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dimensional Duffing-type equations is proved in this paper. Moreover, we show that
the initial point sets for both kinds of solutions are of infinite Lebesgue measure in
the phase space. For the part of quasi-periodic solutions, the tool we used is the small
twist theorem for higher dimensional cases.
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1. Introduction and results

The stability problem of the Hamiltonian systems can be traced back to the time of Newton. Since then a lot of results on
this question have been obtained. But whether or not regular orbits are exceptional has been unknown until the establish-
ment of the famous KAM theory in 1960s, which states that the measure of the initial point set for quasi-periodic solutions
of a nearly-integrable Hamiltonian system is positive in the phase space. Recently, many nearly-integrable Hamiltonian sys-
tems have also been found to possess unstable solutions, see [2,3,15,22] and references therein. Thus it is interesting to
study the coexistence of stable and unstable solutions for the Hamiltonian systems.

In this paper, we will study the equations:

x′′
l + x2nl+1

l + ∂

∂xl
G(X, t) = 0, l = 1,2, . . . ,m (1.1)

where nl ∈ N
+ , X = (x1, . . . , xm) ⊂ R

m , x′ denotes dx
dt , G is periodic on t and polynomial on X .

If m = 1, (1.1) becomes

x′′ + x2n+1 +
k∑

i=0

xi pi(t) = 0, pi(t + 1) = pi(t), (1.2)

which is actually a planar Duffing-type equation. The Lagrangian stability study of the Duffing equations was initiated by
Littlewood [10,11] in 1960s. In [18], Moser commended that even for the equation
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x′′ + x2n+1 + ax3 + bx = p(t), p(t + 1) = p(t) (1.3)

with a,b > 0 two constants and p small enough, it is very delicate to decide whether all solutions are bounded.
The first result on the boundedness of solutions of (1.2) was established by Morris [16] for the equation

x′′ + x3 = p(t)

with p(t + 1) = p(t) piecewise continuous. Then Dieckerhoff and Zehnder [4] extended Morris’ result to the polynomial
system (1.2) with k < 2n + 1 and p j(t) ( j = 0,1, . . . , �) smooth 1-periodic functions.

For more results along this line, see [4,7,12,13,16,20,23–25] and references therein.
The idea for proving the boundedness of solutions for a planar Duffing equation is as follows. By means of transformation

theory the original system outside of a large disc D = {(x, x′) ∈ R
2: x2 + (x′)2 � r2} in (x, x′)-plane is transformed into a

nearly integrable Hamiltonian system. The Poincaré map of the transformed system is closed to a so-called twist map in
R

2\D . Then Moser’s twist theorem [17] guarantees the existence of arbitrarily large invariant curves diffeomorphic to circles
and surrounding the origin in the (x, x′)-plane. Every such curve is the base of a time-periodic and flow-invariant cylinder
in the extended phase space (x, x′, t) ∈ R

2 × R, which confines the solutions in the interior and which leads to a bound of
these solutions.

On the other hand, many results on the existence of unbounded solutions have been established for planar superlinear
Duffing equations, see [8,9,11,14,21,27].

In the study of planar semilinear Duffing equations, some results on the coexistence of periodic and unbounded solutions
have been obtained, see [1,5] and references therein.

A natural question then arises on the stability and instability of the coupled Duffing equations (1.1). As the authors know,
the only two results on the existence of quasi-periodic solutions for this system were obtained by [6,26] for Eqs. (1.1) under
the assumptions that nl ∈ N

+ , G is periodic on t and polynomial on X = (x1, . . . , xm) with some suitable restrictions on its
degrees. In particular, the degree of each monomial on xl in G is assumed to be smaller than 2nl + 2.

In this paper, we will consider the case for which the assumption on degrees of G in [6,26] stated as above is not
satisfied. More precisely, we consider (1.1) with the following assumptions:

(G) G is a monomial of X of the form

G(X, t) = xi1
1 · · · xim

m p(t), p(t) ∈ C
1(S1)

with i1 odd and satisfying 0 < i1 < n1
2 − 2, n1 > 6.

Remark 1.1. The condition (G) imposes a strong restriction on i1. However, the degree of G on xl , l � 2 can be arbitrarily
large. For example, consider the case m = 2, n1 = 100 and n2 = 100, G(X, t) = x47

1 · x10 000
2 · sin t , which obviously satisfies the

condition (G). The degree of G on x2 is 10 000, which is much larger than n2. Thus in this case the conditions in [6,26] are
not satisfied.

