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1. Introduction

In this paper we study the Cauchy problem of the following energy-critical fourth-order Schrédinger equation with a
subcritical perturbation in R x R":

iur+A2u+A1|u|pu+)\2|u|%u:0, fort € R, x € R", (1.1)
u(0,x) = @(x), xeR", ’

where A{, A, are nonzero real numbers, and % <p< "874 is a positive constant.

Fourth-order Schrédinger equations are very important equations which arise in many physical application fields. They
have been introduced by Karpman [1] and Karpman and Shagalov [2] to take into account the effects of small fourth-
order dispersion terms on the solitons. They have also been studied from a mathematical viewpoint by many authors.
For instance, the energy-critical focusing fourth-order Schrédinger equation (A; = 0,1, < 0) has been studied by
Miao et al. [3]. They obtained that the solution is global and scatters in the radial case under some conditions. In [4]
Miao et al. proved that any finite energy solution is global and scatters for defocusing case (A.; = 0,A; > 0) and
n > 9. Pausader [5] has obtained the global well-posedness and scattering in the defocusing case (A; = 0, A, > 0) for
radially symmetrical initial data and n > 5. In [6] Pausader investigated the cubic defocusing fourth-order Schrédinger

equation (A; = 0,1, > 0, |u|%u — |ul|?u) and proved that the equation is globally well-posed for n < 8 and the
solution scatters for 5 < n < 8. For the case A1 # 0,A; # 0and n = 8, Zhang and Zheng [7] proved that the
solution is global for 1 < p < 2, scattering will occur either A; > 0,1 < p < 2 or when the mass of solution is

8
small enough, 1 < p < 2. But they only discuss the case n = 8 (obviously |u|7~3u = |u|?u). As far as we know,
there are few results about global existence and scattering for the energy-critical fourth-order Schrédinger equations
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with combined power-type nonlinearities in arbitrary dimensions. The aim of this paper is to study the global existence
of solutions and scattering of the Cauchy problem of (1.1) for any dimensions. In [8] Tao et al. studied a Schrédinger
equation with combined power-type nonlinearities. So we will utilize the ideas and techniques of [8]. The method of [7,8]
is the “perturbative” method. The idea of this method is to obtain the global well-posedness by the good local well-posedness
combining with the global kinetic energy control. The same method is used in [9]. The aim of this paper is to improve
the global existence and scattering for fourth-order Schrodinger equations in arbitrary dimensions. As for the local well-
posedness, we can obtain it by similar techniques in [10]. Here we omit it. We also refer the reader to [11-18] for other
results about fourth-order Schrédinger equations.
The main results of this work are the following theorems:

Theorem 1.1 (Global Solvability). Assume that 4 < n < 8. Let ¢(x) € H>(R") and X, > 0, then there exists a unique global
solution u(t, x) of (1.1) which satisfies

Nty gtizrany < C(1@lli2gen)

for all biharmonic admissible pairs (q, r) (biharmonic admissible pairs will be introduced in Section 2).

Theorem 1.2 (Scattering Results). Assume that 4 < n < 8. For any ¢(x) € H2(R"), let u be the unique global solution of (1.1),
there exist u such that

lim(Ju() = WO gz ey = 0,

provided
8 8
A >0, Ay > 0, - <p< s
n n—4
or
8 8
Az >0, 0 =p< n_a and ||@ll2gny < C(HA‘P”LZ(R")),

(where the operator W(t) will be introduced in Section 2, C(llAgplle(Rn)) is a small enough parameter, see the proof
of Theorem 1.2).

Obviously, (1.1) has two conservation laws:

M) (t) = [lu(t, )l 2gns (1.2)
and

M o+ wwa,x)lt%]dx. (13)

p+2 2n

E(u)(o:/ [518utt. 0P +
e L2 ’

We recall the dispersive estimates for the linear equation related to the Eq. (1.1) in Section 2 and we will present the
nonlinear estimates in Section 3. In Section 4 we present the proofs of the theorems.

