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a b s t r a c t

Let (X, d, µ) be a Carnot–Carathéodory space, namely, X is a smooth manifold, d is a
control, or Carnot–Carathéodory, metric induced by a collection of vector fields of finite
type. µ is a nonnegative Borel regular measure on X satisfying that there exists constant
C0 ∈ [1, ∞) such that for all x ∈ X and 0 < r <diamX,

µ(B(x, 2r)) := µ({y ∈ X : d(x, y) < 2r})
≤ C0µ(B(x, r)) < ∞ (doubling property).

Using the discrete Calderón reproducing formula and the Plancherel–Pôlya characteriza-
tion of the inhomogeneous Besov spaces developed by Han et al. [12], and Han et al. (2008)
[10], pointwise multipliers of inhomogeneous Besov spaces are obtained.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Themultiplier theory of function spaces has been studied for a long time and a lot of results have been obtained.We know
that the multiplier theory is one of the important parts in the studies of the Gleason problem, function space properties and
the general operator theory. The pointwisemultipliers onRd are studied as a part of the research of function spaces in several
monographs, cf. [1–8]. Pointwise multipliers have been foundmany important applications in partial differential equations.

However, it was not clear how to generalize the pointwise multipliers on Rn to spaces of homogeneous type introduced
by Coifman and Weiss (see [9]) because the Fourier transform is no longer available. The main purpose of this paper is
to establish pointwise multipliers on inhomogeneous Besov spaces in the setting of Carnot–Carathéodory spaces. To be
more precisely, we first recall some necessary definitions. In this paper, we always assume that (X, d) is a metric space
with a regular Borel measure µ such that all balls defined by d have finite and positive measures. In what follows, set
diam (X) ≡ sup{d(x, y) : x, y ∈ X} and for any x ∈ X and r > 0, set B(x, r) ≡ {y ∈ X : d(x, y) < r}.

Definition 1.1 ([10]). Let (X, d) be a metric space with a Borel regular measure µ such that all balls defined by d have finite
and positive measures. The triple (X, d, µ) is called a space of homogeneous type if there exists a constant C0 ∈ [1, ∞)
such that for all x ∈ X and r > 0,

µ(B(x, 2r)) ≤ C0µ(B(x, r)) (doubling property). (1.1)

Remark 1.2. We point out that the doubling condition (1.1) implies that there exist positive constants C and n such that for
all x ∈ X and λ ≥ 1,

µ((B(x, λr))) ≤ Cλnµ(B(x, r)), (1.2)

where C is independent of x and r . Denote by n the homogeneous ‘‘dimension’’ of X as in [10].
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A space of homogeneous type is called a RD-space, if there exist constants a0,C0 ∈ (1, ∞) such that for all x ∈ X and
0 < r < diam(X)/a0,C0µ(B(x, r)) ≤ µ(B(x, a0r))

i.e., some ‘‘reverse’’ doubling condition holds.
Clearly, any Ahlfors n-regular metric measure space (X, d, µ) (which means that there exists some n > 0 such that

µ(B(x, r)) ∼ rn for x ∈ X and 0 < r < diam (X)/2) is a (n, n)-space, also is a RD-space and a space of homogeneous type
in the sense of Coifman in [10]. In other words, µ satisfies the doubling condition which is weaker than Ahlfors n-regular
metric measure spaces and RD-spaces.

Another such typical space is the Carnot–Carathéodory space. One examplewith unbounded totalmeasure studied in [11]
is that X arises as the boundary of an unbounded model polynomial domain in C2. Let Ω = {(z, w) ∈ C2

: Im(w) > P(z)},
where P is a real, subharmonic, non-harmonic polynomial of degree m. Then X = ∂Ω can be identified with C × R =

{(z, t) : z ∈ C, t ∈ R}. The basic (0, 1) Levi vector field is then Z̄ =
∂
∂ z̄ − i ∂P

∂ z̄
∂
∂t , and we write Z̄ = X1 + iX2. The real vector

fields {X1, X2} and their commutators of order ≤ m span the tangent space to X at each point. See [12,10] for more details
and references therein.

We also shall suppose that µ(X) = ∞, µ({x}) = 0 for all x ∈ X. For any x, y ∈ X and δ > 0, set Vδ(x) ≡ µ(B(x, δ))
and V (x, y) ≡ µ(B(x, d(x, y))). It follows from (1.1) that V (x, y) ∼ V (y, x). The following notion of approximations of the
identity on RD-spaces was first introduced in [10].

We begin with recalling the definition of an approximation to the identity, which plays the same role as the heat kernel
H(s, x, y) does in Nagel–Stein’s theory [11]. Let Z+ = N ∪ {0}.

