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We present several inequalities for

fa(x) = Γ (a, x)

Γ (a,0)
(a > 0, x � 0),

where Γ (a, x) is the incomplete gamma function. One of our theorems states that
the inequalities

fa
(

S p(x1, . . . , xn)
)
� fa(x1) · · · fa(xn) � fa

(
Sq(x1, . . . , xn)

)
(p,q > 0)

hold for all nonnegative real numbers x1, . . . , xn (n � 2) if and only if p � min(a,1) and
q � max(a,1). Here, St(x1, . . . , xn) denotes the power sum of order t. This extends and
complements a result published by Ismail and Laforgia in 2006.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The incomplete gamma function, defined for real numbers a > 0 and x � 0 by

Γ (a, x) =
∞∫

x

e−tta−1 dt,

has numerous applications in statistics, probability theory, and other fields. The most important properties of this function
are collected, for example, in [1, Chapter 6]. Many information on the incomplete gamma function with interesting historical
comments and a detailed list of references can be found in [11].

Throughout this paper, we denote by fa the ‘normalized’ function

fa(x) = Γ (a, x)

Γ (a,0)
.

The function fa+1 is the unique solution of the linear differential equation

y′ + y = fa(x), y(0) = 1.
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In 2006, Ismail and Laforgia [14] presented remarkable functional inequalities for fa . They proved for x, y � 0:

fa(x + y) � fa(x) fa(y) (a > 1) and fa(x) fa(y) � fa(x + y) (0 < a < 1). (1)

We denote by St(x1, . . . , xn) the power sum of order t , that is,

St = (
xt

1 + · · · + xt
n

)1/t
(t �= 0).

Using this notation (1) can be written as

fa
(

S1(x, y)
)
� fa(x) fa(y) (a > 1) and fa(x) fa(y) � fa

(
S1(x, y)

)
(0 < a < 1), (2)

respectively. In the next section we generalize (2). We provide all parameters p and q such that the double-inequality

fa
(

S p(x1, . . . , xn)
)
� fa(x1) · · · fa(xn) � fa

(
Sq(x1, . . . , xn)

)
(3)

holds for all x1, . . . , xn � 0. Furthermore, we offer some mean-value inequalities. The power mean of order t is defined by

Mt(x1, . . . , xn) =
(

xt
1 + · · · + xt

n

n

)1/t

(t �= 0), M0(x1, . . . , xn) = (x1 · · · xn)
1/n,

M−∞(x1, . . . , xn) = min(x1, . . . , xn), M∞(x1, . . . , xn) = max(x1, . . . , xn).

A detailed study of power means is given in [10, Chapter III]. We determine all parameters r, u,α and s, v, β such that we
have for all x1, . . . , xn > 0:

fa
(
Mr(x1, . . . , xn)

)
� fa(x1) + · · · + fa(xn)

n
� fa

(
Ms(x1, . . . , xn)

)
,

fa
(
Mu(x1, . . . , xn)

)
�

(
fa(x1) · · · fa(xn)

)1/n � fa
(
Mv(x1, . . . , xn)

)
,

and

fa
(
Mα(x1, . . . , xn)

)
� n

1/ fa(x1) + · · · + 1/ fa(xn)
� fa

(
Mβ(x1, . . . , xn)

)
.

In 1993, motivated by the Turán-type inequality(
1 − fa(x)

)(
1 − fa+2(x)

)
<

(
1 − fa+1(x)

)2
,

Merkle [17] conjectured that for every x > 0 the function a �→ 1 − fa(x) is log-concave on (0,∞). A proof of this conjecture
can be found in [2]. It is natural to ask whether a �→ fa(x) (x > 0) is also log-concave on (0,∞). In the final part of
Section 2, we give an affirmative answer to this question.

In Section 3, we present several additional results. Among others, we provide all parameters b, c, such that x �→ [ fa(xb)]c

is subadditive on [0,∞) and we show that fa is completely monotonic on [0,∞) if and only if a ∈ (0,1].

2. Inequalities

First, we offer convexity and concavity properties of functions, which are defined in terms of fa .

Lemma 1. Let

ua(x) = fa
(
x1/a), va(x) = log fa(x), wa(x) = log fa

(
x1/a), za(x) = log fa

(
ex).

(i) If a > 0, then ua is strictly convex on [0,∞).
(ii) If 0 < a < 1, then va is strictly convex on [0,∞) and wa is strictly concave on [0,∞).

