that {γn(x) − 1
2 (an + anγn−1(x))}n�1 is a sequence of

martingale-differences. Furthermore, we observe that γ j(x) − Eμaγ j can be decomposed into the following sum:

γ j(x) − Eμaγ j = γ j(x) − 1

2
a j − 1

2
a jγ j−1(x)

+ 1

2
a j

(
γ j−1(x) − 1

2
a j−1 − 1

2
a j−1γ j−2(x)

)
.
.
.

+ 1

2 j−2
a ja j−1 · · ·a3

(
γ2(x) − 1

2
a2 − 1

2
a2γ1(x)

)
+ 1

2 j−1
a ja j−1 · · ·a2

(
γ1(x) − 1

2
a1

)
.

Now we define two sequences of numbers u j,k and v j,k . For any j � 1, u j,0 = v j,0 := 1. For j � 1 and 1 � k � j − 1,

v j,k := 1

2k
a ja j−1 · · ·a j−k+1,

u j,k := 1

2k
a ja j−1 · · ·a j−k+2a j−k+1.

Then for any j � 1 and any 0 � k � j − 1, we have

|u j,k+1| � 1 |v j,k| � 1
, |v j,k+1| � 1 |v j,k| � 1

,

2 2k+1 2 2k+1
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and

Eμa

(
v j,kγ j−k(x)|B j−k−1

) = u j,k+1 + v j,k+1γ j−k−1(x),

γ j(x) − Eμaγ j =
j−1∑
k=0

(
v j,kγ j−k(x) − u j,k+1 − v j,k+1γ j−k−1(x)

)
,

∥∥v j,kγ j−k(x) − u j,k+1 − v j,k+1γ j−k−1(x)
∥∥

L2(μa)
� 2−(k−1). (7)

Hence

sup
n�1

∣∣∣∣∣
n∑

j=1

α j
(
γ j(x) − Eμaγ j

)∣∣∣∣∣ �
∞∑

k=0

sup
n�1

∣∣∣∣∣
n∑

j=1

α j
(

v j,kγ j−k(x) − u j,k+1 − v j,k+1γ j−k−1(x)
)∣∣∣∣∣

where γ j−k(x) = 0 ( j � k), and u j,k = v j,k = 0 ( j < k).
By Doob’s inequality and (7), we obtain∥∥∥∥∥sup

n�1

∣∣∣∣∣
n∑

j=1

α j
(
γ j(x) − μ̂a(γ j)

)∣∣∣∣∣
∥∥∥∥∥

L2(μa)

� C
∞∑

k=0

2−(k−1)

√√√√ ∞∑
j=1

|α j|2 � C

√√√√ ∞∑
j=1

|α j|2. �

From Proposition 3.2, we get the following theorem which is nothing but the special case fk(z) = z of Theorem 1.1.

Theorem 3.3. Assume that α = {α j} j�1 ∈ l2 . Then the series

∞∑
j=1

α j
(
γ j(x) − Eμaγ j

)
converges for μa-a.e. x.

Now we prove the convergence of the lacunary series (4) in the general case.

3.2. Proof of Theorem 1.1

Lemma 3.4. For any integer n,

Eμa

(
γ n

k+1(x)|Bk
) =

{
γ n

k+1(x), n even,

1
2

(
ak+1γ

n−1
2

k (x) + ak+1γ
n+1

2
k (x)

)
, n odd.

Proof. It is trivial if n is even. If n is odd, write n = 2m + 1. We have

Eμa

(
γ n

k+1(x)|Bk
) = γ m

k Eμa

(
γk+1(x)|Bk

)
.

Then the desired result follows by Lemma 3.1. �
Lemma 3.5. Let m � 1 be an integer. For any integer n, if n ≡ 0 mod 2m, then

Eμa

(
γ n

k+m(x)|Bk
) = γ

n
2m

k (x) = γ n
k+m(x); (8)

if n ≡ j mod 2m for some 1 � j � 2m − 1, then

Eμa

(
γ n

k+m(x)|Bk
) = ukγ

n− j
2m

k (x) + vkγ
n− j
2m +1

k (x) (9)

where |uk| + |vk| � 1.