Definition 1.3 ([12,10]).A sequence {Sk}k∈Z+
of operators is said to be an approximation to the identity (in short, ATI) if there

exists constant C1 > 0 such that for all k ∈ Z+ and all x, x′, y and y′
∈ X, Sk(x, y), the kernel of Sk satisfies the following

conditions:

Sk(x, y) = 0 if ρ(x, y) ≥ C12−k and |Sk(x, y)| .
1

V2−k(x) + V2−k(y)
; (1.3)

|Sk(x, y) − Sk(x′, y)| . 2kρ(x, x′)
1

V2−k(x) + V2−k(y)
(1.4)

for ρ(x, x′) ≤ max{C1, 1}2−k
;

|Sk(x, y) − Sk(x, y′)| . 2kρ(y, y′)
1

V2−k(x) + V2−k(y)
(1.5)

for ρ(y, y′) ≤ max{C1, 1}2−k;

|[Sk(x, y) − Sk(x, y′)] − [Sk(x′, y) − Sk(x′, y′)]| . 22kρ(x, x′)ρ(y, y′)
1

V2−k(x) + V2−k(y)
(1.6)

for ρ(x, x′) ≤ max{C1, 1}2−k and ρ(y, y′) ≤ max{C1, 1}2−k;
X

Sk(x, y)dµ(y) =


X

Sk(x, y)dµ(x) = 1. (1.7)

The space of test functions plays a key role in this paper; see [10].

Definition 1.4. Fix two exponents 0 < β ≤ 1 and γ > 0. A function f defined onX is said to be a test function of type (β, γ )
centered at x0 ∈ X with width r > 0 if there exists a nonnegative constant C such that f satisfies the following conditions:

|f (x)| ≤ C
1

(Vr(x0) + V (x, x0))
rγ

(r + d(x, x0))γ
; (1.8)

|f (x) − f (x′)| ≤ C


d(x, x′)

r + d(x, x0)

β 1
(Vr(x0) + V (x, x0))

rγ

(r + d(x, x0))γ
(1.9)

for d(x, x′) ≤
1
2 (r + d(x, x0)).

If f is a test function of type (β, γ ) centered at x0 with width r > 0, we write f ∈ M(x0, r, β, γ ), and the norm of f in
M(x0, r, β, γ ) is defined by

∥f ∥M(x0,r,β,γ ) = inf{C ≥ 0 : (1.8) and (1.9) hold}.
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We denote by M(β, γ ) the class of all f ∈ M(x0, 1, β, γ ). It is easy to see that M(x1, r, β, γ ) = M(β, γ ) with the
equivalent norms for all x1 ∈ X and r > 0. Furthermore, it is also easy to check that M(β, γ ) is a Banach space with respect
to the norm in M(β, γ ).

In what follows, for given ϵ ∈ (0, 1], we let M(β, γ ) be the completion of the space M(ϵ, ϵ) in M(β, γ ) when 0 <
β, γ ≤ ϵ. Obviously M(ϵ, ϵ) = M(ϵ, ϵ). Moreover, f ∈ M(β, γ ) if and only if f ∈ M(β, γ ) when 0 < β, γ ≤ ϵ and there
exists {fj}j∈N ⊂ M(ϵ, ϵ) such that ∥f − fj∥M(β,γ ) → 0 as j → ∞. If f ∈ M(β, γ ), we then define ∥f ∥ M(β,γ ) = ∥f ∥M(β,γ ).
Obviously M(β, γ ) is a Banach space and we also have ∥f ∥ M(β,γ ) = limj→∞ ∥fj∥M(β,γ ) for the above chosen {fj}j∈N.

We denote by ( M(β, γ ))′ the dual space of M(β, γ ) consisting of all linear functionals L from M(β, γ ) to C with the
property that there exists a constant C such that for all f ∈ M(β, γ ),

|L(f )| ≤ C∥f ∥ M(β,γ ).

Wedenote by ⟨h, f ⟩ the natural pairing of elements h ∈ ( M(β, γ ))′ and f ∈ M(β, γ ). Since M(x1, r, β, γ ) = M(β, γ )with
the equivalent norms for all x1 ∈ X and r > 0, thus, for all h ∈ ( M(β, γ ))′, ⟨h, f ⟩ is well defined for all f ∈ M(x0, r, β, γ )
with x0 ∈ X and r > 0.

The following constructions, which provide an analogue of the grid of Euclidean dyadic cubes on spaces of homogeneous
type, were given by Christ in [13].