(iii) If a > 1, then va is strictly concave on [0,∞) and wa is strictly convex on [0,∞).
(iv) If a > 0, then za is strictly concave on R.

Proof. Let x > 0. We obtain for a > 0:

u′′
a (x) = e−x1/a

x−1+1/a

a2Γ (a,0)
> 0.

By differentiation we get

v ′′
a (x) = − e−xxa−1

2
Pa(x), (4)
xΓ (a, x)
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where

Pa(x) = Γ (a, x)(a − 1 − x) + e−xxa.

Case 1. 0 < a < 1.

We define

Q a(x) = Pa(x)

a − 1 − x
= Γ (a, x) + e−xxa

a − 1 − x
. (5)

Then we have

Q ′
a(x) = (a − 1)e−xxa−1

(a − 1 − x)2
. (6)

This leads to

Q ′
a(x) < 0 and Q a(x) > lim

t→∞ Q a(t) = 0. (7)

From (5) and (7) we get Pa(x) < 0, so that (4) implies that v ′′
a is positive on (0,∞).

Case 2. a > 1.

If x � a − 1, then Pa(x) > 0. Let x > a − 1. Applying (6) leads to

Q ′
a(x) > 0 and Q a(x) < lim

t→∞ Q a(t) = 0.

Hence, Pa(x) > 0. Using (4) gives v ′′
a (x) < 0 for x > 0.

We have

w ′′
a (x) = e−zza+1

a2x2Γ (a, z)2
Ra(z), (8)

where

Ra(t) = Γ (a, t) − e−tta−1 and z = x1/a.

Differentiation gives

R ′
a(t) = (1 − a)e−tta−2.

Hence, we obtain for t > 0:

Ra(t) < lim
s→∞ Ra(s) = 0, if 0 < a < 1, (9)

and

Ra(t) > lim
s→∞ Ra(s) = 0, if a > 1. (10)

Combining (8) with (9) and (10), respectively, we conclude that w ′′
a (x) < 0, if 0 < a < 1 and that w ′′

a (x) > 0, if a > 1.
We have

z′′
a (x) = − e−y ya

Γ (a, y)2
Da(y),

where

Da(y) = (a − y)Γ (a, y) + e−y ya and y = ex.

If 0 < y � a, then Da(y) > 0. Let y > a and

Ea(y) = Da(y)

a − y
= Γ (a, y) + e−y ya

a − y
.

Since
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E ′
a(y) = e−y ya

(y − a)2
> 0,

we obtain

Ea(y) < lim
t→∞ Ea(t) = 0.

This implies Da(y) > 0. Thus, z′′
a (x) < 0. �

Moreover, we need the following inequality, which is due to Petrović [19, p. 22].

Lemma 2. If F is convex on [0,∞), then we have for x1, . . . , xn � 0:

F (x1) + · · · + F (xn) � F (x1 + · · · + xn) + (n − 1)F (0).

If F is concave on [0,∞), then the reversed inequality holds.

Our first theorem extends and complements (2).

Theorem 1. Let a be a positive real number. The inequalities

fa
(

S p(x1, . . . , xn)
)
� fa(x1) · · · fa(xn) � fa

(
Sq(x1, . . . , xn)

)
(p,q > 0) (11)

hold for all nonnegative real numbers x1, . . . , xn (n � 2) if and only if

p � min(a,1) and q � max(a,1). (12)

Proof. Since t �→ St(x1, . . . , xn) is decreasing on (0,∞) (see [13, p. 28]) and

f ′
a(x) = −e−xxa−1

Γ (a,0)
< 0,

we conclude that the function

t �→ fa
(

St(x1, . . . , xn)
)

is increasing on (0,∞). Therefore, it suffices to establish (11) for p = min(a,1) and q = max(a,1).
We apply Lemma 1 (ii), (iii) and Lemma 2. If 0 < a < 1, then we obtain

wa
(
xa

1 + · · · + xa
n

)
� wa

(
xa

1

) + · · · + wa
(
xa

n

) = va(x1) + · · · + va(xn) � va(x1 + · · · + xn). (13)

If a > 1, then we get (13) with “�” instead of “�”. And, if a = 1, then (13) holds with “=” instead of “�”.
It remains to show that (11) implies (12). We set x1 = x2 = x and x3 = · · · = xn = 0. Then we have

fa
(
21/px

)
� fa(x)2 � fa

(
21/qx

)
(x > 0). (14)

Let 1 < c �= 2. Hospital’s rule gives

lim
x→∞

fa(cx)

fa(x)2
= lim

x→∞
(c − 1)caΓ (a,0)e(2−c)x

2xa−1
=

{∞, if 1 < c < 2,

0, if c > 2.
(15)

From (14) and (15) we get

p � 1 � q. (16)

Let

φa(x) = fa(cx) − fa(x)2.