2. Notations and fundamental solution operator estimates

GivenT > 0 and a function space on R", we denote by || - ||a¢—1,17:x) and LY([—T, T]; X) respectively the following norm
and the corresponding function space on [—T, T] x R":
For1 <q < 400,

1
T q
Iflaq-r,m1: = (/ IfFCs t)Ilidt> .
T

And for g = oo,

If oo =1, 11:%) = €ss. sup_r 7 lf ¢, O lIx.

Later we shall particularly take X = H*"(R")(s € R, 1 < r < 00). For simplicity of notation, we respectively abbreviate
Il - laq=r,r:0ry and || - |liaq—7,1);15) as respectively || - ||L$L; and || - ||L$Hfg“ We also abbreviate H5?(R") = H*(R"). In the

following, we will introduce our three working spaces.
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For any time interval T, we denote
XO(T) = LA N L2122 N LPLOS N LALL,

8 8(n—1
LU NP2 NLPLS, - <p < #,
50 n n?2—3n+8
Yy = 8(n—1) 8
LI NLPLe nLeLes, 7 —anas <P <nza
Z(T) = L' N L2 Lee
where
( )= 2(n+4) 2(n+4) ( )= 2(n+4) 2n(n+4)
Y1, P1 ) n > V2, 02) = n—4  n2+16
( ) = 2n ( ) = 8p+2) np+2)
V3, 03 4)p A nta—m—ap) Y4, P4) = n—ap n+2p )’
2(n+2) 2n(n+2)
(v, p5) = >
n—6+(Mm—4p n2—2n+24—4(n—4)p
( 2(n—4) 2n(n — 4)
Vs: P6) n+4—np’ n?2—8n—16+4np
And

X'T) ={u:auex®m}, X' (T)=x%T)NnX\T),
YIT) ={u:AueY’M}), YUT)=Y°(T)NYNT),
Z'T)y={u:Auez’(M)y), z'(T)=2z%T)Nnz\T).
The fundamental solution of the linear equation related to (1.1) is given by the following oscillatory integral:
I(X, t) — (27‘[)_”/ eiX‘ E‘Ht‘é“ldg.
Rl’l
We denote by W (t)(t € R) the fundamental solution operator

Wt =I(x, 1) x9(x), ¢k S'R.

Definition 2.1. For two integers 2 < q < ooand 2 < r < 00, we say that (g, r) is a Schrédinger admissible pair if the
following condition is satisfied:

2 (1 l)
—=n{=-—-].
q 2 r

Definition 2.2. For two integers 2 < y < ocoand 2 < p < 00, we say that (y, p) is an biharmonic admissible pair if the
following condition is satisfied:

4 ( 1 1 )
—=nl=-—-——].
4 2 p
Lemma 2.1 (See [19]). For any biharmonic admissible pairs (q, r) and (v, p), there hold the following estimates
IW®ellgpsr = Clielag,

= C||f|| e
LIHy"

¢
/ Wt —1)f (-, t)dt
0

where ¢ € HS(R"), f € LY ([—T, T]; H** (R")).
For any Schrodinger admissible pairs (a, b) and (c, d), there hold the following estimates
WOl ap50 = Cllfpll =

/ Wt —o)f (-, t)dt
0

=CIN 22 g

1Ay Ly Hy

where ¢ € H= 8 (R"), f € L ([=T, T]; H—¢— & ¢ (Rv)).
By Sobolev inequality and Lemma 2.1, we have
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Corollary 2.2. For any biharmonic admissible pair (q, r), there holds the following estimate

t
[ wemoreod] s
0

L%HX.T
where f € 2([—T, T]; "7 (R™)).

