
J. Math. Anal. Appl. 386 (2012) 75–82
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Local C1 stability versus global C1 unstability for iterative roots ✩

Wenmeng Zhang a,b, Yingying Zeng a, Witold Jarczyk b, Weinian Zhang a,∗
a Yangtze Center of Mathematics and Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, PR China
b Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-516 Zielona Góra, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 June 2011
Available online 29 July 2011
Submitted by M. Milman

Keywords:
Iterative root
Stability
Perturbation
Pulse

Stability of iterative roots is important in the numerical computation of iterative roots.
Known results show that under some conditions iterative roots of strictly monotonic self-
mappings are C0 stable in both the local sense and the global sense. In this paper we
discuss the C1 stability for iterative roots of strictly increasing self-mappings on a compact
interval between two fixed points. We prove that those iterative roots are locally C1 stable
but globally C1 unstable.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Regarded as a weak version of the problem of embedding flows [5] for dynamical systems, iterative root [2,10,11,22,26]
is interesting in both dynamical systems and functional equations. Let X be a Banach space, I ⊂ X and Cr(I, I) for r � 0
be the set of all Cr self-mappings defined on I . The n-th iterate F n of F ∈ Cr(I, I) is defined inductively by F 0(x) = x and
F n(x) = F (F n−1(x)) for all n ∈ N and x ∈ I . If the inverse F −1 of F (when it is invertible) is regarded as an extension of n
from N to Z with n = −1, the general problem of iterative roots, which is to solve the functional equation

f k(x) = F (x), ∀x ∈ I, (1.1)

where k ∈ N is given, for the unknown f ∈ Cr(I, I), is an extension of n from N to Q with n = 1/k. If the mapping F can be
embedded into a flow, i.e., F is a time one mapping of a flow, then the index n can be extended to the whole R [18].

The theory of iterative roots has a very long history and it seems that it was Ch. Babbage [1] who first, yet at the begin-
ning of 19th century, wrote on iterative roots explicitly. Since iterative roots were discussed well for monotonic mappings
[10,11], many advances had been made to non-monotonic cases [3,15,28], self-mappings on circles [4,21,25], set-valued
functions [14,19,20] and high dimensional mappings [12,13,16]. This problem leads to a philosophical discussion on the
concept of time, as indicated by Targonski in [23]: If we ever find a physical process represented by a map which is not embed-
dable or does not have iterative roots of every order, this suggests a minimal time interval, the chronon. Since the theory is applicable
to information science [7,8] and graph theory [17], it is necessary to develop algorithms for their numerical computation.
A strategy is to give algorithms for polygonal functions [9,27] at first and then consider their approximation to general
continuous functions. The errors from the numerical computation and approximation highly affect the validity of the com-
putation, which requires the stability of iterative roots. A result on C0 stability was given in 2007 in [24], which substantially
is a local result because the C0 stability is extended from a small neighborhood of a fixed point and the domain of iterative
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Fig. 1. F ∈ H2−(λ). Fig. 2. F ∈ H2+(λ).

roots, being an open neighborhood of the fixed point, cannot be extended to include another fixed point. Recently, a result
on globally C0 stability was given in [29], which holds in an interval with more than one fixed point.

In this paper we discuss the C1 stability for iterative roots of strictly increasing functions F ’s defined on the interval
I := [0,1]. We prove the C1 stability in I which includes one fixed point but does not include the other by a reduction to
Schröder’s equation, giving the local C1 stability for iterative roots. Moreover, we prove that F ’s are not C1 stable for their
iterative roots defined on the closed interval with the two endpoints being fixed points, showing the globally C1 unstability
for iterative roots.

