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1. Introduction

In recent years, intensive studies have been devoted to time-age-maturation population models. One important area
in which such models have been developed is that of cell replication and maturation (see [2,3,5–7,9,10,12–14] and the
references cited therein). In this paper, we consider the following delayed nonlocal transport equation

∂u

∂t
+ g(x)

∂u

∂x
= f (t, u, uτ ) for 0 < x < 1, t > 0, (1.1)

where g is nonnegative, uτ = u(h(x), t − τ ), τ > 0 with nonnegative h, and subject to the initial condition

u(x, t) = ϕ(x, t) for 0 � x � 1, −τ � t � 0. (1.2)

Eq. (1.1) was introduced by Mackey and Rudnicki [9] to model the biological process of hematological cell development in
bone marrow. They assumed that the cell cycle consists of two distinct phases: resting phase and proliferating phase. u is
the total density of cells in the resting phase and x is the maturation variable. They showed that not only the dynamics
of the population are dependent on the behavior of the cell population numbers some time in the past, but also the
population behavior at a given maturation level is dependent on the behavior at a previous maturation level. Thus, they
obtained Eq. (1.1) with a discrete time delay τ and a nonlocal maturation argument h(x), both due to cell replication. For a
detailed biological background to the model, see Mackey and Rudnicki [9,10].

In order to study the global stability of (1.1), Mackey and Rudnicki [10] introduced an associated delay differential equa-
tion by ignoring the maturation variable and thus connected the global solution behavior of this associated differential
equation with the local and global solution behavior of (1.1). However, they only considered the special case when the term
f does not depend on t . Moreover, the nonlocal function h(x) is restricted by the condition h(x) < x. Later, He and Luo [7]
investigated the long-time behavior of (1.1) by making use of the characteristic theory of first order partial differential equa-
tions and the iteration method under the assumptions that f does not depend on t and h(x) takes a special form h(x) = αx.
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To relax such restrictions on the parameters, in this paper we adopt a new approach to establish the existence–uniqueness
result for problem (1.1)–(1.2) and analyze the asymptotic behavior of the solution. This approach is based on the develop-
ment of a comparison principle and the construction of a monotone approximation. As is well known, over the past several
years, many authors have successfully applied the monotone approximation to nonlinear differential equations (see [4,8,11]
and the references cited therein). Furthermore, nonnegativity of dependence on the delay term in a differential equation
plays a crucial role in establishing a comparison principle. For Eq. (1.1) such nonnegativity requires that ∂ f /∂uτ � 0, which
is not satisfied in general. To overcome this difficulty, here we introduce a new definition of coupled upper and lower so-
lutions. With such a definition, we are able to establish a comparison principle and thus construct monotone sequences
of upper and lower solutions which will lead to the existence of the solution by passing to the limit. We are also able to
establish asymptotic behavior results for the model (1.1) by suitable pairs of upper and lower solutions.

The paper is organized as follows. In Section 2, we define a pair of coupled upper and lower solutions and establish
a comparison principle. In Section 3, we construct two monotone sequences of lower and upper solutions and show their
convergence to the unique local solution of (1.1)–(1.2). In Section 4, we analyze the asymptotic behavior of the model (1.1).

2. Comparison principle

Throughout the discussion we assume that the parameters in (1.1)–(1.2) satisfy the following:

(H1) g(x) is continuously differentiable on [0,1] with g(0) = 0 and g(x) > 0 for 0 < x � 1.
(H2) h(x) is continuous on [0,1] with 0 � h(x) � 1 for 0 � x � 1.
(H3) f (t, u, uτ ) is continuous with respect to t and continuously differentiable with respect to u and uτ on [0,∞) ×

(−∞,∞) × (−∞,∞). Furthermore, there exists a constant M � 0 such that ∂ f /∂uτ (t, u, uτ ) + M � 0.
(H4) ϕ ∈ L∞([0,1] × [−τ ,0]).

For simplicity, let DT = (0,1) × (0, T ). We first introduce the definition of a weak solution of problem (1.1)–(1.2).

Definition 2.1. A function u(x, t) is called a weak solution of (1.1)–(1.2) on DT if u satisfies the following:

(i) u ∈ L∞(DT ).
(ii) u(x, t) = ϕ(x, t) a.e. in [0,1] × [−τ ,0].