Proof. By Sobolev inequality, we have

)
S,71

/[ Wt —1)f (-, t)dt
0

t
/ Wt —1)f(, t)dr
0

2.1
LIy LI,

where andssatisfy% :n(% - rl)a d— —l=22

Takinga=q,b=riandc =2,d = E in Lemma 2.1, the desired result is obtained. O

Using Lemma 2.1 and Corollary 2.2, by Duhamel formula, we get the following lemma:

Lemma 2.3. If u is the solution of the problem (1.1), then for any biharmonic admissible pares (q, r), (y1, p1), (V2, p2), we have

_8
lull a2 < Colluollyz + Cull ulPull 1+ Gill ul#au] A +GIVuPWI o + ClIVul=2wll - 2 .
THY 2t 2y 121]7%2 212

T =X TX

Lemma 2.4 (See [4,20]). If u is a solution of the problem (1.1), then the following holds for .1 > 0,A; > Oandn > 4

119" s = CSUD IIU(t)II IIU(f)IILz

Using Lemma 2.4 and interpolation theorem [21], we obtain
Lemma 2.5. If u is a solution of the problem (1.1), then the following holds for A1 > 0, A, > Oandn > 4
5

wn]mn<mermmww
L1 Ly

3. Nonlinear estimates

Lemma 3.1. Assume that 4 < n < 8, then we have

p <
an%ﬂ_d

lfull 7 pa (3.1)

4 204

IVl 2, < sl Al s, (3:2)
TEX

where (y;, pi), i = 3, 4 are as in Section 2.

Proof. Using Holder inequality and Sobolev inequality, we have

(-p n(p+ 2)
I ulPull ,, , < CT'" "5 y ullpages (7= ——
4L 4 p

LA n—4
mﬁwwmmm
IV(uPwl = 2 < C IIVUII m
L2 LocL 13172 p
<C L?“H}”Aul|l-¥3l-£3' O
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Lemma 3.2. Assume 4 < n < 8, we have

8

s 8
u|"au < Cllul™* ul|, e
Il ful ||L:(”n++;)L2(”n++;) =C ”L?Hf”’z Il e

n+4
IV (ful 1w 2 % < ||U||L,,2 202

T

where (i, pi), i = 1, 2 are as in Section 2.

Proof. Using Holder inequality and Sobolev inequality, we have

8
Ul ™3 Ul 2oin 20ee < CIf ul 74 | nga nga U] 2010 2wta
L "8 e L4 L L " L "
= C”u” 2(n+4) 2(n+4) ”u” 2(n+4) 2(n+4)
L4 | n—d Ly ™o "
T X
e
n—
< Cllul 2048) 2, 2n(rt) [lull 2(ﬂ+4)L2(n+4)

L g 2116 Ly X
8
- Cllull zpz Il g
Similarly we can obtain

8
IV (lul=3u)|| 5 712% =< C”u“ 2(n+4) 2n+4) (Vull 2n+4a) 2n(n+4)

LTLX L n—4 Lx n—4 LT n—4 an —2n+8
= C”u” 2(n+4) 5 2n(n+4) lull 2n4a 2, 2014
L HxY 2416 1,1 Hx n2+16
n+4
= Cllll 2 O

8(n—1)

Lemma 3.3. Assume that 4 < n < 8. (i) For the case Foanis <P < 4,
ls—<n?4)p|)<n—1) (n273nt8)p—)8(n—1)
p 2(n+2 2(n+2
e L N L P luls s
T X
[8—(n—4)pl(n—1) (n%—3n+8)p—8(n—1)
201+2) 201+2)
IVuPWI 2o < Cllull 50 1Aul g, ™7 Aullsys.
LTIy L;l_—l,_x n—3 T ™
(ii) For the case <p< n§ (”3]1138, we have the following results:
(np—8)(n—1) —(n®—3n+8)p+8(n—1)
2(n—4) 2(n—4)
ulPull 2o < Clull "™ ull o, lull o g5,
LyLy ,_?—1,_)( n—3 T ™
(np—8)(n—1) —(n%—3n+8)p+8(n—1)
p 2(n—4) 2(n—4)
IVl e = Clul ol I Aulls s,
T X

where (y;, pi), i = 5, 6 are as in Section 2.