We have

φa(0) = 0 and
Γ (a,0)

xa−1
φ′

a(x) = 2e−x fa(x) − cae−cx.

This gives: if 2 > ca , then φa attains positive values, and if 2 < ca , then φa attains negative values. Using this result we
conclude that if p > a, then the first inequality in (14) is not true for all x > 0, and if q < a, then the second inequality in
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(14) does not hold. Thus,

p � a � q. (17)

From (16) and (17) we obtain p � min(a,1) and q � max(a,1). �
Now, we provide bounds for the arithmetic, geometric, and harmonic means of fa(x1), . . . , fa(xn).

Theorem 2. Let a be a positive real number. The inequalities

fa
(
Mr(x1, . . . , xn)

)
� fa(x1) + · · · + fa(xn)

n
� fa

(
Ms(x1, . . . , xn)

)
(18)

hold for all positive real numbers x1, . . . , xn (n � 2) if and only if r � a and s = −∞.

Proof. Since fa is strictly decreasing on [0,∞), we conclude that the right-hand side of (18) with s = −∞ is valid for all
x1, . . . , xn > 0.

The power mean is increasing on R with respect to its order; see [13, p. 26]. This implies that the function

t �→ fa
(
Mt(x1, . . . , xn)

)
is decreasing on R, so that it is enough to prove the left-hand side of (18) for r = a. Applying Lemma 1 (i) we obtain for
x1, . . . , xn > 0:

ua

(
xa

1 + · · · + xa
n

n

)
�

ua(xa
1) + · · · + ua(xa

n)

n
,

which is equivalent to the left-hand side of (18) with r = a.
We assume that the first inequality in (18) holds for all x1, . . . , xn > 0. Then we get for x, y > 0:

0 � fa(x) + (n − 1) fa(y) − nfa
(
Mr(x, y, . . . , y)

) = Ka,r(x, y), say.

Since

Ka,r(y, y) = ∂

∂x
Ka,r(x, y)

∣∣∣∣
x=y

= 0,

we obtain

∂2

∂x2
Ka,r(x, y)

∣∣∣∣
x=y

= n − 1

n

e−y ya−2

Γ (a,0)
(y + r − a) � 0.

This leads to r � a.
Finally, we suppose that there exists a real number s such that the right-hand side of (18) holds for all x1, . . . , xn > 0.

We consider two cases.

Case 1. s � 0.

If x1 tends to ∞, then the left-hand side tends to fa(x2) + · · · + fa(xn), whereas the right-hand side converges to 0.
Contradiction!

Case 2. s < 0.

We set x1 = x, x2 = · · · = xn = y, and c = n−1/s . If y tends to ∞, then we obtain for x > 0:

0 � nfa(cx) − fa(x) = θa(x), say. (19)

We have

Γ (a,0)exx1−aθ ′
a(x) = 1 − ncae(1−c)x.

Since c > 1, there exists a number x∗ such that

θ ′
a(x) > 0 for x � x∗.
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We have

lim
x→∞ θa(x) = 0.

It follows that θa is negative on [x∗,∞). This contradicts (19). �
Theorem 3. Let a be a positive real number. The inequalities

fa
(
Mu(x1, . . . , xn)

)
�

(
fa(x1) · · · fa(xn)

)1/n � fa
(
Mv(x1, . . . , xn)

)
(20)

hold for all positive real numbers x1, . . . , xn (n � 2) if and only if

u � max(a,1) and v � min(a,1). (21)

Proof. We apply Lemma 1 (ii), (iii). If 0 < a < 1, then

va

(
x1 + · · · + xn

n

)
� va(x1) + · · · + va(xn)

n
= wa(xa

1) + · · · + wa(xa
n)

n
� wa

(
xa

1 + · · · + xa
n

n

)
. (22)

And, if a � 1, then (22) holds with “�” instead of “�”. This reveals that (20) is valid with u � max(a,1) and v � min(a,1).
Next, we show that (20) implies (21). We set x1 = x, x2 = · · · = xn = y. Then the right-hand side of (20) leads to(

fa(x) fa(y)n−1)1/n � fa
(
Mv(x, y, . . . , y)

)
. (23)

We assume that v > a and set r = n−1/v . If y tends to 0, then (23) leads to

0 � fa(rx) − fa(x)1/n = �a,r(x), say. (24)

Differentiation yields

�′
a,r(x) = xa−1

Γ (a,0)
ηa,r(x), (25)

where

ηa,r(x) = 1

n
e−x fa(x)1/n−1 − rae−rx.