2. Local C 1 stability

For each λ ∈ (0,1) let

H2−(λ) := {
h ∈ C2(I, I): h(0) = 0, h′(0) = λ, h′(x) > 0 and h(x) < x, ∀x ∈ (0,1]},

H2+(λ) := {
h ∈ C2(I, I): h(1) = 1, h′(1) = λ, h′(x) > 0 and h(x) > x, ∀x ∈ [0,1)

}
(cf. Fig. 1 and Fig. 2). Let the norm ‖ · ‖r be defined by

‖ f ‖r := sup
x∈I

∣∣ f (x)
∣∣ + · · · + sup

x∈I

∣∣ f (r)(x)
∣∣

for all r ∈ N ∪ {0} and f ∈ Cr(I, I).
Given an arbitrary integer k � 2, by Theorem 11.4.2 in [11], a function F belonging to the class

⋃
λ∈(0,1) H2−(λ) has a

unique k-th order C1 iterative root f defined on I , which is strictly increasing and is given by the formula

f (x) := ϕ−1(λ1/kϕ(x)
)
, (2.1)

where ϕ : I → R is the principle solution of Schröder’s equation

ϕ
(

F (x)
) = λϕ(x).

The principle solution is given by

ϕ(x) = lim
n→∞λ−n F n(x), (2.2)

which is C1 differentiable in I with ϕ′(0) = 1 and is strictly increasing by Theorem 3.5.1 in [11]. A similar fact can be stated
when F ∈ ⋃

λ∈(0,1) H2+(λ).
Our aim of this section is to prove the following stability result.

Theorem 2.1. Let F ∈ H2−(λ) [or H2+(λ)] with some λ ∈ (0,1) and let (Fm) be a sequence of functions in H2−(λ) [or H2+(λ)]. If

lim
m→∞‖Fm − F‖2 = 0, (2.3)

then

lim
m→∞‖ fm − f ‖1 = 0,

where f and fm are unique k-th order C1 iterative roots of F and Fm, respectively, defined on I .



W. Zhang et al. / J. Math. Anal. Appl. 386 (2012) 75–82 77
In what follows we only discuss the case that F ∈ H2−(λ) in details as the other one is similar. In order to prove
Theorem 2.1 we need the following lemma.

Lemma 2.1. Let F ∈ H2−(λ) with some λ ∈ (0,1) and let (Fm) be a sequence of functions in H2−(λ) satisfying condition (2.3). Then,
for a given number μ0 ∈ (λ,1), there exist an ε > 0 and an N0 ∈ N such that

∣∣F n(x)
∣∣ � μn

0,
∣∣(F n)′

(x)
∣∣ � μn

0,
∣∣F n

m(x)
∣∣ � μn

0,
∣∣(F n

m

)′
(x)

∣∣ � μn
0 (2.4)

and
∣∣F n

m(x) − F n(x)
∣∣ � nμn−1

0 ‖Fm − F‖2 (2.5)

for all m � N0 , n ∈ N and for all x ∈ Iε := [0, ε].

Proof. Since F ∈ H2−(λ) is C2 differentiable in I , we have
∣∣F ′(x) − F ′(y)

∣∣ � L|x − y|, ∀x, y ∈ I, (2.6)

where L := 2‖F‖2 � 0 is a constant independent of x and y. Choose a sufficiently small ε > 0 such that λ + Lε � μ0. Then
by the chain rule, for all n ∈ N,

∣∣(F n)′
(x)

∣∣ =
n−1∏
i=0

∣∣F ′(F i(x)
)∣∣ �

n−1∏
i=0

(∣∣F ′(0)
∣∣ + L

∣∣F i(x)
∣∣) � μn

0, ∀x ∈ Iε, (2.7)

because |F i(x)| � ε for all i ∈ N provided |x| � ε. It follows from (2.7) that
∣∣F n(x)

∣∣ = ∣∣F n(x) − F n(0)
∣∣ � sup

ξ∈Iε

∣∣(F n)′
(ξ)

∣∣ · |x| � μn
0.

This proves the first two inequalities given in (2.4).
Let δ := ‖F‖2/2. There is an N0 ∈ N such that if m � N0 then the inequality ‖Fm − F‖2 � δ holds by (2.3), implying that

‖Fm‖2 � ‖F‖2 + δ � L. Thus, |F ′
m(x) − F ′

m(y)| � L|x − y| for all x, y ∈ I . By the same procedure as before we can prove the
last two inequalities given in (2.4).