(iii) For each t ∈ (0, T ) and every ξ ∈ C1(D T ) with ξ(·, t) having compact support in (0,1),

1∫
0

u(x, t)ξ(x, t)dx =
1∫

0

u(x,0)ξ(x,0)dx +
t∫

0

1∫
0

[
∂ξ

∂s
+ ∂(gξ)

∂x

]
u(x, s)dx ds

+
t∫

0

1∫
0

ξ(x, s) f (s, u, uτ )dx ds. (2.1)

Such a weak solution definition can be formally derived from multiplying (1.1) by ξ and integrating the resulting equation
by parts. Conversely, if a weak solution with enough regularity exists, then one can show that it also satisfies (1.1) in the
classical sense.

We then introduce the definition of coupled upper and lower solutions of problem (1.1)–(1.2).

Definition 2.2. A pair of functions u(x, t) and u(x, t) are called an upper and a lower solution of (1.1)–(1.2) on DT , respec-
tively, if all the following hold.

(i) u, u ∈ L∞(DT ).
(ii) u(x, t) � ϕ(x, t) � u(x, t) a.e. in [0,1] × [−τ ,0].

(iii) For each t ∈ (0, T ) and every nonnegative ξ ∈ C1(D T ) with ξ(·, t) having compact support in (0,1),

1∫
0

u(x, t)ξ(x, t)dx �
1∫

0

u(x,0)ξ(x,0)dx +
t∫

0

1∫
0

[
∂ξ

∂s
+ ∂(gξ)

∂x

]
u(x, s)dx ds

+
t∫ 1∫

ξ(x, s)
[

f (s, u, uτ ) + M(uτ − uτ )
]

dx ds, (2.2)
0 0
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1∫
0

u(x, t)ξ(x, t)dx �
1∫

0

u(x,0)ξ(x,0)dx +
t∫

0

1∫
0

[
∂ξ

∂s
+ ∂(gξ)

∂x

]
u(x, s)dx ds

+
t∫

0

1∫
0

ξ(x, s)
[

f (s, u, uτ ) + M(uτ − uτ )
]

dx ds. (2.3)

Based on Definition 2.2, the following comparison principle can be established.

Theorem 2.3. Suppose that (H1)–(H4) hold. Let u and u be an upper solution and a lower solution of (1.1)–(1.2), respectively. Then
u � u a.e. in DT .

Proof. Let w(x, t) = u(x, t) − u(x, t) and wτ = uτ − uτ . Then we have

w(x,0) � 0 a.e. in (0,1), wτ � 0 a.e. in [0,1] × [0, τ ], (2.4)

and

1∫
0

w(x, t)ξ(x, t)dx �
1∫

0

w(x,0)ξ(x,0)dx +
t∫

0

1∫
0

[
∂ξ

∂s
+ ∂(gξ)

∂x

]
w(x, s)dx ds

+
t∫

0

1∫
0

ξ
∂ f

∂u
(s, θ1, uτ )w dx ds

+
t∫

0

1∫
0

ξ

[
∂ f

∂uτ
(s, u, θ2) + 2M

]
wτ dx ds, (2.5)

where θ1 is between u and u, and θ2 is between uτ and uτ .
Let ξ(x, t) = eλtζ(x, t), where ζ ∈ C1(D T ) and λ (> 0) is chosen so that λ + ∂ f /∂u � 0 on [0, T ] × [c,d] × [cτ ,dτ ], where

c = min{infDT u, infDT u}, d = max{supDT
u, supDT

u}, cτ = min{infDT uτ , infDT uτ }, and dτ = max{supDT
uτ , supDT

uτ }. Then
we find

eλt

1∫
0

w(x, t)ζ(x, t)dx �
1∫

0

w(x,0)ζ(x,0)dx

+
t∫

0

1∫
0

eλs
[

∂ζ

∂s
+ ∂(gζ )

∂x

]
w(x, s)dx ds

+
t∫

0

1∫
0

eλsζ

[
λ + ∂ f

∂u
(s, θ1, uτ )

]
w dx ds

+
t∫

0

1∫
0

eλsζ

[
∂ f

∂uτ
(s, u, θ2) + 2M

]
wτ dx ds. (2.6)