Since v > a, we get

lim
x→0

ηa,r(x) = 1

n
− ra < 0. (26)

From (25) and (26) we conclude that �a,r is strictly decreasing in the neighbourhood of 0. This contradicts (24), since
�a,r(0) = 0. Thus, v � a. Now, we assume that v > 1. From (23) we obtain

Γ (a, x)

e−xxa−1
Γ (a, y)n−1 � Ia(x)

(
Γ (a,χ)

e−χχa−1

)n

(27)

with

Ia(x) = (e−χχa−1)n

e−xxa−1
and χ =

(
xv + (n − 1)yv

n

)1/v

.

We have

log Ia(x)

x
= 1 + (a − 1)

(
n

logχ

x
− log x

x

)
− n

χ

x
.

Since

lim
x→∞

logχ

x
= 0 and lim

x→∞
χ

x
= n−1/v ,

we get

lim
log Ia(x) = 1 − n1−1/v < 0.
x→∞ x



H. Alzer, Á. Baricz / J. Math. Anal. Appl. 385 (2012) 167–178 173
Hence,

lim
x→∞ Ia(x) = 0. (28)

Applying (28) and

lim
x→∞

Γ (a, x)

e−xxa−1
= 1 (29)

(see [1, p. 263]), we obtain from (27): Γ (a, y)n−1 � 0. A contradiction! Thus, v � 1.
If the left-hand side of (20) holds, then we get u � min(a,1). Therefore, u > 0. We assume that u < a, set x1 = x,

x2 = · · · = xn = y, and let y tend to 0. Then we obtain

�a,s(x) < 0 with s = n−1/u .

We have

�′
a,s(x) = xa−1

Γ (a,0)
ηa,s(x) and lim

x→0
ηa,s(x) = 1

n
− sa > 0.

This gives �a,s(x) > �a,s(0) = 0 for all sufficiently small x. A contradiction! Hence, u � a. Next, we suppose that u < 1.
Again, we set x1 = x, x2 = · · · = xn = y. Then we get(

Γ (a,ρ)

e−ρρa−1

)n

� Γ (a, x)

e−xxa−1
Γ (a, y)n−1 Ja(x) (30)

with

Ja(x) = e−xxa−1

(e−ρρa−1)n
and ρ =

(
xu + (n − 1)yu

n

)1/u

.

Since

lim
x→∞

Γ (a,ρ)

e−ρρa−1
= lim

x→∞
Γ (a, x)

e−xxa−1
= 1 and lim

x→∞ Ja(x) = 0,

we obtain from (30): 1 � 0. This contradiction leads to u � 1. �
Our next theorem presents a double-inequality for the harmonic mean of fa(x1), . . . , fa(xn). We only settle the case

a ∈ (0,1] completely. It remains an open problem to determine all parameters β such that the right-hand side of (31) (given
below) is valid in the case of a > 1.

Theorem 4. Let 0 < a � 1. The inequalities

fa
(
Mα(x1, . . . , xn)

)
� n

1/ fa(x1) + · · · + 1/ fa(xn)
� fa

(
Mβ(x1, . . . , xn)

)
(31)

hold for all positive real numbers x1, . . . , xn (n � 2) if and only if α = ∞ and β � a. Moreover, when a > 1, then the left-hand side of
(31) holds if and only if α = ∞.

Proof. Since 1/ fa is increasing on (0,∞), we obtain

1

n

(
1

fa(x1)
+ · · · + 1

fa(x1)

)
� max

1�i�n

1

fa(xi)
= 1

fa(max1�i�n xi)
= 1

fa(M∞(x1, . . . , xn))
.