Proof. The first assertion is trivial. We will prove the second assertion by induction. The case m = 1 is nothing but
Lemma 3.4. Suppose the lemma is established for m � 1, let us consider the case m + 1 and 2m+1 � n. Notice that

Eμa

(
γ n

k+m+1(x)|Bk
) = Eμa

(
Eμa

(
γ n

k+m+1(x)|Bk+m
)|Bk

)
.
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If n ≡ 2 j mod 2m+1 for some 1 � j � 2m − 1, then n
2 ≡ j mod 2m . Hence by (9),

Eμa

(
γ n

k+m+1(x)|Bk
) = Eμa

(
γ

n
2

k+m(x)|Bk
)

= u′
kγ

n
2 − j

2m

k (x) + v ′
kγ

n
2 − j

2m +1

k (x)

= u′
kγ

n−2 j
2m+1

k (x) + v ′
kγ

n−2 j
2m+1 +1

k (x)

where |u′
k| + |v ′

k| � 1.
If n ≡ 2 j + 1 mod 2m+1 for some 0 � j � 2m − 2, then n−1

2 ≡ j mod 2m and n+1
2 ≡ j + 1 mod 2m . Thus by Lemma 3.4

and (9),

Eμa

(
γ n

k+m+1(x)|Bk
) = Eμa

(
1

2
ak+m+1γ

n−1
2

k+m(x) + 1

2
ak+m+1γ

n+1
2

k+m(x)

∣∣∣∣Bk

)

= 1

2
ak+m+1

(
u(1)

k γ

n−1
2 − j

2m

k (x) + v(1)

k γ

n−1
2 − j

2m +1

k (x)
)

+ 1

2
ak+m+1

(
u(2)

k γ

n+1
2 −( j+1)

2m

k (x) + v(2)

k γ

n+1
2 −( j+1)

2m +1

k (x)
)

= 1

2
ak+m+1

(
u(1)

k γ
n−(2 j+1)

2m+1

k (x) + v(1)

k γ
n−(2 j+1)

2m+1 +1

k (x)
)

+ 1

2
ak+m+1

(
u(2)

k γ
n−(2 j+1)

2m+1

k (x) + v(2)

k γ
n−(2 j+1)

2m+1 +1

k (x)
)

= u′′
kγ

n−(2 j+1)

2m+1

k (x) + v ′′
kγ

n−(2 j+1)

2m+1 +1

k (x)

where |u(1)

k |+ |v(1)

k | � 1, |u(2)

k |+ |v(2)

k | � 1 and u′′
k = 1

2 ak+m+1u(1)

k + 1
2 ak+m+1u(2)

k , v ′′
k = 1

2 ak+m+1 v(1)

k + 1
2 ak+m+1 v(2)

k . It is clear
that |u′′

k | + |v ′′
k | � 1.

Now, if n ≡ 2m+1 − 1 mod 2m+1, then n−1
2 ≡ 2m − 1 mod 2m, n+1

2 ≡ 0 mod 2m . Hence by Lemma 3.4, (8) and (9),

Eμa

(
γ n

k+m+1(x)|Bk
) = Eμa

(
1

2
ak+m+1γ

n−1
2

k+m(x) + 1

2
ak+m+1γ

n+1
2

k+m(x)

∣∣∣∣Bk

)

= 1

2
ak+m+1

(
u(3)

k γ

n−1
2 −(2m−1)

2m

k (x) + v(3)

k γ

n−1
2 −(2m−1)

2m +1

k (x)
)

+ 1

2
ak+m+1γ

n+1
2

2m

k (x)

= 1

2
ak+m+1

(
u(3)

k γ
n−(2m+1−1)