We will prove the following result:

Theorem 1. Assume G(X, t) satisfy the condition (G). Then for any given

D0 = [ω,ω] × · · · × [ω,ω] ⊂ R
m,

there exists (large) A∗ > 0 such that for A > A∗ and (ω1, . . . ,ωm) ∈ D0 satisfying∣∣ei〈K ,Ω〉 − 1
∣∣ � α

|K |τ , ∀0 	= K ∈ Z
m, n ∈ N (1.4)

where τ > m, α = γ · A−2/(n1−1) > 0 with γ > 0 a constant, Ω = (Aω1,ω2, . . . ,ωm), there is an analytic vector function
f (θ1, . . . , θm, t) periodic in every variable with period 1 such that for any (θ1, . . . , θm, t0) = (Θ, t0) ∈ T

m+1 , X(t) := f (Θ + Ωt,
t0 + t) is a quasi-periodic solution of (1.1). Moreover for the set D̃0 of (ω1, . . . ,ωm) satisfying (1.4), we have

meas(D0 \ D̃0) = O (γ ).

Remark 1.2. (1.4) is a variant of the Diophantine condition. It is well known that for every bounded region D in R
m , the

measure of the subset of it in which every point ω = (ω1, . . . ,ωm) satisfies the classical Diophantine condition∣∣ei〈K ,ω〉 − 1
∣∣ � γ

|K |τ , ∀0 	= K ∈ Z
m, n ∈ N (1.5)

is (1 − Cγ )mes(D), where the constant C > 0 is independent of D . Similarly, it holds that the subset of D0 in which every
point satisfies (1.4) has a measure (1 − C ′γ )mes(D0) with C ′ > 0 independent of A, see Section 4. Thus for sufficiently
small γ , we have a positive measure subset of D0 such that every point in it satisfies (1.4). One can easily see that the
union of all quasi-periodic solutions obtained in Theorem 1 is of infinite measure in the phase space R

2m × S1.
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Remark 1.3. Theorem 1 can be easily extended to the case in which G is of the form: G = xi1 · G1(x2, . . . , xn, t) with G1
periodic on t and polynomial on x2, . . . , xn .

Theorem 1 states the stable aspect of (1.1). On the other hand, we will show the unstable aspect of it by proving that
with some further conditions besides those in Theorem 1, (1.1) possesses also infinitely many blow-up solutions.

Theorem 2. Consider the system (1.1), where G(X, t) = xi1
1 · · · xim

m p(t) satisfies the assumptions that p ∈ C(S1) and p(t0) < 0 for
some point t0 ∈ [0,1]. Suppose

∑m
l=1 il > max1�l�m(2nl + 2). Then we can find a constant c1 > 0 which depends only on p(t) and

m such that if | i j
ik

− 1| < c1 , j,k = 1, . . . ,m, then there is an open set with an infinite measure in the phase space R
2m × S1 such that

each solution of the system (1.1) starting from this set will blow up.

Remark 1.4. In Theorem 2, if we also suppose that i1 is an odd number satisfying the inequality i1 < n1
2 − 2, n1 > 6 and

p(t) ∈ C
1, then the function G(X, t) meets the assumptions of Theorem 1 but fails to satisfy the conditions in [26] or [6].

Remark 1.5. The invariant tori we obtained lie in the following strip region of the action-variable vector (see Section 3),

(λ1, . . . , λm) ∈ [A,∞] × [
ρ(0), ρ(0)

] × · · · × [
ρ(0)︸ ︷︷ ︸

m−1

,ρ(0)
]

(1.6)

with A � ρ(0) � 1. That is, the scale of the first action-variable is much larger than the others. On the other hand, the
blow-up solutions we obtained lie in the following strip region of the action-variable vector:

(λ1, . . . , λm) ∈ [
ρ(0), ρ(0)

] × · · · × [
ρ(0)︸ ︷︷ ︸

m

,ρ(0)
]
, (1.7)

that is, all the action-variables are of the same scale.

It is worth pointing out that it is not clear whether or not the coexistence of stable and unstable solutions is generic in
the higher dimensional Duffing equations.

The remaining part of the paper is organized as follows. We introduce the action-angle variables in Section 2. In Sec-
tion 3, we construct a canonical transformation to transform the original system to a nearly integrable one. Theorem 1 will
be proved in Section 4 by a variant of the small Moser’s twist theorem for higher dimensional cases in [19]. The proof of
Theorem 2 is given in Section 5.

2. Action-angle variables

If G = 0, (1.1) is of the form

x′′
l + x2nl+1

l = 0, l = 1, . . . ,m,

which is m uncoupled one degree of freedom Hamiltonian systems:

x′
l = ∂

∂ yl
hl(xl, yl), y′

l = − ∂

∂xl
hl(xl, yl) (2.1)

with hl(xl, yl) = 1
2 y2

l + 1
2(nl+1)

x2(nl+1)

l , l = 1,2, . . . ,m.