Next, we assume that there exists a real number α such that (31) holds for all x1, . . . , xn > 0. Applying the geometric mean
– harmonic mean inequality and Theorem 3 gives

fa
(
Mα(x1, . . . , xn)

)
� fa

(
Mv(x1, . . . , xn)

)
with v = min(a,1).

This implies α � v > 0. We set x1 = x, x2 = · · · = xn = y and let y tend to 0. Then we obtain from (31):

(n − 1) fa(bx) + fa(bx)

fa(x)
� n with b = n−1/α. (32)

Since

lim
x→∞

fa(λx)

fa(x)
= lim

x→∞λae(1−λ)x =
{∞, if 0 < λ < 1,

0, if λ > 1,

we conclude from (32) that 1 � b = n−1/α . This contradicts α > 0.
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Applying Lemma 1 (ii) implies that if a ∈ (0,1), then x �→ fa(x1/a)−1 is log-convex on [0,∞). This is also true, if a = 1.
It follows that x �→ fa(x1/a)−1 is convex, so that we obtain

fa(z)−1 � fa(x1)
−1 + · · · + fa(xn)−1

n
with z =

(
xa

1 + · · · + xa
n

n

)1/a

.

This leads to the right-hand side of (31) with β = a.
We assume that there exists a number β > a such that (31) is valid for all x1, . . . , xn > 0. Then we set x1 = x, x2 = · · · =

xn = y and let y tend to 0. This yields

σa(x) = fa(cx) + (n − 1) fa(x) fa(cx) − nfa(x) � 0 = σa(0) with c = n−1/β . (33)

Differentiation gives

Γ (a,0)

xa−1
σ ′

a(x) = −cae−cx − (n − 1)
[
e−x fa(cx) + cae−cx fa(x)

] + ne−x.

Since

lim
x→0

Γ (a,0)

xa−1
σ ′

a(x) = 1 − nca < 0,

we conclude that σa attains negative values. This contradicts (33). Thus, β � a. �
From Lemma 1 (iv) we obtain

fa(x)λ fa(y)1−λ < fa
(
xλ y1−λ

)
for a > 0, x, y > 0 (x �= y), λ ∈ (0,1). (34)

In the final part of this section, we prove that for every x > 0 the function a �→ log fa(x) is strictly concave on (0,∞). This
result leads to a companion of (34).

Theorem 5. The inequality

fa(x)λ fb(x)1−λ < fλa+(1−λ)b(x)

is valid for all a,b > 0 (a �= b), x > 0, and λ ∈ (0,1). In particular, the Turán-type inequality

fa(x) fa+2(x) <
[

fa+1(x)
]2

holds for all a > 0 and x > 0.

Proof. We show that

∂2

∂a2
log fa(x) < 0 (35)

for a > 0 and x > 0. Let ψ = Γ ′/Γ and Γ (a) = Γ (a,0). Then we have

Γ (a, x)2 ∂2

∂a2
log fa(x) =

∞∫
x

e−tta−1 dt

∞∫
x

e−tta−1(log t)2 dt

−
( ∞∫

x

e−tta−1 log t dt

)2

− ψ ′(a)

( ∞∫
x

e−tta−1 dt

)2

. (36)

We denote the expression on the right-hand side of (36) by Ua(x). Then we get

exx1−a ∂

∂x
Ua(x) = −(log x)2

∞∫
x

e−tta−1 dt −
∞∫

x

e−tta−1(log t)2 dt

+ 2(log x)

∞∫
x

e−tta−1 log t dt + 2ψ ′(a)

∞∫
x

e−tta−1 dt

= Va(x), say. (37)
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We differentiate Va(x) with respect to x and obtain

exx1−a

2

∂

∂x
Va(x) = ex

∞∫
1

e−xtta−1 log t dt − ψ ′(a) = Wa(x), say. (38)

Using log t � t − 1 for t � 1, we find

0 < ex

∞∫
1

e−xtta−1 log t dt � ex

( ∞∫
1

e−xtta dt −
∞∫

1

e−xtta−1 dt

)
= 1

x

(
Γ (a + 1, x)

e−xxa
− Γ (a, x)

e−xxa−1

)
. (39)

From (29), (38), and (39) we conclude that

lim
x→∞ Wa(x) = −ψ ′(a) < 0.

Moreover, we have

∂

∂x
Wa(x) = ex

∞∫
1

e−xt(1 − t)ta−1 log t dt < 0.