We now set up a backward problem as follows:

∂ζ

∂s
+ ∂(gζ )

∂x
= 0, 0 < s < t, 0 < x < 1,

ζ(x, t) = χ(x), 0 � x � 1. (2.7)

Here χ ∈ C∞
0 (0,1), 0 � χ � 1. Since the equation in (2.7) is linear, it can be solved by the characteristic method. Note that

0 � ζ � exp(sup[0,1] |g′(x)|T ).
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Substituting such a ζ in (2.6) yields

1∫
0

w(x, t)χ(x)dx �
1∫

0

w(x,0)ζ(x,0)dx + ν

t∫
0

1∫
0

w+(x, s)dx ds

+
t∫

0

1∫
0

[
∂ f

∂uτ
(s, u, θ2) + 2M

]
wτ dx ds, (2.8)

where w+(x, t) = max{w(x, t),0} and ν = maxDT
ζ [λ + ∂ f /∂u(t, θ1, uτ )]. If 0 < t � τ , by (2.4) and (H3), we then have

1∫
0

w(x, t)χ(x)dx � ν

t∫
0

1∫
0

w+(x, s)dx ds.

Since this inequality holds for every χ ∈ C∞
0 (0,1) with 0 � χ � 1, we can choose a sequence {χn} on (0,1) converging

a.e. to

χ(x) =
{

1 if w(x, t) > 0,

0 otherwise.

Consequently, we find that

1∫
0

w+(x, t)dx � ν

t∫
0

1∫
0

w+(x, s)dx ds,

which by Gronwall’s inequality leads to

1∫
0

w+(x, t)dx = 0. (2.9)

If τ < t � T , proceeding as above, we still have (2.9). Thus, the proof is completed. �
We then establish the following uniqueness result.

Theorem 2.4. Suppose that (H1), (H2), (H4) hold, and f (t, u, uτ ) is continuous with respect to t and continuously differentiable with
respect to u and uτ on [0,∞) × (−∞,∞) × (−∞,∞). Then problem (1.1)–(1.2) has at most one solution.

Proof. Suppose that û and ũ are two solutions of (1.1)–(1.2). Let v(x, t) = û(x, t)− ũ(x, t). Then for each t ∈ (0, T ) and every
ζ ∈ C2,1(D T ) with ζ(·, t) having compact support in (0,1), v satisfies

1∫
0

v(x, t)ζ(x, t)dx =
t∫

0

1∫
0

[
∂ζ

∂s
+ ∂(gζ )

∂x

]
v(x, s)dx ds

+
t∫

0

1∫
0

ζ
∂ f

∂u
(s, θ3, ûτ )v dx ds

+
t∫

0

1∫
0

ζ

[
∂ f

∂uτ
(s, ũ, θ4)

]
vτ dx ds, (2.10)

where θ3 is between û and ũ, and θ4 is between ûτ and ũτ .
Let ζ satisfy the following backward problem

∂ζ

∂s
+ ∂(gζ )

∂x
= 0, 0 < s < t, 0 < x < 1,

ζ(x, t) = χ̃ (x), 0 � x � 1. (2.11)

Here χ̃ ∈ C∞(0,1), −1 � χ̃ � 1.
0
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Substituting such a ζ in (2.10), we find

1∫
0

v(x, t)χ̃ (x)dx � ν̃

t∫
0

1∫
0

∣∣v(x, s)
∣∣dx ds +

t∫
0

1∫
0

ζ

[
∂ f

∂uτ
(s, ũ, θ4)

]
vτ dx ds, (2.12)

where ν̃ = maxDT
|ζ∂ f /∂u(t, θ3, ûτ )|.

If 0 < t � T � τ , since vτ = ûτ − ũτ = 0, we then have

1∫
0

v(x, t)χ̃ (x)dx � ν̃

t∫
0

1∫
0

∣∣v(x, s)
∣∣dx ds. (2.13)

Because inequality (2.13) holds for every χ̃ , we can choose a sequence {χ̃n} on (0,1) converging a.e. to

χ̃ (x) =
{1 if v(x, t) > 0,

0 if v(x, t) = 0,

−1 if v(x, t) < 0.