With the notation (X, Y ) = (x1, . . . , xm, y1, . . . , ym) and h(X, Y ) = ∑m
l=1 hl(xl, yl), we have that (1.1) is equivalent to the

Hamiltonian system

x′
l = ∂ H

∂ yl
, y′

l = −∂ H

∂xl
, l = 1,2, . . . ,m, (2.2)

where the Hamiltonian function is

H(X, Y , t) = h(X, Y ) + G(X, t). (2.3)

Denote by (Cl(t), Sl(t)) the periodic solution of the Hamiltonian system (2.1) satisfying (Cl(0), Sl(0)) = (1,0), l = 1, . . . ,m.

Then hl(Cl(t), Sl(t)) ≡ 1
2(nl+1)

. Let Tl > 0 be the minimal period of (Cl(t), Sl(t)), then Cl, Sl , l = 1,2, . . . ,m satisfy the follow-
ing propositions:

(1) Cl(t) = Cl(t + Tl), Sl(t) = Sl(t + Tl);
(2) C ′(t) = Sl(t) and S ′(t) = −Cl(t)2nl+1;
l l
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(3) (nl + 1)Sl(t)2 + Cl(t)2(nl+1) = 1;
(4) Cl(−t) = Cl(t) and Sl(−t) = −Sl(t);
(5) Cl(−t + 1/2) = −Cl(t) and Sl(−t + 1/2) = −Sl(t).

Define the action-angle variables by the symplectic transformation

xl = cαl
l λ

αl
l Cl(θl Tl), yl = cβl

l λ
βl
l Sl(θl Tl),

where

αl = 1

nl + 2
, βl = 1 − αl, cl = 1

αl Tl
, l = 1,2, . . . ,m.

Then (2.2) is transformed into another Hamiltonian system⎧⎪⎪⎨⎪⎪⎩
θ ′

l = 2dlβlλ
2βl−1
l + ∂ R1

∂λl
,

λ′
l = −∂ R1

∂θl
,

l = 1,2, . . . ,m (2.4)

with the Hamiltonian function

H1(Λ,Θ, t) =
m∑

l=1

dlλ
2βl
l + R1(Λ,Θ, t), (2.5)

where (Λ,Θ) = (λ1, . . . , λm, θ1, . . . , θm), dl = c
2βl
l

2(nl+1)
, l = 1, . . . ,m and

R1(Λ,Θ, t) = (c1λ1)
i1α1 C i1

1 (θ1T1) · · · (cmλm)imαm C im
m (θm Tm)p(t) (2.6)

≡ R∗
1

(
Λ∗,Θ∗, t

)
λ

i1α1
1 C i1

1 (θ1T1), (2.7)

where Λ∗ = (λ2, . . . , λm), Θ∗ = (θ2, . . . , θm).

Remark 2.1. Remind that i1 is assumed to be odd in (G). Thus with the symmetric properties of C1(t) stated in (4) and (5),
we have∫

T

R1(Λ,Θ, t)dθ1 = R∗
1

(
Λ∗,Θ∗, t

)
λ

i1α1
1

∫
T

C i1
1 (θ1T1)dθ1 = 0. (2.8)

This fact is crucial in the proof of Theorem 1.

3. More canonical transformations

In the following, for any m-dimensional vector Z = (z1, z2, . . . , zm), we denote (z2, . . . , zm) by Z∗ , e.g., f (Z) ≡ f (z1, Z∗).
Let Dm−1 be any domain in R

m−1. Next we introduce a space of functions F 1(r).

Definition 3.1. For r ∈ R, we call f (Λ,Θ, t) ∈ F1(r) if f (·, t) ∈ C∞([1,∞] × Dm−1 × T
m) and for all nonnegative integer

vectors J , L and nonnegative integer j, it holds that

sup
(λ1,Λ∗,Θ,t)∈[1,∞]×Dm−1×Tm+1

λ
j−r
1

∣∣(Dλ1)
j(DΛ∗) J∗(DΘ)L f

(
λ1,Λ

∗,Θ, t
)∣∣ < ∞.

We also call a vector function

G(Λ,Θ, t) = (
g1(Λ,Θ, t), g2(Λ,Θ, t), . . . , gm(Λ,Θ, t)

) ∈ F1(r),

if gl(Λ,Θ, t) ∈ F1(r), l = 1,2, . . . ,m.

From the definition of F1(r), we can easily verify the following properties:

Lemma 3.1.