2m+1

k (x) + v(3)

k γ
n−(2m+1−1)

2m+1 +1

k (x)
)

+ 1

2
ak+m+1γ

n−(2m+1−1)

2m+1 +1

k (x)

= u′′′
k γ

n−(2m+1−1)

2m+1

k (x) + v ′′′
k γ

n−(2m+1−1)

2m+1 +1

k (x)

where |u(3)

k | + |v(3)

k | � 1 and u′′′
k = 1

2 ak+m+1u(3)

k , v ′′′
k = 1

2 ak+m+1 v(3)

k + 1
2 ak+m+1. We also have |u′′′

k | + |v ′′′
k | � 1. �

Proposition 3.6. There exists a constant C such that for any positive integer n and α = {α j} j�1 ∈ l2 ,[∫
sup
m�1

∣∣∣∣∣
m∑

j=1

α j
(
γ n

j (x) − Eμa

(
γ n

j

))∣∣∣∣∣
2

dμa(x)

] 1
2

� C(
√

1 + log n )

(∑
j�1

|α j |2
) 1

2

.

Proof. Let d be the smallest integer such that d > log2 n. Then n = j for some 1 � j � 2d − 1 (the case n = 0 is trivial).
Hence n− j

2d = 0. By Lemma 3.5, we have

Eμa

(
γ n

j+d(x)|B j
) = u j + v jγ j(x)

where |u j | + |v j | � 1. Thus

Eμa

(
γ n (x)|B j

) − Eμa

(
γ n ) = v j

(
γ j(x) − Eμaγ j

)
.
j+d j+d
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Hence by Proposition 3.2, we obtain∥∥∥∥∥sup
m�1

∣∣∣∣∣
m∑

j=1

α j+d
(
Eμa

(
γ n

j+d(x)|B j
) − Eμa

(
γ n

j+d

))∣∣∣∣∣
∥∥∥∥∥

L2(μa)

� C
√∑

j�1

|α j|2. (10)

Notice that {γ n
j+ld(x) − Eμa (γ

n
j+ld(x)|B j+(l−1)d)}l�1 is also a sequence of martingale-differences for any 1 � j � d − 1.

Thus by the same method in the proof of Proposition 6.5 in [7], we have∥∥∥∥∥sup
m�1

∣∣∣∣∣
m∑

j=1

α j+d
(
γ n

j+d(x) − Eμa

(
γ n

j+d(x)|B j
))∣∣∣∣∣

∥∥∥∥∥
L2(μa)

� C
√

d
∑
j�1

|α j|2. (11)

Combining (10) and (11), we get the desired result. �
Proof of Theorem 1.1. Using the Taylor expansion of fk , we write

fk
(
γk(x)

) − Eμa fk
(
γk(x)

) =
∞∑
j=1

c(k)
j ϕk, j(x)

where

ϕk, j(x) = γ
j

k (x) − Eμaγ
j

k (x).

Denote by

F N (x) =
N∑

k=1

αk
[

fk
(
γk(x)

) − Eμa fk
(
γk(x)

)]
the partial sum of the series in question, and

F ∗(x) = sup
N�1

∣∣F N (x)
∣∣.

Observe that

∣∣F N (x)
∣∣ �

∣∣∣∣∣
N∑

k=1

αk

∞∑
j=1

c(k)
j ϕk, j(x)

∣∣∣∣∣ �
∞∑
j=1

∣∣∣∣∣
N∑

k=1

αkc(k)
j ϕk, j(x)

∣∣∣∣∣.
Then we have

F ∗(x) �
∑
j�1

sup
N�1

∣∣∣∣∣
N∑

k=1

αkc(k)
j ϕk, j(x)

∣∣∣∣∣.
Thus, by Proposition 3.6,

∥∥F ∗(x)
∥∥

L2(μa)
� C

∑
j�1

√
1 + log j

√√√√ ∞∑
k=1

∣∣αkc(k)
j

∣∣2

� C

( ∞∑
j=1

√
1 + log j sup

k�1

∣∣c(k)
j

∣∣)√√√√ ∞∑
k=1

|αk|2 < ∞.