Consequently, we have

1∫
0

∣∣v(x, t)
∣∣dx � ν̃

t∫
0

1∫
0

∣∣v(x, s)
∣∣dx ds,

which upon application of Gronwall’s inequality implies v(x, t) = 0 on DT .
If τ < t � T , arguing analogously, we still have v(x, t) = 0 on DT . �

3. Monotone approximation and existence of the solution

We begin this section by constructing monotone sequences of lower and upper solutions. Suppose that u0(x, t) and
u0(x, t) are a pair of lower and upper solutions of (1.1)–(1.2). Under the hypothesis (H3), we can choose a positive constant
N such that ∂ f /∂u(t, u, uτ ) + N � 0 for (x, t) ∈ DT , u0 � u � u0, and u0

τ � uτ � u0
τ . We then set up two sequences {uk}∞k=0

and {uk}∞k=0 by the following procedure:
For k = 1,2, . . . , let uk and uk satisfy the system

∂uk

∂t
+ g(x)

∂uk

∂x
= f

(
t, uk−1, uk−1

τ

) + M
(
uk−1

τ − uk−1
τ

) − N
(
uk − uk−1) for (x, t) ∈ DT ,

uk(x, t) = ϕ(x, t) for 0 � x � 1, −τ � t � 0, (3.1)

and

∂uk

∂t
+ g(x)

∂uk

∂x
= f

(
t, uk−1, uk−1

τ

) + M
(
uk−1

τ − uk−1
τ

) − N
(
uk − uk−1) for (x, t) ∈ DT ,

uk(x, t) = ϕ(x, t) for 0 � x � 1, −τ � t � 0. (3.2)

The existence of solutions to problems (3.1) and (3.2) follows from the fact that (3.1) and (3.2) both are linear problems. We
first show that u0 � u1 � u1 � u0. Let w(x, t) = u0 − u1. Then w satisfies

1∫
0

w(x, t)ξ(x, t)dx �
t∫

0

1∫
0

[
∂ξ

∂s
+ ∂(gξ)

∂x

]
w(x, s)dx ds + N

t∫
0

1∫
0

ξ(x, s)w(x, s)dx ds.

Thus, w(x, t) � 0, that is, u0 � u1. In a similar manner, it can be shown that u1 � u0.
We now claim that u1 and u1 are a lower solution and an upper solution of (1.1)–(1.2), respectively, and hence by our

comparison principle u1 � u1. Since u0 � u1 and u1 � u0, on the one hand, the right-hand side of the equation in (3.1)
satisfies

f
(
t, u0, u0

τ

) + M
(
u0

τ − u0
τ

) − N
(
u1 − u0)

= f
(
t, u1, u1

τ

) −
[

∂ f

∂u

(
t, θ5, u0

τ

) + N

](
u1 − u0) −

[
∂ f

∂uτ

(
t, u1, θ6

) + M

](
u1

τ − u0
τ

) + M
(
u1

τ − u0
τ

)
� f

(
t, u1, u1

τ

) + M
(
u1

τ − u1
τ

)
(3.3)
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with u0 � θ5 � u1 and u0
τ � θ6 � u1

τ . On the other hand, the right-hand side of the equation in (3.2) satisfies

f
(
t, u0, u0

τ

) + M
(
u0

τ − u0
τ

) − N
(
u1 − u0)

= f
(
t, u1, u1

τ

) +
[

∂ f

∂u

(
t, θ7, u0

τ

) + N

](
u0 − u1) +

[
∂ f

∂uτ

(
t, u1, θ8

) + M

](
u0

τ − u1
τ

) + M
(
u1

τ − u0
τ

)
� f

(
t, u1, u1

τ

) + M
(
u1

τ − u1
τ

)
(3.4)

with u1 � θ7 � u0 and u1
τ � θ8 � u0

τ .
We then assume that for some k > 1, uk and uk are a lower solution and an upper solution of (1.1)–(1.2), respectively.

Proceeding analogously, we can show that uk � uk+1 � uk+1 � uk and that uk+1 and uk+1 are also a lower solution and an
upper solution of (1.1)–(1.2), respectively. Hence by induction, we obtain two monotone sequences that satisfy

u0 � u1 � · · · � uk � uk � · · · � u1 � u0 in DT

for each k = 0,1,2, . . . . From the monotonicity of the sequences {uk}∞k=0 and {uk}∞k=0, it follows that there exist functions
u and u such that uk → u and uk → u pointwise on DT . Clearly u � u on DT . Furthermore, u and u can be treated as an
upper solution and a lower solution of (1.1)–(1.2), respectively, and hence u = u. Defining this common limit by u, we find
that u is a solution of (1.1)–(1.2).