It is clear that (2.5) holds when n = 1. Assume that (2.5) holds for n = � ∈ N, i.e., |F �
m(x) − F �(x)| � �μ�−1

0 ‖Fm − F‖2.

Then, by (2.4), we get
∣∣F �+1

m (x) − F �+1(x)
∣∣ = ∣∣Fm

(
F �

m(x)
) − F

(
F �(x)

)∣∣
�

∣∣Fm
(

F �
m(x)

) − Fm
(

F �(x)
)∣∣ + ∣∣Fm

(
F �(x)

) − F
(

F �(x)
)∣∣

� sup
ξ∈Iε

∣∣F ′
m(ξ)

∣∣ · ∣∣F �
m(x) − F �(x)

∣∣ + sup
ξ∈Iε

∣∣(Fm − F )′(ξ)
∣∣ · ∣∣F �(x)

∣∣
� μ0

∣∣F �
m(x) − F �(x)

∣∣ + μ�
0‖Fm − F‖2

� (� + 1)μ�
0‖Fm − F‖2

for all m � N0 and for all x ∈ Iε . Thus we can obtain (2.5) by induction. This completes the proof. �
We also give the following lemma on C1 stability of Schröder’s equation.

Lemma 2.2. Let F ∈ H2−(λ) with some λ ∈ (0,1) and let (Fm) be a sequence of functions in H2−(λ) satisfying condition (2.3). Then

lim
m→∞‖ϕm − ϕ‖1 = 0, (2.8)

where ϕ : I → R and ϕm : I → R are the principle solutions of Schröder’s equations

ϕ
(

F (x)
) = λϕ(x) and ϕm

(
Fm(x)

) = λϕm(x),

respectively.

Proof. First of all, by (2.2), ϕ and ϕm can be defined by

ϕ(x) = lim
n→∞λ−n F n(x) and ϕm(x) = lim

n→∞λ−n F n
m(x), ∀x ∈ I, (2.9)

respectively. In what follows we intend to discuss our results in a sufficiently small interval Iε = [0, ε] first and then extend
them to the whole interval I .
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In order to prove the convergence of the sequence (ϕm) in Iε , note that
∣∣F ′(F n(x)

)∣∣ � λ + Lμn
0 and

∣∣F ′
m

(
F n

m(x)
)∣∣ � λ + Lμn

0, ∀x ∈ Iε, (2.10)

for all m � N0 and n ∈ N by (2.4). Let

M :=
∞∏
j=0

(
1 + λ−1Lμ j

0

)
sup
x∈Iε

∣∣F ′(x)
∣∣−1

< ∞.

It follows from (2.4), (2.5) and (2.10) that

λ−n
∣∣(F n

m

)′
(x) − (

F n)′
(x)

∣∣ = λ−n
∣∣F ′

m

(
F n−1

m (x)
) · · · F ′

m(x) − F ′(F n−1(x)
) · · · F ′(x)

∣∣
� λ−n

n−1∑
i=0

∣∣F ′(F n−1(x)
)∣∣ · · · ∣∣F ′(F i+1(x)

)∣∣ · ∣∣F ′
m

(
F i

m(x)
) − F ′(F i(x)

)∣∣
· ∣∣F ′

m

(
F i−1

m (x)
)∣∣ · · · ∣∣F ′

m(x)
∣∣

� λ−n
n−1∏
j=0

(
λ + Lμ j

0

) n−1∑
i=0

∣∣F ′(F i(x)
)∣∣−1 · ∣∣F ′

m

(
F i

m(x)
) − F ′(F i(x)

)∣∣

� M
n−1∑
i=0

(∣∣F ′
m

(
F i

m(x)
) − F ′(F i

m(x)
)∣∣ + ∣∣F ′(F i

m(x)
) − F ′(F i(x)

)∣∣)

� M
n−1∑
i=0

(
sup
ξ∈Iε

∣∣(Fm − F )′′(ξ)
∣∣ · ∣∣F i

m(x)
∣∣ + L

∣∣F i
m(x) − F i(x)

∣∣)

� M
n−1∑
i=0

(
μi

0‖Fm − F‖2 + Liμi−1
0 ‖Fm − F‖2

)