Lemma 1.5. Let X be a space of homogeneous type. Then there exist a collection {Q k
α ⊂ X : k ∈ Z+, α ∈ Ik} of open subsets,

where Ik is some (possible finite) index set, and constants δ ∈ (0, 1) and C5, C6 > 0 such that

(i) µ(X \ ∪α Q k
α) = 0 for each fixed k and Q k

α ∩ Q k
β = ∅ if α ≠ β;

(ii) for any α, β, k, l with l ≥ k, either Q l
β ⊂ Q k

α or Q l
β ∩ Q k

α = ∅;
(iii) for each (k, α) and each l < k there is a unique β such that Q k

α ⊂ Q l
β ;

(iv) diam (Q k
α) ≤ C2δ

k;
(v) each Q k

α contains some ball B(zkα, C3δ
k), where zkα ∈ X.

In fact, we can think of Q k
α as being a dyadic cube with a diameter roughly δk and centered at zkα . In what follows, we always

suppose δ = 1/2. See [14] for how to remove this restriction. Also, in the following, for k ∈ Z+, τ ∈ Ik, we will denote by
Q k,ν

τ , ν = 1, . . . ,N(k, τ ,M), the set of all cubes Q k+M
τ ′ ⊂ Q k

τ , where M is a fixed large positive integer.

Now, we can introduce the inhomogeneous Besov spaces Bα,q
p (X) via the approximation in Definition 1.3. Note that the

Besov spaces have been already investigated for decades in the study of partial differential equations, interpolation theory
and approximation theory.

Definition 1.6. Suppose that {Sk}k∈Z+
is an ATI and let D0 = S0, and Dk = Sk − Sk−1 for k ∈ N. LetM be a fixed large positive

integer, Q 0,ν
τ be as above. Suppose that −1 < s < 1.

The inhomogeneous Besov space Bs,q
p (X) formax( n

n+1 ,
n

n+1+s ) < p ≤ ∞, 0 < q ≤ ∞ is the collection of all f ∈ ( M(β, γ ))′,
for some β and γ satisfying

max

0, s, −s + n


1

min{p, 1}
− 1


< β < 1,

n
min{p, 1}

− n < γ < 1 (1.10)

such that

∥f ∥Bs,qp (X) =


τ∈I0

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )[mQ 0,ν

τ
(|D0(f )|)]p

 1
p

+


∞
k=1

[2ks
∥Dk(f )∥Lp(X)]

q

 1
q

< ∞

wheremQ 0,ν
τ

(D0(f )) are averages of D0(f ) over Q 0,ν
τ .

The restrictions (1.10) guarantee that the definitions of the inhomogeneous Besov spaces Bs,q
p (X) for max( n

n+1 ,
n

n+1+s ) <

p ≤ ∞, 0 < q ≤ ∞ are independent of the choices of β and γ satisfying these conditions and Bs,q
p (X) ⊂ ( M(β, γ ))′,M(β, γ ) ⊂ M(β, γ ) ⊂ Bs,q

p (X) in [10].
The classical scale of inhomogeneous Besov spaces contains many well-known function spaces. For example, if α >

0, p = q = ∞, one recovers the Hölder–Zygmund spaces Cα(X), i.e. Bα,∞
∞

(X) = Cα(X), α > 0. The space Cα(X) is
defined as the collection of f such that

∥f ∥Cα(X) = ∥f ∥∞ + sup
x≠y

|f (x) − f (y)|
d(x, y)α

< ∞.

If 1 > s > 0, 1 < p < ∞ and 1 ≤ q ≤ ∞, then Bs,q
p (X) coincides with the classical Besov–Lipschitz spaces As,q

p (X).
The inhomogeneous Besov spaces have the following Plancherel–Pôlya characterizations in [10], whichwill be one of the

basic tools to prove the main result of this paper.
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Lemma 1.7. Let {Dk}k∈Z+
be as in Definition 1.6, −1 < s < 1. Then, if max( n

n+1 ,
n

n+1+s ) < p ≤ ∞, 0 < q ≤ ∞, for all
f ∈ ( M(β, γ ))′ with β, γ satisfying (1.10), we have

∥f ∥Bs,qp (X) ∼


τ∈I0

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )[mQ 0,ν

τ
(|D0(f )|)]p

 1
p

+

 ∞
k=1


τ∈Ik

N(τ ,k,M)
ν=1

µ(Q k,ν
τ )


2ks inf

z∈Q k,ν
τ

|Dk(f )(z)|

p q
p


1
q

∼


τ∈I0

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )[mQ 0,ν

τ
(|D0(f )|)]p

 1
p

+

 ∞
k=1


τ∈Ik

N(τ ,k,M)
ν=1

µ(Q k,ν
τ )


2ks sup

z∈Q k,ν
τ

|Dk(f )(z)|

p q
p


1
q

.