We assume that Wa attains only negative values on (0,∞). Then, (38) implies that Va is strictly decreasing on (0,∞). From
(37) we obtain

lim
x→0

Va(x)

(log x)2
= −Γ (a,0) and lim

x→0
Va(x) = −∞. (40)

A contradiction! This implies that there exists a positive number x̃ such that Wa is positive on (0, x̃) and negative on (x̃,∞).
Using (38) gives that Va is strictly increasing on (0, x̃] and strictly decreasing on [x̃,∞). Hospital’s rule leads to

lim
x→∞ Va(x) = 0. (41)

From (40), (41), and the monotonicity of Va we obtain that there exists a positive number x̂ such that Va is negative on
(0, x̂) and positive on (x̂,∞). Applying (37) yields that Ua is strictly decreasing on (0, x̂] and strictly increasing on [x̂,∞).
We have

Ua(0) = lim
x→∞ Ua(x) = 0.

Thus, Ua(x) < 0 for x > 0. This proves (35). �
Remark. Further Turán-type inequalities for special functions are given in [9].

3. Additional results and remarks

(I) Applying Lemmas 1 (i), 2, and the monotonicity of fa we obtain the following sharp inequalities. Let a > 0 be a real
number and n � 2 be an integer. For all x1, . . . , xn � 0 we have

0 < fa
(
x1/a

1

) + · · · + fa
(
x1/a

n
) − fa

(
(x1 + · · · + xn)

1/a) � n − 1.

Both bounds are best possible.

(II) Let a > 0, b �= 0, and c �= 0 be real numbers. The function x �→ [ fa(xb)]c is strictly subadditive on [0,∞), that is,[
fa

(
(x + y)b)]c

<
[

fa
(
xb)]c + [

fa
(

yb)]c
for all x, y � 0, (42)

if and only if bc > 0.
Let x > 0. If bc > 0, then we have

d

dx

[
fa

(
xb)]c = − bc

Γ (a,0)
xab−1e−xb [

fa
(
xb)]c−1

< 0.

This leads to (42). Conversely, if (42) holds, then we obtain(
fa(2bxb)

fa(xb)

)c

< 2. (43)
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Case 1. b > 0. We have

lim
x→∞

fa(2bxb)

fa(xb)
= 0. (44)

From (43) and (44) we get c > 0.

Case 2. b < 0. Then

lim
x→0

fa(2bxb)

fa(xb)
= ∞, (45)

so that (43) and (45) lead to c < 0.

(III) Let a > 0 be a real number. The inequality

fa(x) + fa(y) � 1 + fa(z) (46)

holds for all nonnegative real numbers x, y, z with x2 + y2 = z2 if and only if a � 2.
To prove (46) for a ∈ (0,2] we define

Ωa(x, y) = 1 + fa
(√

x2 + y2
) − fa(x) − fa(y) and ωa(t) = −e−tta−2

Γ (a,0)
.

Partial differentiation gives

∂

∂x
Ωa(x, y) = x

(
ωa

(√
x2 + y2

) − ωa(x)
)
.

Since

ω′
a(t) = e−tta−3

Γ (a,0)
(t + 2 − a) > 0 for t > 0,

we conclude that x �→ Ωa(x, y) is strictly increasing on [0,∞). This leads to

Ωa(x, y) � Ωa(0, y) = 0.

Conversely, if (46) is valid with a > 2, then we get for x, y � 0:

Ωa(x, y) � 0 = Ωa(0, y). (47)

We have

∂

∂x
Ωa(x, y)

∣∣∣∣
x=0

= 0 and
∂2

∂x2
Ωa(x, y)

∣∣∣∣
x=0

= ωa(y) < 0.

This contradicts (47).
Inequality (46) is a Grünbaum-type inequality; see [12,7].

(IV) Lemma 1 leads to the next result: For all nonnegative real numbers x, y, z with x � z we have

fa
(
(x + y)1/a) + fa

(
z1/a) � fa

(
x1/a) + fa

(
(y + z)1/a) (a > 0)

and

fa
(
(x + y)1/a) · fa

(
z1/a) � fa

(
x1/a) · fa

(
(y + z)1/a) (a � 1). (48)

If 0 < a < 1, then (48) holds with “�” instead of “�”.

(V) A function h : [0,∞) → R is called completely monotonic, if h is continuous on [0,∞) and satisfies

(−1)nh(n)(x) � 0 (x > 0, n = 0,1,2, . . .).