Proof. (i) For the case n?i”ﬁ <p< n%, using Holder inequality, we have
p
[ulPul 2 < Clull® yo02p  wgrzp N8I 20e2 2n(n42)
L%L,{“r4 L8-@=2)p | In=8+2(m—a)p L=6+0n— 4)pL n2—2n424—4(n—4)p
T X T
[8—(n—4)pl(n—1) (?—3n+8)p—8(n—1)
2(n+2) 2(n+2)
< Cllull oy lull 5" lull spin a2

n—1, n—3 ooy n—4 n—6+(n—4)p n2 —2n+24—4(n—4),
1, 1Ly Ly P P

we have the following results:

115
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[8—(n—4)p](n—1) (n2—3n+8)p—8(n—1)
2(n+2) 2(n+2)
=< Cllull 2n(n—1) ”Au”,_oo,_z ! lull  2mi2 2n(n+2)
=1y n=3 T X Ln76+(n74)pLn2—2n+24—4(n—4)p
T X T X
[8—(n—4)p](n—1) (12 —3n+8)p—8(n—1)
2(n+2) 2(n+2)
= Cllull 2n(nf1) ”Au”,_oo,_z ! llull s s -
— — T &X T X
L;I. len 3
Similarly we can obtain
||V(|u|pu)|| o < C”u”p 2(n+2)p n(n42)p I Vul| 2(n+2) 2n(n+2)
2L 7+2 8—(n—4)p , n—81Z-2)p n=6+(1—2)p | n? —4n+20—4(n—4)p
Thx Ly Ly Ly Ly
[8—(n—4)p](n—1) ("2 —3n+8)p—8(n—1)
2(n+2) 2(n+2)
< Cllull zrln—l) ”Au”,_oo,_z ! lAull 500 2n(n+2)
-1 =3 T ™X Ln—6+(n—4)pLn2—2n+24—4(n—4)p
T X T X
[8—(n—4)p](n—1) ("2 =3n+8)p—8(n—1)
2(1+2) 2(n+2)
=Clul 522 lAul., ™ I Aullaygs
=1, =3 T ™
T x
(ii) For the case 8 < p < n?ﬁ”ﬁ using Holder inequality, we have
p
Il TulPull . < Clull® sy ponay NNl 2egy 200
Lr’-x LT np—8 Lx4—2p LT4+n—np an —8n—16+4np
(np—8)(n—1) —(n®—3n+8)p+8(n—1)
2(n—4) 2(n—4)
< Cllull n2(nf1) ”u”LooLZ ! lull 50-a 2n(n—4)
L_rrl—lLX n—3 T X L.;H»n—np an —8n—16+4np
(1p—8)(n—1) —(n2=3n+8)p+8(n—1)
2(n—4) 2(n—4)
= Cllull "y Null ey, lull o 06
L;l_—llx n—3 T X T
Similarly we can obtain
p
||V(|u|pu)” 5 HZ% = C”u” 2p(n—4) p(n—4) ”Vu” 2(n—4) 2n(n—4)
LTLX LT np—8 Lx4—2p L;l+n—np an —10n—8+4np
(np—8)(n—1) —(n?—3n+8)p+8(n—1)
2(n—4) 2(n—4)
< Cllull n2(n—1> ”u”LooLZ ! lAull 5u-4 2n(n—4)
=1, n=3 T ™ L4+n—ann —8n—16+4np
T X T X
(p=8)(n—1) —(n%—3n48)p+8(n—1)
2(n—4) 2(n—4)
= Cllul| nz(n—1> ”u”,_oo,_z ! ”Au”L¥6LfG' U
=1, =3 T ™
T Lx
Lemma3a4. If & <p < -2 then
1 12—(n—4)p np—8
NP 20se 20m0 < Cllull & 1A, (39)
LT n+8 n+8 T I T %
1 8—(n—4)p np—4
p < —a 1
WP 2 <l £ Al (3.10)

where (y;, pi), i = 1, 2 are as in Section 2.
Proof. Using Holder inequality, interpolation inequality and Sobolev inequality, we have