We now introduce the following definition of the pointwise multiplier.

Definition 1.8. Suppose that g is a given function on X. Then g is called a pointwise multiplier for Bs,q
p (X) if f → gf admits

a bounded linear mapping from Bs,q
p (X) into itself.

The main result in this paper is the following.

Theorem 1.9. Let −1 < s < 1, max( n
n+1 ,

n
n+1+s ) < p ≤ ∞, 0 < q ≤ ∞, then g ∈ Cα(X) with 1 > α > max(s, n

min{p,1} −

n − s), is a multiplier for Bs,q
p (X). In other words, f → gf yields a bounded linear mapping from Bs,q

p (X) into itself and there is a
positive constant C such that

∥gf ∥Bs,qp (X) ≤ C∥g∥Cα(X)∥f ∥Bs,qp (X) (1.11)

holds for all g ∈ Cα(X) and f ∈ Bs,q
p (X).

We would like to point out that the study of pointwise multipliers is one of the important problems in the theory of
function spaces. It has attracted a lot of attention in the decades since starting with [7]. Pointwise multipliers in general
spaces Bs,q

p (Rn) where 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R have been studied in great detail in [5,8] and in the more recent
paper [4].

Theorem 1.9 was proved in [8] for pointwise multipliers of inhomogeneous Besov spaces on Rn based on the Fourier
transform. In the present setting, however, we do not have the Fourier transform at our disposal. Since the Fourier transform
on Carnot–Carathéodory spaces is not available and hence the idea used in [8] does not work for this more general setting, a
new idea to prove Theorem 1.9 is to use the discrete Calderón reproducing formula, which was developed in [10]. Therefore
this scheme easily extends to geometrical settings where the Fourier transform does not exist. The Fourier transform is
missing but a version of the pointwise multiplier is still present.

We would also like to point out that the above restrictions for α are sharp in the following sense. Let s ∈ (−1, 1), max
( n
n+1 ,

n
n+1+s ) < p ≤ ∞, 0 < q ≤ ∞ and α > max(s, n

min{p,1} − n − s), then there exists a function g ∈ Cα(Rn) which is not
a pointwise multiplier for Bs,q

p (Rn).

Throughout, we also denote by C a positive constant independent of main parameters involved, which may vary at
different occurrences. Constants with subscripts do not change through the whole paper. We use f . g and f & g to denote
f ≤ Cg and f ≥ Cg , respectively. If f . g . f , we thenwrite f ∼ g . For any a, b ∈ R, set a∧b .

= min{a, b}, a∨b .
= max{a, b}.

If p > 1, set 1
p +

1
p′ = 1.

2. Proof of Theorem 1.9

In this section,wewill prove Theorem1.9. Since there are no Fourier transformson spaces of homogeneous type, the proof
of Theorem 1.9 is quite different from the proof of Theorem 2.8.2 in [8]. The key new ingredient in the proof of Theorem 1.9
is to apply the following discrete Calderón reproducing formula established in [12,10]. This formula can be stated as follows.

Lemma 2.1. Suppose that {Sk}k∈Z+
is an approximation to the identity as in Definition 1.3. Set Dk = Sk − Sk−1 for k ∈ N

and D0 = S0. Then for any fixed M ∈ N large enough, there exists a family of functions {Dk(x, y)}k∈Z+
and {

Dk(x, y)}k∈Z+
such
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that for any fixed yk,ντ ∈ Q k,ν
τ , k ∈ N, τ ∈ Ik and ν ∈ {1, . . . ,N(k, τ ,M)} and all f ∈ ( M(β, γ ))′ with 0 < β, γ < ϵ and

x ∈ X

f (x) =


τ∈I0

N(0,τ ,M)
ν=1


Q 0,ν

τ

D0(x, y)dµ(y)mQ 0,ν
τ

(D0(f ))

+


k∈N


τ∈Ik

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )Dk(x, yk,ντ )Dk(f )(yk,ντ ) (2.1)

=


τ∈I0

N(0,τ ,M)
ν=1


Q 0,ν

τ

D0(x, y)dµ(y)mQ 0,ν
τ

(D0(f ))