= M

(
L + 1 − μ0

(1 − μ0)2
−

(
L − (1 − μ0)(L − μ0)

(1 − μ0)2
+ L

1 − μ0
n

)
μn−1

0

)
‖Fm − F‖2

� M1‖Fm − F‖2, (2.11)

where M1 := M(L + 1 − μ0)/(1 − μ0)
2 is a number independent of m, n and x. Thus, by (2.9) and (2.11), we get

∣∣ϕ′
m(x) − ϕ′(x)

∣∣ = lim
n→∞λ−n

∣∣(F n
m

)′
(x) − (

F n)′
(x)

∣∣ � M1‖Fm − F‖2 (2.12)

for all m � N0 and for all x ∈ Iε .
Next we extend the result (2.12) from Iε to the whole interval I . Note that

lim
m→∞

∥∥F n
m − F n

∥∥
2 = 0, ∀n ∈ N, (2.13)

by (2.3) because we can see that the composition operator T : H2−(λ) × H2−(λ) → H2−(λ2) such that T (h1,h2) = h1 ◦ h2 for
all h1,h2 ∈ H2−(λ) is continuous by Example 4.4.5 in [6]. Since 0 is a unique stable fixed point of F in I , by (2.13), there is
an integer N ∈ N such that F N (x), F N

m(x) ∈ Iε for all m ∈ N and x ∈ I . Then, according to Schröder’s equation, we can obtain
the formulae

ϕ(x) = λ−N ϕ̃
(

F N(x)
)

and ϕm(x) = λ−N ϕ̃m
(

F N
m(x)

)
, ∀x ∈ I, (2.14)

where ϕ̃ := ϕ|Iε and ϕ̃m := ϕm|Iε . It follows from (2.12) and (2.14) that
∣∣ϕ′

m(x) − ϕ′(x)
∣∣ = λ−N

∣∣ϕ̃′
m

(
F N

m(x)
)(

F N
m

)′
(x) − ϕ̃′(F N(x)

)(
F N)′

(x)
∣∣

� λ−N
∣∣ϕ̃′

m

(
F N

m(x)
) − ϕ̃′(F N(x)

)∣∣ · ∣∣(F N
m

)′
(x)

∣∣
+ λ−N

∣∣ϕ̃′(F N(x)
)∣∣ · ∣∣(F N

m

)′
(x) − (

F N)′
(x)

∣∣
� K1

(∣∣ϕ̃′
m

(
F N

m(x)
) − ϕ̃′(F N

m(x)
)∣∣ + ∣∣ϕ̃′(F N

m(x)
) − ϕ̃′(F N(x)

)∣∣)
+ K2

∣∣(F N
m

)′
(x) − (

F N)′
(x)

∣∣
� K1M1‖Fm − F‖2 + K1

∣∣ϕ̃′(F N
m(x)

) − ϕ̃′(F N(x)
)∣∣

+ K2
∥∥F N

m − F N
∥∥ , ∀x ∈ I, (2.15)
2
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for all m � N0, where

K1 := λ−N sup
x∈I,m∈N

∣∣(F N
m

)′
(x)

∣∣ < ∞ and K2 := λ−N sup
x∈Iε

∣∣ϕ̃′(x)
∣∣ < ∞.

Hence, by (2.3), (2.13) and (2.15), by the uniform continuity of ϕ̃′ and by the fact that ϕ(x) = ∫ x
0 ϕ′(t)dt and ϕm(x) =∫ x

0 ϕ′
m(t)dt, we get

lim
m→∞

∥∥ϕ′
m − ϕ′∥∥

0 = 0 and lim
m→∞‖ϕm − ϕ‖0 = 0.

This proves equality (2.8) and the proof is completed. �
Having those preparations, we can give a proof to the main result of this section.