Hence we obtain the μa-a.e. convergence of the series (4). �
3.3. Hausdorff dimension

We apply Theorem 1.1 to calculate the Hausdorff dimension of μa . Recall that the Hausdorff dimension of a measure μ
is defined by dimH μ = inf{dimH E: E Borel set and μ(Ec) = 0} (see [5]). The dimension dimH μ is equal to the essential
supremum of the lower local density

D(μ, x) = lim inf
n→∞

logμ(Bn(x))

log |Bn(x)|
where |Bn(x)| denotes the Haar measure of Bn(x) (see [5]).
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For the Riesz product μa , we have

D(μa, x) = 1 − 1

log 2
lim sup

n→∞
log Pa,n(x)

n
.

By Theorem 1.1 and Kronecker Lemma,

1

n

n∑
k=1

[
log

(
1 + Re akγk(x)

) − Eμa log
(
1 + Re akγk(x)

)]
tends to zero for μa-a.e x. It follows that

dimH μa = 1 − 1

log 2
lim sup

n→∞
Eμa log Pa,n

n
.

4. Proof of invariance

In this section we will prove Theorem 1.3.
Recall that the measure μa is said to be T -invariant if for any γ ∈ Ẑ2,

μ̂a(γ ) = ̂μa ◦ T −1(γ ).

We are going to express this condition in terms of the coefficients an ’s.
On one hand, by Lemma 2.2,

μ̂a(γn,k) =
∫
Z2

γn,k Pa,n(x)dx. (12)

On the other hand, for any γn,k ∈ Ẑ2 \ {1}, by Lemma 2.2, we have

̂μa ◦ T −1(γn,k) =
∫
Z2

γn,k(T x)Pa,n+1(x)dx. (13)

For j = 0 or 1, denote

b( j)
n := an+1e

2π i j
2n+1 , c j := 1 + Re a1γ1( j)

2
.

Let μ
( j)
b be the Riesz products associated with the coefficients {b( j)

n }n�1. Then the right side of (13) can be written as

2
1∑

j=0

∫
j+2Z2

c jγn,k(T x)Pb( j),n(T x)dx =
1∑

j=0

c j

∫
Z2

γn,k(x)Pb( j),n(x)dx. (14)

Now we compute the integrals on the right hand sides of (12) and (14). Denote

En = {
(ε1, . . . , εn): ε1, . . . , εn−1 = −1,0,1; εn = −1,1

}
,

Γn = {
γ

ε1
1 · · ·γ εn

n : (ε1, . . . , εn) ∈ En
}
,

E ′
n,k = {

(ε1, ε2, . . . , εn) ∈ En: εn + · · · + ε1 · 2n−1 = 2n − k or − k
}
.

From the construction of Riesz products in Section 2 we see that if γn,k /∈ Γn , then the right sides of (12) and (14) are both
equal to zero. If γn,k ∈ Γn , then for any sequence (ε1, ε2, . . . , εn) ∈ En with γn,k(x) = γ

−ε1
1 · · ·γ −εn

n , we have (ε1, ε2, . . . , εn) ∈
E ′

n,k . Hence the right side of (12) is equal to∑
(ε1,...,εn)∈E ′

n,k

a(ε1)
1 · · ·a(εn)

n ,

and the right side of (14) is equal to

1∑
j=0

c j

∑
(ε1,...,εn)∈E ′

n,k

b( j)(ε1)
1 · · ·b( j)(εn)

n .