+


k∈N


τ∈Ik

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )Dk(x, yk,ντ )Dk(f )(yk,ντ ) (2.2)

where the series converges in the norm of Bs,q
p (X) with max( n

n+1 ,
n

n+1+s ) < p < ∞, 0 < q ≤ ∞, −1 < s < 1, and M(β ′, γ ′)

for f ∈ M(β, γ ) with β ′ < β and γ ′ < γ , and ( M(β ′, γ ′))′ for f ∈ ( M(β, γ ))′ with ϵ > β ′ > β and ϵ > γ ′ > γ . Moreover,Dk(x, y) andDk(x, y), the kernels of Dk andDk, satisfy the similar estimates but with x and y interchanged in (2.4): for 0 < ϵ < 1,

|Dk(x, y)| ≤ C
1

V2−k(x) + V2−k(y) + V (x, y)
2−kϵ

(2−k + d(x, y))ϵ
; (2.3)

|Dk(x, y) −Dk(x′, y)| ≤ C


d(x, x′)

2−k + d(x, y)

ϵ

×
1

V2−k(x) + V2−k(y) + V (x, y)
2−kϵ

(2−k + d(x, y))ϵ
, (2.4)

for d(x, x′) ≤ (2−k
+ d(x, y))/2;

X

Dk(x, y)dµ(y) =


X

Dk(x, y)dµ(x) = 0, (2.5)

when k ∈ N;


X
Dk(x, y)dµ(y) =


X
Dk(x, y)dµ(x) = 1 when k = 0.

To prove Theorem 1.9, we first show the following lemma.

Lemma 2.2. Let {Sk(x, y)}k∈Z+
and {Gk(x, y)}k∈Z+

be two approximations to the identity as in Lemma 2.1 above and Dk =

Sk − Sk−1, Ek = Gk − Gk−1 for k ∈ N and D0 = S0, E0 = G0. For any given ϵ ∈ (0, 1) and g ∈ Cα(X) with 0 < α < ϵ, then

|EkgDk′(x, y)| . ∥g∥Cα(X)2−|k−k′|α 1
V2−(k∧k′)(x) + V2−(k∧k′)(y) + V (x, y)

×
2−(k∧k′)ϵ

(2−(k∧k′) + d(x, y))ϵ
(2.6)

where k, k′
∈ Z+.

Proof. We only consider the case k′
≥ k > 0, other cases are similar or easier. We write

|EkgDk′(x, y)| =


X

[Ek(x, z)g(z) − Ek(x, y)g(y)]Dk′(z, y)dµ(z)


≤


X

|Ek(x, z) − Ek(x, y)∥g(z)∥Dk′(z, y)|dµ(z)

+


X

|Ek(x, y)∥g(z) − g(y)∥Dk′(z, y)|dµ(z)

. ∥g∥Cα(X)2−(k′−k)ϵ 1
V2−(k∧k′)(x) + V2−(k∧k′)(y) + V (x, y)

2−kϵ

(2−k + d(x, y))ϵ

+ ∥g∥Cα(X)

1
V2−k(x) + V2−k(y) + V (x, y)

2−kϵ

(2−k + d(x, y))ϵ
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×


X

d(z, y)α
1

V2−k′ (z) + V2−k′ (y) + V (z, y)
2−k′ϵ

(2−k′ + d(z, y))ϵ
dµ(z)

. ∥g∥Cα(X)

1
V2−k(x) + V2−k(y) + V (x, y)

2−kϵ

(2−k + d(x, y))ϵ
[2−(k′−k)ϵ

+ 2−k′α
]

. ∥g∥Cα(X)

1
V2−k(x) + V2−k(y) + V (x, y)

2−kϵ

(2−k + d(x, y))ϵ
2−(k′−k)α.

This finishes the proof of Lemma 2.2. �

Now we show the following technical version of Theorem 1.9.

Proposition 2.3. Suppose that −1 < s < 1, max( n
n+1 ,

n
n+1+s ) < p ≤ ∞, 0 < q ≤ ∞, α > max(s, n

p∧1 − n − s). For any
g ∈ Cα(X) with 0 < α < 1, f ∈ M(β, γ ) for β and γ satisfying (1.10), then

∥fg∥Bs,qp (X) ≤ C∥g∥Cα(X)∥f ∥Bs,qp (X). (2.7)

Proof. For any given ϵ ∈ (0, 1) and g ∈ Cα(X) with 0 < α < ϵ, f ∈ M(β, γ ) we have

∥fg∥Bs,qp (X) =


τ∈I0

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )[mQ 0,ν

τ
(|E0(fg)|)]p

 1
p

+


∞
k=1

[2ks
∥Ek(fg)∥Lp(X)]

q

 1
q

:= G + H.