Proof of Theorem 2.1. By (2.1) the C1 iterative roots f and fm for each m ∈ N can be presented by

f (x) = ϕ−1(λ1/kϕ(x)
)

and fm(x) = ϕ−1
m

(
λ1/kϕm(x)

)
, ∀x ∈ I, (2.16)

respectively. In order to prove the convergence of ( fm) in I , note that, for sufficiently large m ∈ N such that λ1/kϕm(x) ∈ ϕ(I)
for all x ∈ I , we have

∣∣ϕ′
m

(
ϕ−1

m

(
λ1/kϕm(x)

)) − ϕ′(ϕ−1(λ1/kϕ(x)
))∣∣ � Am(x) + Bm(x) + Cm(x), (2.17)

where

Am(x) := ∣∣ϕ′
m

(
ϕ−1

m

(
λ1/kϕm(x)

)) − ϕ′(ϕ−1
m

(
λ1/kϕm(x)

))∣∣ � ‖ϕm − ϕ‖1,

Bm(x) := ∣∣ϕ′(ϕ−1
m

(
λ1/kϕm(x)

)) − ϕ′(ϕ−1(λ1/kϕm(x)
))∣∣

= ∣∣ϕ′ ◦ ϕ−1 ◦ ϕ
(
ϕ−1

m

(
λ1/kϕm(x)

)) − ϕ′ ◦ ϕ−1 ◦ ϕm
(
ϕ−1

m

(
λ1/kϕm(x)

))∣∣,
Cm(x) := ∣∣ϕ′ ◦ ϕ−1(λ1/kϕm(x)

) − ϕ′ ◦ ϕ−1(λ1/kϕ(x)
)∣∣.

By (2.8) and by the fact that ϕ′ ◦ ϕ−1 is uniformly continuous, we obtain

Am(x) → 0, Bm(x) → 0, Cm(x) → 0 (2.18)

uniformly in I as m → ∞. On the other hand, by the first equality in (2.14), we have infx∈I |ϕ′(x)| > 0 because
infx∈Iε |ϕ̃′(x)| > 0 and infx∈I |(F N )′(x)| > 0. Also we have

0 <
1

2
inf
x∈I

∣∣ϕ′(x)
∣∣ � inf

x∈I

∣∣ϕ′
m(x)

∣∣ � sup
x∈I

∣∣ϕ′
m(x)

∣∣ � 2 sup
x∈I

∣∣ϕ′(x)
∣∣ < ∞

for all sufficiently large m ∈ N by (2.8). This implies that (ϕ′
m) and (1/ϕ′

m) are uniformly bounded. Hence, by (2.16) and
(2.17),

∣∣ f ′
m(x) − f ′(x)

∣∣ =
∣∣∣∣ λ1/kϕ′

m(x)

ϕ′
m(ϕ−1

m (λ1/kϕm(x)))
− λ1/kϕ′(x)

ϕ′(ϕ−1(λ1/kϕ(x)))

∣∣∣∣
�

∣∣∣∣ λ1/kϕ′
m(x)

ϕ′
m(ϕ−1

m (λ1/kϕm(x)))
− λ1/kϕ′

m(x)

ϕ′(ϕ−1(λ1/kϕ(x)))

∣∣∣∣
+

∣∣∣∣ λ1/kϕ′
m(x)

ϕ′(ϕ−1(λ1/kϕ(x)))
− λ1/kϕ′(x)

ϕ′(ϕ−1(λ1/kϕ(x)))

∣∣∣∣
�

∣∣∣∣ λ1/kϕ′
m(x)

ϕ′
m(ϕ−1

m (λ1/kϕm(x))) · ϕ′(ϕ−1(λ1/kϕ(x)))

∣∣∣∣
· ∣∣ϕ′

m

(
ϕ−1

m

(
λ1/kϕm(x)

)) − ϕ′(ϕ−1(λ1/kϕ(x)
))∣∣

+ λ1/k

|ϕ′(ϕ−1(λ1/kϕ(x)))|
∣∣ϕ′

m(x) − ϕ′(x)
∣∣

� M2
(

Am(x) + Bm(x) + Cm(x) + ‖ϕm − ϕ‖1
)
, ∀x ∈ I, (2.19)

for all sufficiently large m ∈ N, where M2 > 0 is a number independent of m and x. Then, by (2.8), (2.18) and (2.19) and by
the fact that fm(x) = ∫ x f ′

m(t)dt and f (x) = ∫ x f ′(t)dt , we get
0 0
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lim
m→∞

∥∥ f ′
m − f ′∥∥

0 = 0 and lim
m→∞‖ fm − f ‖0 = 0.