IulPT 200s 2me < CIHUlPll nsa nsa [[ulln o
[ n+8  nt8 L4 4 T ™
T 24 T X

IA

p
C”U” (+4)p (n+4)p ||u||]_y1[_f1
L4 4 T

T Ly
8—(n—4)p np—8
= C”u” "1 ?’1 ”u” 2‘(‘n+4) 2(n+4) ||u”Ly]LD1
Ly Lx n—4 n—4 T ™
Ly Ly

A

8—(n—4)p np—8

p
< Cllull, by 18wl o Nt

12—(n—4)p np—8
Cllull v, 4 Aull 4y oy
Il i Al
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Similarly we obtain

1
a0 20 < C |U|p|| 14 nia [ VUl ig) 20000
L*H " n+ L4 Lt L 4 r2-on+s
p
= Cllull” gsap @raw ||Au||L¥2L[(’2

L L 4

8(n 4)p np4

= CIIUIILn o Il Aull 0

LVZ LPZ

4. Proofs of Theorems

Let u be the solution of problem (1.1). We can decompose the solution u into
u=v+w,
where v stands for the solution of the initial value problem
{ivt+A2u+x2|u|nf4v:o, t R, xR, (41)
v(0,x) = p(x), x€R",
and w is the solution of the initial value problem
:iwt 22w = —afv 4 WP+ w) — Al 4 w|E (0 4 w) + Aslv|=Fv, tER, x €RY, (4.2)
w(0,x) =0, xeR".
By the remark of [6], we know that (4.1) is globally well-posed if A, > 0. And we have
IVllagizn < Cel),  Ivlouge < Clelh2). (4.3)

where (g, r) is a biharmonic admissible pair.

In the following, for any given time interval [0, T], we prove the existence of a solution w for problem (4.2) and make
estimates on some norms of it.

For any given ¢ (which will be specified later), by (4.3), we can divide R into subintervals Iy, I, ..., I,y such that on
each Jj

||U||x1(1j) ~¢g 0=<j=<]J-1
So for any given time interval [0, T], there exists ]’ < J such that (renumbering, if necessary)

[0.TI=U' N0, T, =461l th=0, fy=T.

Lemma 4.1. For any given time interval [0, T], there is a unique solution w(t, x) for the problem (4.2)
lwllxio,r = C,
where C will be dependent on p.

Proof. First we prove that there exists a solution w(t, x) for problem (4.2) on Iy = [0, t;] (renumbering if necessary).
We shall prove it by Banach fixed point theorem. For this purpose we rewrite problem (4.2) into integral form, namely

5]
w(t) = i/ W(t — 1) (A1|v FwP @+ w) + Aglv + w| T (v + w) — A2|v|%v) (t)dx.
0

We denote

|- (n=dp
Bo = jw : |wll oo rg;m2rnyy + 1wllx1qg) < M0 = |lol )

and define a mapping S as follows
f
Sw() = i/ W(E =) (Rl + 0l (0 + w) + oo + w]T3 @ + w) = dafo]P30) (D)de.
0

In the sequel we prove that S is well-defined and it maps By into By.
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By Lemma 2.3 and Lemmas 3.1-3.2, we have

8 8
ISwilsy = € | v+ w5 v + w) — o] 30

2(n+4) 2(n+4) 12
L nt8 ([o;L nt8 ﬂL2<lo;H ’n+2)