Using the discrete Calderón reproducing formula and Lemma 2.2 implies

G . ∥g∥Cα(X)


τ∈I0

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )


τ ′∈I0

N(0,τ ′,M)
ν′=1

µ(Q 0,ν′

τ ′ )|m
Q 0,ν′

τ ′

(D0(f ))|

× inf
x∈Q 0,ν

τ

inf
y∈Q 0,ν′

τ ′

1
V1(x) + V1(y) + V (x, y)

1
(1 + d(x, y))ϵ

p
1
p

+ ∥g∥Cα(X)


τ∈I0

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )

 ∞
k′=1


τ ′∈Ik′

N(k′,τ ′,M)
ν′=1

2−k′αµ(Q k′,ν′

τ ′ )|Dk′(f )(y
k′,ν′

τ ′ )|

× inf
x∈Q 0,ν

τ

1

V1(x) + V1(y
k′,ν′

τ ′ ) + V (x, yk
′,ν′

τ ′ )

1

(1 + d(x, yk
′,ν′

τ ′ ))ϵ

p
1
p

.

Applying the Hölder inequality for p, q
p > 1 and

k

|ak|

p

≤


k

|ak|p (2.8)

for all ak ∈ C and p, q
p ≤ 1, it follows that

G . ∥g∥Cα(X)


τ∈I0

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )


τ ′∈I0

N(0,τ ′,M)
ν′=1

µ(Q 0,ν′

τ ′ )|m
Q 0,ν′

τ ′

(D0(f ))|p

× µ(Q 0,ν′

τ ′ )p∧1−1 inf
x∈Q 0,ν

τ

inf
y∈Q 0,ν′

τ ′


1

V1(x) + V1(y) + V (x, y)
1

(1 + d(x, y))ϵ

p∧1


1
p

+ ∥g∥Cα(X)


τ∈I0

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )

∞
k′=1


τ ′∈Ik′

N(k′,τ ′,M)
ν′=1

2−k′[α+s](p∧1)
|2k′sDk′(f )(y

k′,ν′

τ ′ )|p
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× µ(Q k′,ν′

τ ′ )p∧1 inf
x∈Q 0,ν

τ


1

V1(x) + V1(y
k′,ν′

τ ′ ) + V (x, yk
′,ν′

τ ′ )

1

(1 + d(x, yk
′,ν′

τ ′ ))ϵ

p∧1


1
p

. ∥g∥Cα(X)


τ ′∈I0

N(0,τ ′,M)
ν′=1

µ(Q 0,ν′

τ ′ )|m
Q 0,ν′

τ ′

(D0(f ))|pµ(Q 0,ν′

τ ′ )p∧1−1
[V1(y

0,ν′

τ ′ )]1−p∧1

 1
p

+ ∥g∥Cα(X)

 ∞
k′=1

2−k′[α+s](p∧1)

τ ′∈Ik′

N(k′,τ ′,M)
ν′=1


V1(y

k′,ν′

τ ′ )

µ(Q k′,ν′

τ ′ )

1−p

µ(Q k′,ν′

τ ′ )|2k′sDk′(f )(y
k′,ν′

τ ′ )|p


1
p

. ∥g∥Cα(X)


τ ′∈I0

N(0,τ ′,M)
ν′=1

µ(Q 0,ν′

τ ′ )|m
Q 0,ν′

τ ′

(D0(f ))|p
 1

p

+ ∥g∥Cα(X)


∞

k′=1


τ ′∈Ik′

N(k′,τ ′,M)
ν′=1

µ(Q k′,ν′

τ ′ )|2k′sDk′(f )(y
k′,ν′

τ ′ )|p


q
p


1
q

. ∥g∥Cα(X)∥f ∥Bs,qp (X),

where we used the fact that for any y0,ν
′

τ ′ ∈ Q 0,ν′

τ ′ , yk
′,ν′

τ ′ ∈ Q k′,ν′

τ ′ , V1(y
0,ν′

τ ′ ) . µ(Q 0,ν′

τ ′ ), V1(y
k′,ν′

τ ′ ) . 2k′nµ(Q k′,ν′

τ ′ ) and s > −α
if p ≥ 1 and n

p − n − s < α if p < 1, and Lemma 1.7.

Similarly, by Lemmas 2.1 and 2.2, we have

H ≤

 ∞
k=1

2ks


τ ′∈I0

N(0,τ ′,M)
ν′=1

m
Q 0,ν′

τ ′

(D0(f ))

Q 0,ν′

τ ′

EkgD0(·, y)dµ(y)


Lp(X)

q
1
q

+

 ∞
k=1

2ks


∞

k′=1


τ ′∈Ik′

N(k′,τ ′,M)
ν′=1

µ(Q k′,ν′

τ ′ )EkgDk′(·, y
k′,ν′

τ ′ )Dk′(f )(y
k′,ν′

τ ′ )


Lp(X)

q
1
q

. ∥g∥Cα(X)


∞
k=1

2−k(α−s)q

τ∈Ik

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )


τ ′∈I0

N(0,τ ′,M)
ν′=1

[m
Q 0,ν′

τ ′

(|D0(f )|)]p

× µ(Q 0,ν′

τ ′ )p∧1 inf
x∈Q k,ν

τ

inf
y∈Q 0,ν′

τ ′


1

V1(x) + V1(y) + V (x, y)
1

(1 + d(x, y))ϵ

p∧1


q
p


1
q

+ ∥g∥Cα(X)


∞
k=1


τ∈Ik

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )

∞
k′=1

2−|k−k′|α(p∧1)2ks(p∧1)2−k′s(p∧1)

×


τ ′∈Ik′

N(k′,τ ′,M)
ν′=1

µ(Q k′,ν′

τ ′ )p∧1
|2k′sDk′(f )(y

k′,ν′

τ ′ )|p

× inf
x∈Q k,ν

τ


1

V2−(k∧k′)(x) + V2−(k∧k′)(yk
′,ν′

τ ′ ) + V (x, yk
′,ν′

τ ′ )

2−(k∧k′)ϵ

(2−(k∧k′) + d(x, yk
′,ν′

τ ′ ))ϵ

p∧1


q
p


1
q

. ∥g∥Cα(X)


∞
k=1

2−k(α−s)q


τ ′∈I0

N(0,τ ′,M)
ν′=1


V1(y

0,ν′

τ ′ )

µ(Q 0,ν′

τ ′ )

1−p∧1

µ(Q 0,ν′

τ ′ )[m
Q 0,ν′

τ ′

(|D0(f )|)]p


q
p


1
q
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+ ∥g∥Cα(X)


∞
k=1


∞

k′=1

2−|k−k′|α(p∧1)2ks(p∧1)2−k′s(p∧1)µ(Q k′,ν′

τ ′ )p∧1−1V2−(k∧k′)(yk
′,ν′

τ ′ )1−p∧1

×


τ ′∈Ik′

N(k′,τ ′,M)
ν′=1

µ(Q k′,ν′

τ ′ )|2k′sDk′(f )(y
k′,ν′

τ ′ )|p


q
p


1
q

. ∥g∥Cα(X)∥f ∥Bs,qp (X),

where we used V2−(k∧k′)(yk
′,ν′

τ ′ ) . 2[k′−(k∧k′)]nV2−(k′)(yk
′,ν′

τ ′ ) . 2[k′−(k∧k′)]nµ(Q k′,ν′

τ ′ ), and s < α if p ≥ 1, n
p − n − s < α if p < 1,

which verifies Proposition 2.3. �

Since for f ∈ Bs,q
p (X), in general, f could be a distribution and hence the multiplication gf , even for g ∈ Cα(X), does not

make sense. For this purpose, we need the following lemma. The proof of Theorem 1.9 then follows from Proposition 2.3
and this lemma.

Lemma 2.4. For any f ∈ Bs,q
p (X) with max( n

n+1 ,
n

n+1+s ) < p ≤ ∞, 0 < q ≤ ∞, −1 < s < 1, and g ∈ Cα(X) with 1 > ϵ >

α > max(s, n
p∧1 − n − s). There exists a sequence {fj}j∈N such that fj ∈ M(ϵ, ϵ), ∥fj∥Bs,qp (X) . ∥f ∥Bs,qp (X) and limj→∞⟨gfj, h⟩

converges for any h ∈ M(β, γ ) with β and γ satisfying (1.10).
Assuming Lemma 2.4 for the moment, for g ∈ Cα(X) and f ∈ Bs,q

p (X), limj→∞⟨gfj, h⟩ exists, where fj is given by Lemma 2.4.
Therefore, for g ∈ Cα(X), f ∈ Bs,q

p (X), we can define

⟨gf , h⟩ = lim
j→∞

⟨gfj, h⟩

for h ∈ M(β, γ ) with (β, γ ) satisfying (1.10), fj is a sequence given by Lemma 2.4 and the limit is independent of the choice of
fj.

Fatou’s lemma and Proposition 2.3 imply

∥gf ∥Bs,qp (X) ≤ lim inf
j→∞

∥gfj∥Bs,qp (X) . ∥g∥Cα(X)∥f ∥Bs,qp (X),

which gives the proof of Theorem 1.9.
Therefore, it remains to show Lemma 2.4. To this end, we need the following lemma.