This completes the proof. �
Remark that in Theorem 2.1 we proved the C1 stability for iterative roots defined on I in the case that F has a unique

fixed point 0. As mentioned in the Introduction, this is a local result because the interval includes only one fixed point.

3. Globally C 1 unstability

In this section we show the C1 unstability for iterative roots defined on I in the case when F has exactly two fixed
points 0 and 1. This is clearly a global result as mentioned in the Introduction. Contrary to the previous situation we prove
here what follows.

Theorem 3.1. For any r ∈ N and function F ∈ Cr(I, I) satisfying

F (0) = 0, F ′(0) ∈ R\{0,1},
F (1) = 1, F ′(1) ∈ R\{0,1},
F (x) �= x and F ′(x) > 0, ∀x ∈ (0,1) (3.1)

(see Fig. 3), there is a sequence (Fm) of functions in Cr(I, I) such that

lim
m→∞‖Fm − F‖r = 0

and having no k-th order C1 iterative roots for any integers k � 2.

Proof. If F does not have a C1 iterative root defined on I , then it is enough to take Fm = F for each m ∈ N. Otherwise we
construct a desired sequence using the following notion of δ-pulse.

Given a continuous function h : I → I , a point a ∈ (0,1) and a positive δ such that δ � min{a,1−a}, a continuous function
h̃ : I → I is said to be a δ-pulse of h at a if h̃(x) �= h(x) for each x ∈ (a − δ,a + δ) and h̃(x) = h(x) for each x ∈ I\(a − δ,a + δ)

(see Fig. 4).
We only discuss the case that F satisfies (3.1) and 0 < F (x) < x for all x ∈ (0,1) in details as the other one is similar.

Let f be the strictly increasing k-th order C1 iterative root of F defined on I for an integer k � 2. Clearly, 0 < f (x) < x
for all x ∈ (0,1); otherwise, the assumption staying at the end of (3.1) implies that f (x) > x for each x ∈ (0,1), whence
F (x) = f k(x) > x contrary to the assumption. Our idea is to find a sequence convergent to F such that their C1 iterative
roots do not exist. For this purpose let δ > 0 be a sufficiently small number such that

f (a + δ) < a − δ (3.2)

and let G be a δ-pulse of F satisfying

G(x) �= x and G ′(x) > 0, ∀x ∈ (0,1).

By the definition, without loss of generality, we may assume that

G(x)

{
> F (x), ∀x ∈ (a − δ,a + δ),

= F (x), ∀x /∈ (a − δ,a + δ).
(3.3)

In what follows we will prove that the δ-pulse G does not have k-th order C1 iterative roots defined on I . For reduction
to absurdity, we assume that G has a strictly increasing k-th order C1 iterative root g . Then

g(x) = f (x), ∀x ∈ [0,a − δ], (3.4)

by (3.3) and the uniqueness of C1 iterative roots of G and F in the interval [0,a − δ], as mentioned in the second paragraph
of Section 2. We then assert that

F −n ◦ F (a) > G−n ◦ F (a), G−1 ◦ g ◦ F (a) = f (a), G−n ◦ f (a) = f ◦ F −n(a) (3.5)

for all n ∈ N. In fact, it follows from (3.3) that

G−1(x)

{
< F −1(x), ∀x ∈ (F (a − δ), F (a + δ)),

= F −1(x), ∀x /∈ (F (a − δ), F (a + δ)).
(3.6)

Then one can prove by induction that

F −n(x) = G−n(x), ∀n ∈ N, ∀x > F (a + δ). (3.7)
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Fig. 3. F1, F2 satisfying (3.1). Fig. 4. h̃: a δ-pulse of h.