+Clllv+wlP+wl| ., o
Il [P( )||LV4(10;LP4)mL2(10:H" H"Z)

|

_8 8
<G (nvn;;-(,o) + ||w||x";;;0)) lwllx1 gy + Cilll iy 101 )0l

rs 8
=G (5 =4+ g ) 1o + Cillol"™ (€p + nb)"o.

and

8 8
ISws = Suwallsy < C | 10+ w175 0+ wi) = o+ ws] 75 (0 + w)

2(n+4) 2(n+4) 1,20
L nt8 ([g;L nt8 m]_2<10;1-1 ’n+2>

+Clllv+wilPo+w) — v+ wlPo+w)ll , L 2n
LV (1y;L°4)nI2 (10;11 nt2 )

_8
G (znvnm 5 ol sl lwn = w gy

IA

+ Gillol Xl(, , T ”w1“x1(1 )T ||w2||X1(, ))||w1 — wallx1gy)

<G ( e +2ng- > llwy — wallx1 gy + Cillol'™ + 2n9) lw1 — wallx1y)-

: , 8 —ngt (1-"g%p) +1(1- 5% ,
Hence if we first take 2Cie7-4 < % then take t; such that 2¢; (z?”t1 "+ ' s + tip . ) < —, thenSisa

contraction mapping of By in itself. We see that there is a solution on Iy = [0, t;] from Banach'’s fixed point theorem.
Secondly, we prove that there exists a solution w(t, x) for problem (4.2) on I; = [t1, t2].
Taking w(t;) as an initial value, we have

5]
w(t) = WO w(ty) + i/ W(t — 1) (A1|v + WP+ w) + Aglv + w|iE (v + w) — x2|u|%u) (v)de.
t

We denote

3

1
By = { Slwlloogymzemy + lwllixig,y < m = 2G|h| ]

and define a mapping S as follows
)
Sw(t) = W(Ow(ty) + if W(t — 1) (A1|v FwP@+w) + Aslv + w|iE (v + w) — A2|v|%u) (v)dx.
5]
Similarly by Lemma 2.3 and Lemmas 3.1-3.2, we have

8 8
ISwlls, < Collw@)lye +C | 1o+l + w) — vl P50

2(n+4) 2(n+4) q 20
L n+8 |Iy;L n+8 ﬁLz(Il;H 'n+2)

+Cllv+wfP@+wl p2n
L4 (1y;1°4)n12 (11 H o2 )

8

sconw(rl)nHercl(nvn L+ il )nwnxw Py Il Mwllag,

8

5 &
< Gollw(t) Iy + C (8”*4 + 0y 4) m + CilL|"™ (Ep + nhn,
and

8 8
ISws = Suwalls, < €| 10+ wi| 750+ wn) = o+ wal 75 (0 + we)

2(n+4) 2(n+4) 12
L n+8 [Iy;L nt8 ﬂL2<ll;H 'n+2>

+Clllv+wilPw+wy) — v+ wlP+w)l / 120
L4 (1y;1°4)N12 (11;H ’n+2>
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8 _8 8
G <2||U||;1 +lwillyg, + ||w2||;?31)> lws = wallyigy)

+Glh| x1(1 y ||w1||X1(, )t ”w2“x1(1 ))||w1 — wallxigy

8 2 _
<G <28”*4 + 21y 4) lwi —walxiqy) +C1|I1|1 5 + 27D llwr — wallx1,)-

—4 8 8 -4 —4
Hence if we take , such that 2C (”(t, — £1)' =5 P 4 (2Co) 1 (& — t) =37 P 4 (2C)P(t, — )P DI="5P) < 1 then
S is a contraction mapping of By in itself. We see that there is a solution on I; = [ty, t;] from Banach'’s fixed point theorem.
Using an induction argument, we take
)p }

.
sw(t) = W©Ow(t) + ,/ W(e =) (Al + wl @+ w) +dofo + w] 73 0 + w) = dafo]P30) (D)dr.
]

: _
B = {w t Wl + Iwlog) < n = CGYIL

and let

_ 8 . 8 —4 A .