We now construct a pair of lower and upper solutions of (1.1)–(1.2). Let

M0 = max
{

1, sup
[0,1]×[−τ ,0]

∣∣ϕ(x, t)
∣∣}

and

M1 = sup
∣∣ f (t, u, uτ )

∣∣ for (t, u, uτ ) ∈ [0,2] × [−4M0,4M0] × [−4M0,4M0].
We then let u0(x, t) = −M0 and u0(x, t) = M0 for (x, t) ∈ [0,1] × [−τ ,0], and let u0(x, t) = −M0eσ t and u0(x, t) = M0eσ t

for (x, t) ∈ [0,1] × [0,2], where σ is a positive constant chosen to be large enough such that σ � M1 + 2M . It can be easily
shown that such u0 and u0 are a pair of lower and upper solutions of (1.1)–(1.2) on DT with T = min{2, ln 4/σ }.

In summary, we have the following existence–uniqueness result.

Theorem 3.1. Suppose that hypotheses (H1)–(H4) hold. Then there exists T such that two monotone sequences {uk(x, t)} and {uk(x, t)}
converge to the unique weak solution of (1.1)–(1.2) on DT .

From the aforementioned process, we also have the following comparison result.

Corollary 3.2. Suppose that hypotheses (H1)–(H4) hold. Furthermore, suppose that u(x, t) and u(x, t) are a pair of lower and upper
solutions of (1.1)–(1.2). Then the solution u(x, t) of (1.1)–(1.2) satisfies

u(x, t) � u(x, t) � u(x, t) on DT .

Remark 3.3. All the results hold if we assume instead of (H3) that ∂ f /∂uτ − M � 0 and define another pair of coupled
upper and lower solutions by replacing Definition 2.2(iii) with the following inequalities:

1∫
0

u(x, t)ξ(x, t)dx �
1∫

0

u(x,0)ξ(x,0)dx +
t∫

0

1∫
0

[
∂ξ

∂s
+ ∂(gξ)

∂x

]
u(x, s)dx ds

+
t∫

0

1∫
0

ξ(x, s)
[

f (s, u, uτ ) − M(uτ − uτ )
]

dx ds, (3.5)

1∫
0

u(x, t)ξ(x, t)dx �
1∫

0

u(x,0)ξ(x,0)dx +
t∫

0

1∫
0

[
∂ξ

∂s
+ ∂(gξ)

∂x

]
u(x, s)dx ds

+
t∫

0

1∫
0

ξ(x, s)
[

f (s, u, uτ ) − M(uτ − uτ )
]

dx ds. (3.6)



K. Deng / J. Math. Anal. Appl. 360 (2009) 727–736 733
Remark 3.4. For certain nonlinearities f (t, u, uτ ), by constructing suitable pairs of upper and lower solutions, the hypothesis
(H3) may be relaxed. Suppose that u(x, t) and u(x, t) are a pair of upper and lower solutions of (1.1)–(1.2) on DT . If there
exist A1(x, t) and B1(x, t) on DT with ‖A1‖L∞ < ∞ and B1 � 0 such that

f (t, u, uτ ) − f (t, u, uτ ) = [
f (t, u, uτ ) − f (t, u, uτ )

] + [
f (t, u, uτ ) − f (t, u, uτ )

]
= A1(x, t)(u − u) + B1(x, t)(uτ − uτ ), (3.7)

then the hypothesis ∂ f /∂uτ + M � 0 is no longer required, and we can set M = 0 in (2.2) and (2.3). On the other hand,
taking Remark 3.3 into account, if there exist A2(x, t) and B2(x, t) on DT with ‖A2‖L∞ < ∞ and B2 � 0 such that

f (t, u, uτ ) − f (t, u, uτ ) = [
f (t, u, uτ ) − f (t, u, uτ )

] + [
f (t, u, uτ ) − f (t, u, uτ )

]
= A2(x, t)(u − u) − B2(x, t)(uτ − uτ ), (3.8)

then the hypothesis ∂ f /∂uτ − M � 0 is no more needed, and we can take M = 0 in (3.5) and (3.6).