For the first formula of (3.5), noting that

F (a + δ) = f k(a + δ) � f (a + δ) < a − δ = G−1 ◦ G(a − δ) = G−1 ◦ F (a − δ) < G−1 ◦ F (a) < F −1 ◦ F (a)

by (3.2), (3.3) and (3.6), we have

F −n ◦ F (a) = F −(n−1) ◦ F −1 ◦ F (a) > F −(n−1) ◦ G−1 ◦ F (a) = G−(n−1) ◦ G−1 ◦ F (a) = G−n ◦ F (a)

for all n ∈ N by (3.6) and (3.7), which proves the first formula given in (3.5). For the second one, since

F (a) < F (a + δ) < a − δ

and

f ◦ F (a) = F ◦ f (a) < F ◦ f (a + δ) < F (a − δ)

by (3.2), implying that F (a) ∈ [0,a − δ] and f ◦ F (a) /∈ (F (a − δ), F (a + δ)) respectively, we get

G−1 ◦ g ◦ F (a) = G−1 ◦ f ◦ F (a) = F −1 ◦ f ◦ F (a) = f (a)

by (3.4) and (3.6). This proves the second formula given in (3.5). By (3.2) again,

F (a + δ) = f k−1 ◦ f (a + δ) < f k−1(a − δ) < f (a)

since k � 2, as indicated in the theorem, which implies that

F −n(a) = f −1 ◦ F −n ◦ f (a) = f −1 ◦ G−n ◦ f (a)

for all n ∈ N by (3.7). This proves the third formula given in (3.5) and the assertion is proved.
Put an := F −n(a) for all n ∈ N. Then, by (3.5),

g(an) = g ◦ F −n(a) = g ◦ F −(n+1) ◦ F (a)

> g ◦ G−(n+1) ◦ F (a) = G−n ◦ G−1 ◦ g ◦ F (a) = G−n ◦ f (a)

= f ◦ F −n(a) = f (an). (3.8)

Since 1 is a stable fixed point of F −1, we can see that the sequence (an) tends to 1. Thus f and g are not identical in any
neighborhood of 1 by (3.8). This leads to a contradiction since, by the uniqueness of C1 iterative roots and by (3.3), the C1

iterative roots of F and G are identical near 1. Hence, G does not have k-th order C1 iterative roots defined on I for any
integers k � 2.

Choose a sequence (Fm) in the set of δ-pulses of F such that

lim
m→∞‖Fm − F‖r = 0. (3.9)

Actually, choose a C∞ bump function � in I such that �(x) > 0 for all x ∈ (a − δ,a + δ) and �(x) = 0 for all x /∈ (a − δ,a + δ).
Then, for every m ∈ N, the function Fm used in (3.9) can be defined by
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Fm(x) := F (x) + 1

γ m
�(x), ∀x ∈ I,

where the constant γ > 0 is so large that Fm(x) �= x and F ′
m(x) > 0 for all x ∈ (0,1). One can see that none of those Fm ’s

has a k-th order C1 iterative root by our discussion before. This completes the proof. �
4. Further remarks

Remark that the C1 stability for strictly increasing functions F ’s defined on [0,1) fixing 0 and satisfying F (x) → 1 as
x → 1 is not contained in the above discussion. We guess that it is C1 unstable but we are not able to give a proof yet.

The problem of iterative roots of self-mappings of higher dimensional space is more complicated. We also want to know
whether it is stable or not in such a case. This is one of our further directions of investigations.

At the end we give an example to show the C1 stability and C1 unstability of iterative roots. Consider the mappings F̃
and F given by

F̃ (x) := 1

2
x2 + 1

3
x and F (x) := 1

27
x4 + 4

27
x3 + 10

27
x2 + 4

9
x, ∀x ∈ I.

It is easy to verify that F̃ ∈ H2−( 1
3 ) and F satisfies (3.1), respectively. By our Theorem 2.1 the C1 iterative root of F̃ is C1

stable. Moreover, F has a second order C1 iterative root defined on I by f (x) := 1
3 x2 + 2

3 x. According to Theorem 3.1, it is
C1 unstable since we can always find a sequence (Fm) in the set of δ-pules of F such that limm→∞ ‖Fm − F‖r = 0 and each
Fm does not have any C1 iterative roots defined on I .
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