If we take £, 1 such that 2C; (P (61 — )"~ '5 P + (2Co) 74 (6141 — ) 72175 P 4 (2Co)P (t41 — () ®HV0="5"P) < 1 then

S is a contraction mapping of B; in itself. We see that there is a solution on I; = [t;, tj;1] from Banach’s fixed point theorem.
Finally we get a unique solution of (4.2) on [0, T] such that

= = n—4
i 1-"g P ’ /N4
lw®lxiqory < D Iw®lxigy < Y QGYL 7 <JQGY T 5P <C.
j=0 j=0

Thus we have ||U||x1([0 Ty = < [lvllx1o. m T+ ||w||x1(|o ) < Cllelly2). O

Lemma 4.2. For the problem (1.1), if A, > 0, then
”u(" t)”HZ E C(Ev M)a
where E, M are as in (1.2) and (1.3).

Proof. It is obvious in the case A1 > 0. So we only discuss the case A; < 0.
Using Young's inequality with ¢, we have

n—4 p-4 8 —(n—4 4(n—4 2)A
|u|P+2§g.u|u|n itg & 8—(n—4)p MWR :w
8 n(n — 4)p|Aq|
So
— 4
upi >~ )2|| 8 4 C(ha, hav , p)ul?,

substituting it into (1.2) and (1.3), we obtain the desired result. O

Proof of Theorem 1.1. We obtain Theorem 1.1 by Lemmas 4.1and 4.2. O

Proof of Theorem 1.2. Firstly, we prove that ||u(|y1, for the case A1, A, > 0 and ||ul|;1, for the case 2, > 0,8 <p < &

—4
are bounded. "
Case 1: A1, Ax > 0.
By Theorem 1.1 and Lemma 2.5, we have

flul| ]< 2041 ) = Cllull oo g 2 rnyy < C(E, M).
m=1(R

L n=T (RM)
So we take ¢ (which will be specified later), divide R into subintervals Iy, I1, . . ., [;_1 such that on each J;
]| 20+1) ~g. (4.4)
-1 (lj,L n—1 (R”))
On thehot/her hand, by (4.3), we take n (which will also be specified later), divide R into subintervals Iy, I, . . ., I _; such that
on each I,

Iollyag ~ - (45)
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For convenience, we denote one of I; by [a, b]. Without loss of generality, we may assume that

la.b] = UL, K <K.

Similar to Lemma 4.1 by inductive arguments, if we take the above ¢ and » small enough, using Lemma 3.3, we can

. 8(n—1) .
obtain that for the case <P = - s
L @p=8)=1)
||w||yl(1) < (20)°e (4.6)
8(n—1) 8

and for the case =% < p < =3¢

8—(n—4)pl(n—1)

[
lwlyig) < @O%e 22— (47)

In the following, we only prove the case 2 <p< nf('g 28, the case 3("3 Bs <p< ,]874 is similar, so here we omit it.

Indeed, by (4.2) and Lemmas 2.3 and 3.3, we have

lwlyrgy =< Cllw(t) gz + Cll Iulpull ( ' n+4) +C| Iulpulllz(l,_mn%)
i

L n+ 1,’(;1_ n+8

_8
+Cll v+ w] w5 (0 + w) — o] T3] 2(n+4)( 2(n+4)>

8 8
+Cll v+ w2 (v +w) — [v[2] 1,20
Lz(ll;;H 'n+2)