4. Asymptotic behavior of the model

In this section we analyze the asymptotic behavior of the model (1.1). Specifically, we use the upper–lower solution
technique to study two models considered by Rey and Mackey [12], Dyson et al. [6], and Mackey and Rudnicki [10].

4.1. Maturation structured model

We first consider the following equation

∂u

∂t
+ g(x)

∂u

∂x
= −[

c1(t) + β(u)
]
u + c2(t)β(uτ )uτ . (4.1)

In [10] under the assumptions that c1 and c2 are positive constants, and β is a continuously differentiable, decreasing and
positive function, Mackey and Rudnicki established the following stability result:

(i) If c1 > (c2 − 1)β(0), then every nonnegative solution of (4.1) converges exponentially to zero as t → ∞ uniformly for
x ∈ [0,1].

(ii) If c1 < (c2 − 1)β(0), then all solutions of (4.1) with positive initial data converge exponentially to the positive constant
solution u∗ as t → ∞ uniformly for x ∈ [0,1].

For time dependent functions c1(t), c2(t) and a general nonlocal term h(x), their arguments appear not applicable, and thus
we apply the theory developed in Sections 2 and 3 to (4.1). To this end, we make assumptions on the parameters as follows:

(A1) c1(t) and c2(t) both are positive and continuous on [0,∞).
(A2) β(u) is continuously differentiable, decreasing and positive on [0,∞), and uβ ′ + β � 0 on [0,∞).

Note that (H3) is satisfied because uβ ′ + β � 0. We first show the global stability of the trivial solution. For this purpose,
we make further assumptions as follows:

(A3) inf[0,∞) c1(t) > sup[0,∞)(c2(t) − 1)β(0).
(A4) The initial data ϕ satisfies 0 � ϕ � η on [0,1] × [−τ ,0].

Clearly, u = 0 is a lower solution. Let u = ηe−μt be a positive function with μ a positive constant to be determined. To be
an upper solution, u must satisfy the following inequality:

−μηe−μt � −(
c1(t) + β

(
ηe−μt))ηe−μt + c2(t)β

(
ηe−μteμτ

)
ηe−μteμτ . (4.2)

Since β is decreasing, the above inequality holds if we require

c1(t) �
(
eμτ c2(t) − 1

)
β
(
ηe−μt) + μ. (4.3)

In view of (A3), (4.3) is valid if we choose μ sufficiently small. Thus, we have 0 � u(x, t) � ηe−μt , which implies that
u(x, t) → 0 as t → ∞ uniformly for x ∈ [0,1].

On the other hand, if c1 or c2 is time dependent, and if the inequality in (A3) is reversed, we may not have a global
stability result. For example, if c1(t) = (2t2 + 7t + 2)/(t + 2)2(t + 3), c2 = 4, β(u) = 1/(u + 1), and τ = 1, then (4.1) has the
solution u = t + 2, which diverges as t → ∞. Therefore, to show the global stability of the positive constant solution, we
assume the following
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(A5) c1, c2 are positive constants with c1 < (c2 − 1)β(0) and limu→∞ β(u) < c1/(c2 − 1).
(A6) The initial data ϕ satisfies 0 < ϕ � η on [0,1] × [−τ ,0].

By (A5), there is a positive constant solution u∗ of (4.1). Let u = u∗ − δe−μt and u = u∗ +ηe−μt , where δ and μ are positive
constants to be chosen so that 0 < u∗ − δ < ϕ and 0 � u∗ − δeμτ � ϕ on [0,1] × [−τ ,0]. To be a pair of lower and upper
solutions, u and u must satisfy the following inequalities, respectively

−(
c1 + β(u)

)
u + c2β(uτ )uτ � μδe−μt (4.4)

and

−(
c1 + β(u)

)
u + c2β(uτ )uτ � −μηe−μt . (4.5)

Since β is decreasing, β(uτ ) > β(u) and β(uτ ) < β(u). Moreover, by continuity of β ′ and the mean value theorem, there
exist positive constants σ and ε (ε � min{δ,η}) such that β(u) � β(u∗) − σ(u − u∗) for u∗ − ε � u � u∗ and β(u) �
β(u∗) − σ(u − u∗) for u∗ � u � u∗ + ε. Thus, by (A5) we find