Thus the Riesz products μa is T -invariant if and only if for any n ∈ N and for any odd k ∈ N with 1 � k < 2n ,∑
(ε1,...,εn)∈E ′

a(ε1)
1 · · ·a(εn)

n =
1∑

j=0

c j

∑
(ε1,...,εn)∈E ′

b( j)(ε1)
1 · · ·b( j)(εn)

n ,
n,k n,k
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i.e., ∑
(ε1,...,εn)∈E ′

n,k

a(ε1)
1 · · ·a(εn)

n =
1∑

j=0

c j

∑
(ε1,...,εn)∈E ′

n,k

a(ε1)
2 · · ·a(εn)

n+1e
2π i(

ε1
22 +···+ εn

2n+1 ) j
. (15)

Lemma 4.1. The equation εn + εn−1 · 2 + · · · + ε1 · 2n−1 = 2n − 1 or −1 admits only n + 1 solutions:

(1,1, . . . ,1,1,1),

(0,0, . . . ,0,0,−1),

(0,0, . . . ,0,−1,1),
.
.
.

(−1,1, . . . ,1,1,1).

Proof. It is easy to see that there is only one sequence (1,1, . . . ,1) satisfying the relation εn + εn−1 · 2 + · · · + ε1 · 2n−1 =
2n − 1. Now we consider the second relation.

If εn = −1, then εn−1 · 2 + εn−2 · 22 + · · · + ε1 · 2n−1 = 0, i.e., εn−1 + εn−2 · 2 + · · · + ε1 · 2n−2 = 0, which implies that
εn−1 = 0. By induction, we have εn−2 = · · · = ε2 = ε1 = 0. Thus we obtain the second sequence (0,0, . . . ,0,0,−1).

If εn = 1, then εn−1 · 2 + εn−2 · 22 + · · · + ε1 · 2n−1 = −2, i.e., εn−1 + εn−2 · 2 + · · · + ε1 · 2n−2 = −1, which implies
that εn−1 �= 0. We continue to distinguish two cases: εn−1 = −1 or 1. If εn−1 = −1, then we obtain the third sequence. If
εn−1 = 1, we continue the above process. Finally we will obtain all other sequences. �
Lemma 4.2. If μa is T -invariant, the for each n � 1, an+1 = 0 if and only if an = 0.

Proof. Suppose that μa is T -invariant. For k = 1, by Lemma 4.1, (15) reads as

1∑
j=0

e
2π i − j

2n+1

(
an+1

2
+ an+1

2
· an

2
+ · · · + an+1

2
· · · a3

2
· a2

2
− an+1

2
· · · a2

2

)

= an

2
+ an

2
· an−1

2
+ · · · + an

2
· · · a2

2
· a1

2
+ an

2
· · · a1

2
.

If an+1 = 0, then

an

2
+ an

2
· an−1

2
+ · · · + an

2
· · · a2

2
· a1

2
+ an

2
· · · a1

2
= 0.

By absurdity, we suppose that an �= 0. Then

an

an
= −an−1

2
− an−1

2
· an−2

2
− · · · − an−1

2
· · · a2

2
· a1

2
− an−1

2
· · · a1

2
.

Notice that the modulus of the left side is equal to 1, but the modulus of the right side is smaller than 1. This contradiction
implies an = 0.

Conversely, if an = 0, then

1∑
j=0

c je
2π i − j

2n+1 · an+1

2
= 0.

But
1∑

j=0

c je
2π i − j

2n+1 = 1 + Re a1

2
+ 1 − Re a1

2
· e

−π i j
2n �= 0.

Hence an+1 = 0. �
Lemma 4.3. If a1,a2,a3 ∈ R, and μa is T -invariant, then a3 = 0.