(np—8)(n—1) 8 2 o4
< Cllw@llyz +Ce 2052 G+ [wllyr ) + Cnm=a fwllyr gy + Collwllyid) + Clwlig, .
So (4.6) holds by taking € and n small enough.
Thus
K'—1
(ip—8)(n—1) 8 8(n—1
O Z(Zc)k&. pz(n+2) , - <p< 2(7)’
Nl < 3 Nwllyrg < § 69 nooomoonts
1 = 1y = ’
Y1[a,b] a Yiap) Kizl(ZC)" 8= <,,2 4>p]<n b} 8(n—1) 8
& —_— < < —.
n2—3n+38 b n—4
Furthermore we have
lullyriapy = lwllytpap + Ivllyijes = CAl@lH2)-
Noting that [a, b] is arbitrary, we have that
J-1
lullyigy < Y Mullyrgy <JCI@l)-
j=0
Using Lemma 2.3 and Lemmas 3.2-3.3, we obtain
llulliag.p2ry < Cl@llg2)
for any biharmonic admissible pair (g, r).
Remark. Obviously, we have ||u| 1, is bounded. We will use this fact later.
Case2: 1, >0, 8 <p < 2
By (4.3), we take ¢ (which will also be specified later), divide R into subintervals Iy, I1, . . ., [x_1 such that on each [,
||U||z'1(1k) ~E (4.8)
We claim that for small M and &
lvllz1g, =< Ce. (4.9)

Indeed, by Lemma 2.1 and Corollary 2.2, we have

2wt 2mi0 < CM + Cera lvllzoq,)-
L n+8 Ly n+8

lollzoq, = Cllvllz +C | 1ol75w
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Obviously if we take Cem4 < 1, then we have ||v|| 200, < 2CM. Furthermore, if we take M small enough, then we have
||U||z1(lk) = ||U||20(1,<) + ||U||21(1k) <Ce.
Similar to Lemma 4.1, by inductive arguments, using Lemma 3.4, if we take the above ¢ and M small enough, we have
kngrda—p
lwllz1g,y = @O ™Mm=2"" < C.
Thus

lullzigy < lwlizgy + lvlizig,y < Cllell2),
lulliag 2y < Cll@llg2),

for all biharmonic admissible pair (g, ).
Secondly, we prove the asymptotic state.
For 0 < t < +o00, we define

t
() = g +i f W) [aluPu+ 2olul o] (o)
0

+00

we=g+i [ W) [aluPu+ dalul ] (s
0

and for —oco < t < 0, we define
0
Ut =g+ i/ W) [aluPu+ 2olul o] ()
t

0
U =g +i/ W(=s) [A1|u|pu +Az|u|n'ﬁu] (s)ds.
—00

For0 <t < t, by Lemmas 2.3 and 3.4, we have

t 8
/ W (—s) (M ulPu + A2|u|ﬁu) (s)ds

us () —up (D lly2 = ‘ ,
Hg

=

t
f W(—s) (M ulPu + xz|u|%u) (s)ds

L ([z,t];HE (RM)

8 8
< € nalulPu+ do i J|ulPu + A ul T

L2
L8 ([e,e];L 18 (RY) L2<[r,r];H1‘an2 (R"))

2(n+4) < 2(n+4) ) + ‘

pi =
i
<cC <||u||zl([”]) + ||ullzl(h,ﬂ)) )

which combines the fact ||ul|1, is bounded, implying u (t) is a Cauchy sequence in H2(R™), thus u, (t) will converge to
some function in H?(R") as t — 4o0. Obviously, this function must be function u™*.
Moreover, we have

lu(®) = W®uillpegny = IW(=0u(t) — ug |l @n

+00 3
‘ W(—s) (A1|u|pu + k2|u|mu) (s)ds
|

IA

¢ L ([t,+00):HZ (RM))

8
AlulPu 4 Aalulm=3ul| spiq 2(n+4)
L n+8 [t,+00);L n+8 (RM)

IA

8
+ |t + s

.1, -2n_
LZ([r,+oo>:H ‘nt2 <R">)

n+4
p+1 n—4
c (nunmw - ||u||z1([t,+m))) >0, > +oo,

so we have

Jim fu(®) = WOuillyzqen = 0.
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Using similar arguments, we can obtain

lim Ju(t) — W(Ou_|lyzgn =0. O
t——00
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