−(
c1 + β(u)

)
u + c2β(uτ )uτ

>
[−c1 + (c2 − 1)β(u)

]
u − δc2β(u)

(
eμτ − 1

)
e−μt

>
[−c1 + (c2 − 1)β

(
u∗ − εe−μt)]u − δc2β(0)

(
eμτ − 1

)
e−μt

>
[−c1 + (c2 − 1)β(u∗)

]
u + (c2 − 1)uεσ e−μt − δc2β(0)

(
eμτ − 1

)
e−μt

� (c2 − 1)(u∗ − δ)εσ e−μt − δc2β(0)
(
eμτ − 1

)
e−μt (4.6)

and

−(
c1 + β(u)

)
u + c2β(uτ )uτ

<
[−c1 + (c2 − 1)β(u)

]
u + ηc2β(u)

(
eμτ − 1

)
e−μt

<
[−c1 + (c2 − 1)β

(
u∗ + εe−μt)]u + ηc2β(0)

(
eμτ − 1

)
e−μt

<
[−c1 + (c2 − 1)β(u∗)

]
u − (c2 − 1)uεσ e−μt + ηc2β(0)

(
eμτ − 1

)
e−μt

� −(c2 − 1)u∗εσ e−μt + ηc2β(0)
(
eμτ − 1

)
e−μt . (4.7)

Then (4.6) and (4.7) yield the validity of (4.4) and (4.5), respectively, if μ is chosen small enough. Hence, we have u∗ −
δe−μt � u � u∗ + ηe−μt , i.e., all solutions of (4.1) with positive initial data converge exponentially to the positive constant
solution u∗ as t → ∞ uniformly for x ∈ [0,1].

4.2. Blood production system

We then consider the following equation

∂u

∂t
+ g(x)

∂u

∂x
= −r(t)u + (

a(t) + b(t)uτ

)
uτ . (4.8)

In [10] under the assumptions that r,a,b are constants with r > 0 and −r < a < r, if b > 0 and −r/b < ϕ(0, t) < (r − a)/b
or b < 0 and (r − a)/b < ϕ(0, t) < −r/b for t ∈ [−τ ,0], Mackey and Rudnicki proved that every solution of (4.8) converges
exponentially to zero as t → ∞ uniformly for x ∈ [0,1]. However, for time dependent parameters and a general nonlocal
term h(x), their analysis seems not amendable, and thus we use the upper–lower solution technique to give conditions on
the initial data ϕ such that all solutions of (4.8) converge exponentially to zero as t → ∞ uniformly for x ∈ [0,1].

We first consider the case that a(t) > 0 and b(t) > 0. Surely, (H3) is not satisfied because ∂ f /∂uτ = a + 2buτ is not
bounded below in general. We then use the idea stated in Remark 3.4. Let u = −δe−μt and u = ηe−μt with δ,η,μ positive
constants to be determined.(

a(t) + b(t)uτ

)
uτ − (

a(t) + b(t)uτ

)
uτ = [

a(t) + b(t)(η − δ)e−μteμτ
]
(uτ − uτ ). (4.9)

Since a(t) > 0, in view of (3.7) we require that a(t) + b(t)(η − δ) > 0, which is valid if

inf[0,∞)

[
a(t)

b(t)

]
> δ − η. (4.10)

Then as a pair of lower and upper solutions, u and u must satisfy the following inequalities, respectively

r(t)δe−μt − a(t)δe−μteμτ + b(t)δ2e−2μte2μτ � μδe−μt (4.11)
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and

−r(t)ηe−μt + a(t)ηe−μteμτ + b(t)η2e−2μte2μτ � −μηe−μt . (4.12)

These inequalities hold if μ is sufficiently small and if

inf[0,∞)

[
r(t) − a(t)

]
> 0 (4.13)

and

η < inf[0,∞)

[
r(t) − a(t)

b(t)

]
. (4.14)

A combination of (4.10) and (4.14) then yields

δ < inf[0,∞)

[
a(t)

b(t)

]
+ inf[0,∞)

[
r(t) − a(t)

b(t)