(1) If r1 < r2, then F1(r1) ⊂ F1(r2).
(2) If f ∈ F1(r), then (DΛ∗ ) J∗ (DΘ)L f ∈ F1(r).
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(3) If f ∈ F1(r1), g ∈ F1(r2), then f · g ∈ F1(r1 + r2).
(4) If f ∈ F1(r) satisfies | f | � cλr

1 , then 1
f ∈ F1(−r).

Without loss of generality, consider the Hamiltonian

H1(Λ,Θ, t) = d1λ
2β1
1 +

m∑
l=2

dlλ
2βl
l + R1

(
λ1,Λ

∗,Θ, t
)

(3.1)

defined in D(0)
m × T

m+1 with

D(0)
m := [1,∞] × D(0)

m−1, (3.2)

where D(0)
m−1 = [ρ(0), ρ(0)] × · · · × [ρ(0)︸ ︷︷ ︸

m−1

,ρ(0)] is a bounded domain. Thus, from (2.6) we have R1 ∈ F1(b1) with b1 = i1α1.

Next we show that there exists a canonical transformation with which the term R1 ∈ F1(b1) in (3.1) is transformed into
another one in F1(b2) with b2 < 0. More precisely, we have

Proposition 3.1. For the Hamiltonian (3.1) in D(0)
m , there exist A(1) � 1 and a canonical diffeomorphism Φ defined in D(1)

m =
[A(1),∞) × D(1)

m−1 ⊂ D(0)
m depending periodically on t of the form:

Φ:
{

Λ = U + Φ1(U , V , t),

Θ = V + Φ2(U , V , t)

with Φ1,Φ2 ∈ F1(b1 − 2β1 + 1) such that for u1 > A(1) , Φ(D(1)
m ) ⊂ D(0)

m and the Hamiltonian is transformed into Φ∗(XH1) = XH2

with

H2 = d1u2β1
1 +

m∑
l=2

dlu
2βl
l + R2

(
u1, U∗, V , t

)
, (3.3)

where R2 ∈ F1(b2) with b2 = 2b1 − 2β1 + 1 < 0.

Proof. We will construct the canonical transformation Φ by means of the generating function:

Φ:
{

Λ = U + ∂
∂Θ

S(U ,Θ, t),

V = Θ + ∂
∂U S(U ,Θ, t).

The transformed Hamiltonian function expressed in the variables (U ,Θ) instead of (U , V ) is of the form:

Ĥ1(U ,Θ, t) = d1u2β1
1 +

m∑
l=2

dlu
2βl
l + [R1]1

(
U ,Θ∗, t

) + R̂2 (3.4)

with

[R1]1
(
U ,Θ∗, t

) =
∫
T

R1(U ,Θ, t)dθ1,

and R̂2 = R̂21 + R̂22 + · · · + R̂25, where

R̂21 = 2d1β1u2β1−1
1

∂ S

∂θ1
+ R1(U ,Θ, t) − [R1]1, (3.5)

R̂22 = d1
(
λ

2β1
1 − u2β1

1

) − d12β1u2β1−1
1

∂ S

∂θ1
, (3.6)

R̂23 =
m∑

l=2

dlλ
2βl
l −

m∑
l=2

dlu
2βl
l , (3.7)

R̂24 = R1

(
U + ∂ S

∂Θ
,Θ, t

)
− R1(U ,Θ, t), (3.8)

R̂25 = ∂ S

∂t
. (3.9)

It follows from (2.8) that [R1]1 = 0.
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We define S by the equation

R̂21 = 0, (3.10)

i.e.

∂ S

∂θ1
= −u1−2β1

1

2d1β1
R1(U ,Θ, t).

Thus S is defined by

S = − 1

2d1β1

θ1∫
0

u1−2β1
1 R1(U ,Θ, t)dθ1. (3.11)

Note that R1 ∈ F1(b1). Thus we can prove that ∃A(1) � 1, s.t.

sup
(u1,U∗,Θ,t)∈[A(1),∞]×D(0)

m−1×Tm+1

∣∣u2β1−1−b1+ j
1 (Du1)

j(DU∗) J∗(DΘ)L(S
(
u1, U∗,Θ, t

))∣∣ < ∞,

i.e. S ∈ F1(b1 − 2β1 + 1), where b1 − 2β1 + 1 = i1
n1+2 − n1

n1+2 < 0.

Let Φ1(U , V , t),Φ2(U , V , t) be determined implicitly by

Φ2 + ∂

∂U
S(U , V + Φ2, t) = 0, Φ1(U , V , t) = ∂

∂Θ
S(U , V + Φ2, t).