Detailed information on these functions can be found in [3,4]. Let 0 < a � 1. The representation

fa(x) = e−x

Γ (a,0)

∞∫
e−t(t + x)a−1 dt
0
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reveals that fa can be written as a product of two completely monotonic functions. This implies that fa is completely
monotonic. Conversely, if fa is completely monotonic, then we conclude from

0 � x2−aexΓ (a,0) f ′′
a (x) = x − (a − 1)

that a � 1. Hence, fa is completely monotonic on [0,∞) if and only if 0 < a � 1.
We have

1 − fa(x)

xa
= 1

Γ (a,0)

1∫
0

e−xtta−1 dt.

Thus, x �→ (1 − fa(x))/xa (a > 0) is completely monotonic on [0,∞). See [18].

(VI) Kimberling [15] proved that if h : [0,∞) → (0,1] is completely monotonic, then

h(x)h(y) � h(x + y) (x, y � 0).

Since 0 < fa(x) � 1 for x � 0, we conclude that the second inequality in (1) holds. See also [8].
If a � 1, then 0 < (1 − fa(x))/xa � 1 for x � 0. This leads to

(1 − fa(x))(1 − fa(y))

1 − fa(x + y)
�

(
xy

x + y

)a

(a � 1, x, y > 0).

(VII) The following interesting upper bound for fa(x) was discovered by Laforgia and Natalini [16]:

fa(x) < 1 + xa

Γ (a,0)

(
1

a + 1

x∫
0

1 − e−t

t
dt − 1

a

)
(0 < a < 1, x > 0). (49)

Here, we offer a short and simple new proof, which reveals that (49) is also valid for a � 1. We define for a, x > 0 and
p, y > 0:

Ia(x) = 1 + xa

Γ (a,0)

(
1

a + 1

x∫
0

1 − e−t

t
dt − 1

a

)
− fa(x),

J p(y) =
y∫

0

e−t p
dt + y

(
p

p + 1

y∫
0

1 − e−t p

t
dt − 1

)
.

Since J p(0) = J ′
p(0) = 0 and

J ′′
p(y) = pe−yp

(p + 1)y

(
e yp − 1 − yp)

> 0,

we conclude that J p(y) > 0. The identity

Γ (a + 1,0)Ia(x) = J1/a
(
xa)

reveals that Ia(x) > 0.

(VIII) Let g : [0,∞) → [0,∞) be a probability density function and G, Ḡ : [0,∞) → (0,1], defined by

G(x) =
x∫

0

g(t)dt, Ḡ(x) = 1 − g(x) =
∞∫

x

g(t)dt

be the corresponding cumulative distribution function and complementary cumulative distribution function (sometimes
called as reliability or survival function), respectively. By definition, a life distribution (with cumulative distribution function
G such that G(x) = 0 for all x < 0) has the increasing failure rate (IFR) property if x �→ g(x)/Ḡ(x) = −Ḡ ′(x)/Ḡ(x) is increasing
on [0,∞), that is, the reliability function Ḡ is log-concave. It is well known that if a probability density function is log-
concave, then the corresponding cumulative distribution function and the complementary cumulative distribution function
have the same property (for more details see [5,6,8]). Another class of life distributions is the NBU, which has been shown
to be fundamental in the study of replacement policies. By definition, a life distribution satisfies the new-is-better-than-used
(NBU) property if x �→ log Ḡ(x) is subadditive, that is,
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Ḡ(x + y) � Ḡ(x)Ḡ(y)

for all x, y � 0. The corresponding concept of a new-is-worse-than-used (NWU) distribution is defined by reversing the
above inequality. We note that the NBU property may be interpreted as stating that the chance Ḡ(x) that a new unit will
survive to age x is greater than the chance Ḡ(x + y)/Ḡ(y) that a survived unit of age y will survive for an additional time x.
It can be shown that if a life distribution is IFR, then it is NBU (see, for example, [8]), but the inverse implication in general
does not hold.

The function fa is actually the survival function of the gamma distribution. More precisely, the gamma function has
support [0,∞), probability density function and reliability function

x �→ e−xxa−1

Γ (a,0)
and x �→ fa(x),

where a > 0 is the shape parameter, which is the mean of a gamma-distributed random variable. Taking into account the
above observation, recently, it was pointed out in [8] that the first inequality in (1) is the NBU property for the gamma
distribution, while the second inequality in (1) is the NWU property for the gamma distribution.
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