]
. (4.15)

Since the initial data ϕ satisfies −δ � ϕ � η, we find that

− inf[0,∞)

[
a(t)

b(t)

]
− inf[0,∞)

[
r(t) − a(t)

b(t)

]
< ϕ < inf[0,∞)

[
r(t) − a(t)

b(t)

]
. (4.16)

Remark 4.1. If the condition (4.16) is valid, there exists a positive constant ε such that

ε < inf[0,∞)

[
r(t) − a(t)

b(t)

]

and

− inf[0,∞)

[
a(t)

b(t)

]
− inf[0,∞)

[
r(t) − a(t)

b(t)

]
+ ε � ϕ � inf[0,∞)

[
r(t) − a(t)

b(t)

]
− ε.

Then we can take

δ = inf[0,∞)

[
a(t)

b(t)

]
+ inf[0,∞)

[
r(t) − a(t)

b(t)

]
− ε and η = inf[0,∞)

[
r(t) − a(t)

b(t)

]
− ε

2
,

and it follows that (4.10), (4.14), and (4.15) hold.

In the case that a(t) > 0 and b(t) < 0, set v(x, t) = −u(x, t), then v satisfies the equation

∂v

∂t
+ g(x)

∂v

∂x
= −r(t)v + (

a(t) − b(t)vτ

)
vτ . (4.17)

Thus, we obtain the following condition on the initial data ϕ

sup
[0,∞)

[
r(t) − a(t)

b(t)

]
< ϕ < − sup

[0,∞)

[
a(t)

b(t)

]
− sup

[0,∞)

[
r(t) − a(t)

b(t)

]
. (4.18)

We then consider the case that a(t) < 0 and b(t) > 0. Obviously, the hypothesis in Remark 3.3 is not satisfied, and we
again use the idea in Remark 3.4. Let u = −δe−μt and u = ηe−μt with δ, η, μ positive constants to be determined.(

a(t) + b(t)uτ

)
uτ − (

a(t) + b(t)uτ

)
uτ = −[

a(t) + b(t)(η − δ)e−μteμτ
]
(uτ − uτ ). (4.19)

Since a(t) < 0, noticing (3.8) we require that a(t) + b(t)(η − δ) < 0. Then as a pair of coupled lower and upper solutions,
u and u must satisfy the following coupled inequalities, respectively

r(t)δe−μt + a(t)ηe−μteμτ + b(t)η2e−2μte2μτ � μδe−μt (4.20)

and

−r(t)ηe−μt − a(t)δe−μteμτ + b(t)δ2e−2μte2μτ � −μηe−μt . (4.21)

Combining (4.20) and (4.21) yields

r(t)δ + a(t)η > 0 and r(t)η + a(t)δ > 0,



736 K. Deng / J. Math. Anal. Appl. 360 (2009) 727–736
which further yields δ = η. Then (4.20) and (4.21) hold if we require

inf[0,∞)

[
r(t) + a(t)

]
> 0 and η < inf[0,∞)

[
r(t) + a(t)

b(t)

]
. (4.22)

Hence, the initial data ϕ satisfies the condition

− inf[0,∞)

[
r(t) + a(t)

b(t)

]
< ϕ < inf[0,∞)

[
r(t) + a(t)

b(t)

]
. (4.23)

Similarly, in the case that a(t) < 0 and b(t) < 0, the initial data ϕ satisfies the condition

sup
[0,∞)

[
r(t) + a(t)

b(t)

]
< ϕ < − sup

[0,∞)

[
r(t) + a(t)

b(t)

]
. (4.24)

Conditions (4.23) and (4.24) are not optimal as those obtained in [10], because in the case that a(t) < 0, a pair of coupled
upper and lower solutions are introduced. On the other hand, if a(t) > 0, upper and lower solutions are uncoupled, and thus
application of the upper–lower solution technique can produce satisfactory results.

Finally, it is worth pointing out that the above-mentioned discussion can be extended to the following equation

∂u

∂t
+ g(x, t)

∂u

∂x
= f (x, t, u, uτ ) for 0 < x < 1, t > 0. (4.25)

Furthermore, arguments used in this paper may be applied to first order nonlocal equations with distributed time delay
such as the one developed by Adimy and Crauste [1].
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