Similar to [4], we have Φ1(U , V , t),Φ2(U , V , t) ∈ F1(b1 − 2β1 + 1) with b1 − 2β1 + 1 < 0. Thus shrinking the domain D(0)
m−1

a little, we can easily find D(1)
m−1 := [ρ(1), ρ(1)] × · · · × [ρ(1), ρ(1)] ⊂ D(0)

m−1 such that

Φ
(

D(1)
m

) = Φ
([

A(1),∞] × D(1)
m−1

) ⊂ D(0)
m .

Moreover the following functions, expressed in U ,Θ, t , possess the properties:

R̂22 ∈ F1(2b1 − 2β1),

R̂23 ∈ F1(b1 − 2β1 + 1),

R̂24 ∈ F1(2b1 − 2β1 + 1),

R̂25 ∈ F1(b1 − 2β1 + 1).

Thus we have R̂2 ∈ F1(2b1 − 2β1 + 1). And by definition, R2(U , V , t) = R̂2(U , V + Φ2, t) which implies that

R2 ∈ F1(2b1 − 2β1 + 1).

The proof is completed by setting H2(U , V , t) = Ĥ1(U ,Θ(U , V , t), t). �
4. The proof of Theorem 1

In this section, we will prove the existence of quasi-periodic solutions of (1.1) via the following theorem [6], which is a
variant of the small twist theorem for higher dimensional cases in [19].

For any two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), we define x ∗ y = (x1 y1, . . . , xn yn).

Theorem 3. Let γ > 0, τ > n + 1, a = (a1,a2, . . . ,an)T be a constant vector with 0 < a1 � a2 � · · · � an � 1 and b =
(b1,b2, . . . ,bn)T be any constant vector. Consider a family of exact symplectic mappings Sa : (p,q) → (p̂, q̂) defined in phase space
D × T

n by

p̂ = p − ∂2h(p̂,q),

q̂ = q + ω̃(p̂) + ∂1h(p̂,q), (4.1)

where D is a bounded open set in R
n, h possesses the same regularity as in Theorem 4 [6] and ω̃(p̂) is of the form: ω̃(p̂) = aT ∗

ω(p̂) + b, where ω(p̂) is analytic and satisfies the non-degenerate condition. Then there exists a constant δ0 > 0 such that if
‖h‖D×Tn � δ0γ

2a2 , there is a Cantor set D̃a,γ ⊂ D such that for each ν0 ∈ D̃a,γ , ω(ν0) is in the set
1
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Ω̃a,γ =
{
ω:

∣∣ei〈k,ω̃(ω)〉 − 1
∣∣ � a1γ

|k|τ , for all 0 	= k ∈ Z
n
}
,

and Sa has an invariant torus diffeomorphic to {ω̃(ω(ν0))} × T n. Moreover, the measure of D̃a,γ satisfies

meas(D̃a,γ ) >
(
1 − O (γ )

)
meas(D). (4.2)

Remark 4.1. The proof of this theorem can be found in [6].

Consider the Hamiltonian system given by (3.3):{
v ′

l = 2dlβlu
2βl−1
l + ∂ul R2(U , V , t),

u′
l = −∂vl R2(U , V , t),

l = 1, . . . ,m.

Similar to Lemma 4 of [4], the time 1 map P 1 of the flow P t of the vector field XH2 defined in

D(1)
m = [

A(1),∞) × D(1)
m−1 × T

m

is of the form

P 1:
{

V 1 = V + r(U ) + f (U , V ),

U1 = U + g(U , V )

with

r(U ) = (
r1(u1), . . . , rm(um)

)
,

f = ( f1, . . . , fm), g = (g1, . . . , gm),

where

rl(ul) = 2dlβlu
2βl−1
l , (4.3)

fl(U , V ) =
1∫

0

∂ul R2
(
U (t), V (t), t

)
dt +

1∫
0

2dlβlul(t)
2βl−1 dt − rl(ul), (4.4)

gl(U , V ) = −
1∫

0

∂vl R2
(
U (t), V (t), t

)
dt (4.5)

with l = 1, . . . ,m.

Moreover for every pair ( J , L):∣∣(DU ) J (D V )L fl(U , V )
∣∣, ∣∣(DU ) J (D V )L gl(U , V )

∣∣ < c · ub2
1 , l = 1, . . . ,m

with c some positive constant in D(1)
m × T

m .
Given a sufficiently large u0

1, let u1 = u0
1 + μ1, u2 = μ2, . . . , um = μm , μ1 ∈ [ω,ω], some bounded interval determined

later, then

u2β1−1
1 = (

u0
1

)2β1−1 + (
u0

1

)2β1−2
μ + O

((
u0

1

)2β1−3)
.