Proof. Suppose that μa is T -invariant. Then

μa
(

B3(6)
) + μa

(
B3(7)

) = μa
(

B2(3)
)
,

μa
(

B3(2)
) + μa

(
B3(3)

) = μa
(

B2(1)
)
,
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since T −1 B2(3) = B3(6)� B3(7) and T −1 B2(1) = B3(2)� B3(3). If a1,a2,a3 ∈ R, then by the fact that μa(Bn(x)) = 2−n Pa,n(x),
we have

1 + a1

2
· 1 − a2

2
· 1

2
+ 1 − a1

2
· 1

2
· 1 +

√
2

2 a3

2
= 1 − a1

2
· 1

2
,

1 + a1

2
· 1 − a2

2
· 1

2
+ 1 − a1

2
· 1

2
· 1 −

√
2

2 a3

2
= 1 − a1

2
· 1

2
.

So, a3 = 0. �
Theorem 1.3 is a direct consequence of Lemmas 4.2 and 4.3.

5. Other properties

In this section, we give some other properties of Riesz products on the ring of dyadic integers. Since the proofs are
similar to the case p � 3, we state the results without proofs.

5.1. Quasi-Bernoulli property

Recall that a probability measure μ on Z2 is T -quasi-Bernoulli if there exists a constant C > 0 such that

C−1 � μa(Bn(x) ∩ T −n Bm(y))

μa(Bn(x))μa(Bm(y))
� C

holds for all x, y ∈ Z2 and all integers n,m � 1 (the measure is Bernoulli if C = 1). For Riesz product μa , we have the
following theorem.

Theorem 5.1. Assume that |ak| < 1 for any k � 1. The Riesz product μa is T -quasi-Bernoulli if there exists a complex number a with
|a| < 1 such that

∞∑
k=1

|ak − a| < +∞.

The notion of quasi-Bernoulli which was introduced by Brown, Michon and Peyrière [2], plays an important role in
multifractal analysis. It was proved in [2] that the multifractal formalism holds for all quasi-Bernoulli measures.

Are the conditions in Theorem 5.1 necessary for μa being T -quasi-Bernoulli? We point out that the above conditions
are sufficient and necessary for the case p � 3. Recall that the T -ergodicity of a measure μ means μ(A) = 0 or 1 for all
T -invariant set A (i.e., A = T −1 A). It is easy to see that if μ is a T -quasi-Bernoulli measure, then μ is ergodic and μ is
equivalent to a T -invariant measure which is a limit of 1

n

∑n−1
k=0 μ ◦ T −k .

5.2. Mutually absolute continuity

Given two Riesz products μa and μb defined by two different coefficients {an} and {bn}, under what conditions, μa and
μb are mutually absolutely continuous (mutually singular)?

Theorem 5.2. Assume that |an| < 1, |bn| < 1 for all n � 1. We have μa ∼ μb if

∞∑
k=1

|ak − bk|2
(

1 + cos2(sn − tn)

2 − |an + bn|
)

< ∞

where sn = arg(an + bn) and tn = arg(an − bn). Furthermore, if supn�1 |an| < 1 and supn�1 |bn| < 1, then we have μa ⊥ μb if

∞∑
k=1

|ak − bk|2 = +∞.

In contrast to the case p � 3, we need to add the supremum conditions for the mutually singular part. The second part
of Theorem 5.2, which holds for Riesz products on any compact abelian group, is due to Peyrière (see [16,17]). There are
many works on this topic of Riesz products defined on the circle R/Z (for example, [3,4,8,11,14,16,17,21]). But it is still an
open problem to find the exact condition for mutually absolute continuity of two Riesz products [6,10] both in the circle
case and in the p-adic case.
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5.3. Quasi-invariance

Recall that a measure μ is T -quasi-invariant if μ ◦ T −1 ∼ μ.

Theorem 5.3. Assume supn�1 |an| < 1. Then μa is T -quasi-invariant if and only if

∞∑
n=1

|an − an+1|2 < ∞.

Each quasi-invariant Riesz product produces a non-singular measure-theoretic dynamics (see [1,15] for general theory of
non-singular measure-theoretic dynamics). It would be interesting to know if there exists a non-trivial T -invariant measure
which is absolutely continuous with respect to a quasi-invariant Riesz product measure.
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