For simplicity, we still denote by (U , V ) the coordinates of the transformed symplectic map, which is of the form

P̃ 1:
{

V 1 = V + r̃(U ) + f̃ (U , V ),

U1 = U + g(U , V )

with

r̃(U ) = (
2d1β1

(
u0

1

)2β1−1 + 2d1β1
(
u0

1

)2β1−2
μ1,2d2β2μ

2β2−1
2 , . . . ,2dmβmμ

2βm−1
m

)
,

f = (
f1 + O

((
u0

1

)2β1−3)
, . . . , fm

)
, g = (g1, . . . , gm),

where
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∣∣(DU ) J (D V )L fl(U , V )
∣∣, ∣∣(DU ) J (D V )L gl(U , V )

∣∣ < c · (u0
1

)b2
, l = 1, . . . ,m, (4.6)

in D(2)
m × T

m with D(2)
m = [ω,ω] × D(1)

m−1.

Denote r̃(U ) = a ∗ ωT (U ) + b with

ω(U ) = (
μ1,2d2β2μ

2β2−1
2 , . . . ,2dmβmμ

2βm−1
m

)
,

a = (
2d1β1

(
u0

1

)2β1−2
,1, . . . ,1

)
, b = (

2d1β1
(
u0

1

)2β1−1
,0, . . . ,0

)
.

Note that (u0
1)

2β1−2 = o(1) since u0
1 � 1 and 2β1 − 2 < 0. Thus the twists for all the action-variables of U are in different

scales.
Then the map P̃ 1 is, with its derivatives, closed to a generalized small twist map. Moreover it is an exact symplectic

map. On the other hand, since the twists of action-variables are not of the same scale in our case, which are defined by
the vector a as above, we cannot use the small twist theorem for higher dimensional cases in [19] directly. Instead, we will
apply Theorem 3 to our case.

Note that |b2| > |4β1 − 4| provided i1 <
n1
2 − 2, thus (u0

1)
b2 < ((u0

1)
2β1−2)2. Combining this with (4.6), we have that the

map P̃ 1 meets the small assumption on the perturbation in Theorem 3. It follows that if μ0
1 is sufficiently large, then there

is an embedding φ : T
m → D(2)

m × T of an m-torus, which is invariant under the map P̃ 1. Moreover, P̃ 1 ◦ φ(S) = φ(S + Ω)

with

Ω = (
2d1β1

(
u0

1

)2β1−1 + 2d1β1
(
u0

1

)2β1−2
ω∗

1,ω∗
2, . . . ,ω∗

m

)
,

where

ω∗ = (
ω∗

1,ω∗
2, . . . ,ω∗

m

) ∈ [ω,ω] × · · · × [ω,ω]
lies in the set Ω̃a,γ in Theorem 3 and [ω,ω] ⊂ [2dlβl(ρ

(1))2βl−1,2dlβl(ρ
(1))2βl−1], l=2, . . . ,m. By setting A=2d1β1(u0

1)
2β1−2,

we have that Ω satisfies the Diophantine condition (1.4).
Thus by Theorem 3, the solutions of the Hamiltonian equation starting at time t = 0 on this invariant torus determine a

1-periodic “hypercylinder” in the set {(U , V , t) | (U , V , t) ∈ D(2)
m × T m × R}. Since the Hamiltonian vector field XH2 is time

periodic, the phase space is D(2)
m × T

m+1. Let Ψ t with Ψ 0 = Id be the flow of the time-independent vector field (XH2 ,1) on

D(2)
m × T

m+1 and define the embedded torus ψ : T
m+1 → D(2)

m × T
m+1 by setting

ψ(S, τ ) = (
φ(S), τ

)
.

In view of the rigid rotation, we have

ψ(. . . , sl + 1, . . . , τ ) = ψ(. . . , sl, . . . , τ + 1) = ψ(S, τ ).

Moreover Ψ t ◦ ψ(S, τ ) = ψ(S + Ωt, τ + t). So the torus ψ(Tm+1) is quasi-periodic with the frequencies (Ω,1).

5. Blow up

We have already obtained Theorem 1 about the existence of infinitely many invariant tori in the region (1.6). It means
that in this region the orbits are stable in the sense of possibility. But there still remains a large region in the phase space
where it is not clear whether or not the orbits are also stable. In this section, we will prove the unstable aspect of (1.1)
described in Theorem 2.

We first consider the special system:

x′′
l + x2n+1

l + i

xl
xi

1 · · · xi
m p(t) = 0, p ∈ C

(
S1), l = 1, . . . ,m (5.1)

where i, m, n are positive integers satisfying the inequality 2n+2
m < i. Moreover, we assume p(t0) < 0 for some point t0 ∈

[0,1]. Under these assumptions, we have the following result:

Theorem 4. There is an open set with an infinite measure in the phase space R
2m × S1 of the system (5.1) such that each solution of

the system starting from this set will blow up.

Next we consider a special situation of (5.1), which is helpful for us to understand the general case.

Lemma 5.1. Under the assumptions of Theorem 3, each solution of (5.1) with an initial condition satisfying x1(t0) = · · · = xm(t0) � 1,
x′ (t0) = · · · = x′

m(t0) � 1 will blow up.
1
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Proof. Consider the auxiliary equation:

x′′ + x2n+1 + ixmi−1 p(t) = 0. (5.2)

The relation between (5.1) and (5.2) is that if x(t) is a solution of (5.2), then (x(t), x(t), . . . , x(t)) is a solution of (5.1);
conversely, if X(t) = (x1(t), . . . , xm(t)) is a solution of (5.1) satisfying the conditions of Lemma 5.1, then x1(t) = · · · = xm(t)
and x = x1(t) is a solution of (5.2). Thus the proof of Lemma 5.1 is reduce to prove the existence of blow-up solutions
for (5.2).

Since p(t0) < 0 and p is continuous, there exist ε0 > 0 and t0 < t1 < 1 such that p(t) < −2ε0 for t ∈ [t0, t1]. From the
condition 2n+2

m < i, we have mi −1 > 2n+1. Thus it follows from (5.2) that for x(t) � 1 for t ∈ [t0, t1] with some t0 < t1 < 1,
it holds that

x′′ = −x2n+1 − ixmi−1 p(t) > 2iε0xmi−1 − x2n+1 > iε0xmi−1. (5.3)

Consider the equation

x′′ = iε0xmi−1. (5.4)

It is easy to prove that for any initial condition satisfying x(t0), x′(t0) � 1, the corresponding solution x(t) will blow up on
the interval [t0, t2) with t2 = t0+t1

2 .
Comparing the solutions of (5.3) and (5.4), we have that each solution of (5.2) with the initial condition x(t0), x′(t0) � 1

will blow up on the interval [t0, t2). �
Proof of Theorem 4. Denote G1(X) = xi

1 · · · xi
m . Then for any small δ > 0, we have that

(1 − δ)
(−p(t)

)
∂G1/∂xi < x′′

i < (1 + δ)
(−p(t)

)
∂G1/∂xi (5.5)

for sufficiently large r.
Fix 0 < c < 1. Let 0 < δ0, η < 1, r > 1 and define Dr be a set in the phase space R

2m satisfying the following conditions
for k, j = 1, . . . ,m:

(i) xk, x′
k > r;

(ii) c <
x′

j

x′
k

< c−1, ηc <
x′2

k

G1(X)
< (ηc)−1;

(iii) c <
x j

xk
< c−1 + δ0

1 − c

( x′
j

x′
k

− 1

)
for c <

x′
j

x′
k

� 1;

(iv) c + δ0

c−1 − 1

( x′
j

x′
k

− 1

)
<

x j

xk
< c−1 for 1 <

x′
j

x′
k

< c−1.

Obviously, Dr is of infinite measure. The proof of Theorem 4 can be reduced to the following proposition:

Proposition 5.1. There exist 0 < δ0, η < 1 and r > 1 such that Dr is an invariant set of the flow defined by Eq. (5.1).

Proof. It is equivalent to prove that every vector at the boundary of Dr points inward.
To analyze the situation on the boundary of Dr , it is sufficient to deal with the cases xk, x′

k = r as well as the following
cases:

x′2
k

G1(X)
= ηc or

x′2
k

G1(X)
= (ηc)−1;

x′
j

x′
k

= c or
x′

j

x′
k

= c−1;

x j

xk
= c or

x j

xk
= c−1 + δ0

1 − c

( x′
j

x′
k

− 1

)
, c <

x′
j

x′
k

� 1;

x j

xk
= c−1 or

x j

xk
= c + δ0

c−1 − 1

( x′
j

x′
k

− 1

)
, 1 <

x′
j

x′
k

< c−1.

For the case
x′ 2

k = ηc, we have
G1(X)
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(
x′2

k

G1(X)

)′
= 2x′

kx′′
k G1 − x′2

k

∑m
l=1 ∂G1/∂xl · x′

l

G2
1

>
2i(1 − δ0)x′

kG2
1(−p(t))/xk − ix′2

k

∑m
l=1 G1/xl · x′

l

G2
1

from (5.5)

= (
4ε0i(1 − δ0)G1 − imc−2x′2

k

) x′
k

G1xk
since c <

x j

xk
,

x′
j

x′
k

< c−1

> 0 with η < m−1cε0, δ0 <
1

2
.

We can analysis the case
x′ 2

k
G1(X)

= (ηc)−1 in a similar way as above.

For the part of the boundary of Dr in the hyperplane
x′

j

x′
k

= c, from the condition (iii), we have that every point in this

part also satisfies c <
x j
xk

< c−1 − δ0. It implies that for sufficiently large r and sufficiently small δ0, it holds that( x′
j

x′
k

)′
= x′′

j x′
k − x′

j x
′′
k

x′2
k

>
iG1(X)(−p(t))((1 − δ1)x′

k/x j − (1 + δ1)x′
j/xk)

x′2
k

> 0,

where δ1 = ([2c−1] + 1)−1δ0. Thus each vector at this part of the boundary of Dr points inward.

Similarly, we can prove the same conclusion for the case
x′

j

x′
k

= c−1.

For the part of the boundary of Dr satisfying
x j
xk

= c, c <
x′

j

x′
k

� 1, we can easily have that(
x j

xk

)′
= x′

j xk − x jx′
k

x2
j

> 0.

The situation for the case
x j
xk

= c−1, 1 <
x′

j

x′
k

< c−1 is similar.

For the subset of the boundary of Dr satisfying
x j
xk

= c−1 + δ0
1−c (

x′
j

x′
k

− 1), c <
x′

j

x′
k

� 1, we have that(
x j

xk
− δ0

1 − c

( x′
j

x′
k

− 1

))′
= x′

j xk − x jx′
k

x2
k

− δ0

1 − c

x′′
j x′

k − x′
j x

′′
k

x′2
k

<
(δ0 + 1 − c−1)xkx′

k

x2
k

− iδ0G1(X)(−p(t))

(1 − c)x′2
k

· (1 + δ1)

(
x′

k

x j
+ x′

j

xk

)

<
(δ0 + 1 − c−1)xkx′

k

x2
k

+ i‖p‖δ0

(1 − c)cη
·
(

x′
k

x j
+ x′

j

xk

)
from (ii), ‖p‖ = max

t∈S1

∣∣p(t)
∣∣

<

(
δ0 + 1 − c−1 + 2i‖p‖δ0

(1 − c)c2η

)
x′

k

xk
since c <

x j

xk
,

x′
j

x′
k

< c−1

< 0 for δ0 � 1.

We can deal with the subset of the boundary of Dr satisfying
x j
xk

= c + δ0
c−1−1

(
x′

j

x′
k

− 1), 1 <
x′

j

x′
k

< c−1 in a similar way.

In conclusion, a flow X(t) = (. . . , xk(t), . . .) of (5.1) starting from Dr always satisfies the conditions (ii)–(iv). Especially,
we have c <

xk(t)
x j(t)

< c−1, 1 � k, j � m. Hence similar to the argument in Lemma 5.1, we can find ε1 > 0 such that on the

time interval t ∈ [t0, t1] the following inequality holds true for X(t):

x′′
k (t) > ε1xk(t)

mi−1, k = 1,2, . . . ,m. (5.6)

Then we have that the flow is inward on the boundary xk = r or x′
k = r for r � 1. Thus we complete the proof of the

proposition. �
From (5.6) and the same argument as in Lemma 5.1, we can prove that a flow X(t) = (. . . , xk(t), . . .) of (5.1) starting from

Dr with r � 1 will blow up during t ∈ [t0, t1). Thus we complete the proof of Theorem 4. �
Proof of Theorem 2. Theorem 4 is the special situation of Theorem 2 with i1 = · · · = im . For the general case, we observe
that in the proof of Proposition 5.1, all the inequalities hold strictly. Thus we can find c1 > 0 dependent only on p(t) and m
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such that with the assumptions | i j
ik

−1| � c1 for j,k = 1, . . . ,m, we can prove that Proposition 5.1 holds true for (1.1) instead

of (5.1). Remember the condition that
∑m

l=1 il > max1�l�m(2nl +2). Thus we obtain that a flow X(t) = (. . . , xk(t), . . .) of (1.1)
starting from Dr always satisfies

x′′
k (t) > ε1xk(t)

(
∑m

l=1 il−1), k = 1,2, . . . ,m, t ∈ [t0, t1] (5.7)

for some ε1 > 0. Thus we can prove Theorem 2 with the same argument as in Lemma 5.1. �
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