Lemma 2.5. Let {Sk(x, y)}k∈Z+
be a approximation to the identity as in Lemma 2.1 above and Dk = Sk − Sk−1 for k ∈ N and

D0 = S0. For any g ∈ Cα(X) with 0 < α < 1, h ∈ M(β, γ ) with β and γ satisfying (1.10). Then

|⟨Dk(•, y)g, h⟩| ≤ C∥g∥Cα(X)∥h∥M(β,γ )2−k(β∧α) 1
V1(x0) + V (x0, y)

1
(1 + d(y, x0))γ

, (2.9)

where k ∈ Z+.

Proof. We only prove the case k ∈ N, the case k = 0 is similar. We write

|⟨Dk(•, y)g, h⟩| ≤


X

|Dk(x, y)∥g(x) − g(y)∥h(x)|dµ(x) +


X

|Dk(x, y)||g(y)||h(x) − h(y)|dµ(x)

:= I + II.

For I , since Dk(x, y) = 0 if d(x, y) ≥ 2C12−k, we obtain

I . ∥g∥Cα(X)∥h∥M(β,γ )2−kα

×


d(x,y)<2C12−k

1
V2−k(x) + V2−k(y)

1
V1(x0) + V (x0, x)

1
(1 + d(x, x0))γ

dµ(x)

. ∥g∥Cα(X)∥h∥M(β,γ )2−kα


d(x,y)<2C12−k, d(x,y)≤ 1

2 (1+d(y,x0))
· · · +


2C12−k>d(x,y)> 1

2 (1+d(y,x0))
· · ·


:= ∥g∥Cα(X)∥h∥M(β,γ )2−kα

[I1 + I2].

For I1, d(x, y) ≤
1
2 (1 + d(y, x0)) implies that d(y, x0) ≤ 2(d(x, x0) + 1) and

1
V1(x0) + V (x0, x)

.
1

V1(x0) + µ(B(x0, d(x0, y)))
=

1
V1(x0) + V (x0, y)

.
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Thus

I1 .
1

V1(x0) + V (x0, y)
1

(1 + d(y, x0))γ


d(x,y)<2C12−k

1
V2−k(x) + V2−k(y)

dµ(x)

.
1

V1(x0) + V (x0, y)
1

(1 + d(y, x0))γ
.

For I2, 2C12−k > d(x, y) > 1
2 (1 + d(y, x0)) implies that

1 + d(y, x0) < C,
1

V2−k(x) + V2−k(y)
.

1
V (y, x)

.
1

V1(x0) + V (x0, y)
.

Thus

I2 .
1

V1(x0) + V (x0, y)
1

(1 + d(x0, y))γ


X

1
V1(x0) + V (x0, x)

1
(1 + d(x, x0))γ

dµ(x)

.
1

V1(x0) + V (x0, y)
1

(1 + d(x0, y))γ
.

Similarly we can deal with II

II .
2−kβ

V1(x0) + V (x0, y)
1

(1 + d(y, x0))γ
.

Combining the estimates of I and II , we obtain that for k ∈ N

|⟨Dk(•, y)g, h⟩| ≤ C∥g∥Cα(X)∥h∥M(β,γ )2−k(β∧α) 1
V1(x0) + V (x0, y)

1
(1 + d(y, x0))γ

.

Thus, (2.9) also holds. This finishes the proof of Lemma 2.5. �

Now we show Lemma 2.4.

Proof of Lemma 2.4. For any f ∈ Bs,q
p (X), with max( n

n+1 ,
n

n+1+s ) < p ≤ ∞, 0 < q ≤ ∞, −1 < s < 1, denote

fj =

j
τ=1

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )mQ 0,ν

τ
(D0(f ))DQ 0,ν

τ
(x)

+

j
k=1

j
τ=1

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )Dk(x, yk,ντ )Dk(f )(yk,ντ ),

where DQ 0,ν
τ

(x) =
1

µ(Q 0,ν
τ )


Q 0,ν

τ
D0(x, y)dµ(y).

It is easy to see that fj ∈ M(ϵ, ϵ). Applying a similar proof as in Proposition 2.3 with g = 1 and f = fj gives ∥fj∥Bs,qp (X)

≤ C∥f ∥Bs,qp (X).

Next we prove that limn→∞⟨gfn, h⟩ converges for any h ∈ M(β, γ ) with β and γ satisfying (1.10). For j,m ∈ N,m < j,
we can write

|⟨fj − fm, gh⟩| ≤

 j
τ=m+1

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )mQ 0,ν

τ
(D0(f ))⟨DQ 0,ν

τ
, gh⟩


+

 j
k=m+1

j
τ=1

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )⟨Dk(•, yk,ντ ), gh⟩Dk(f )(yk,ντ )


+

 j
k=1

j
τ=m+1

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )⟨Dk(•, yk,ντ ), gh⟩Dk(f )(yk,ντ )

 .
We consider the following four cases respectively:

(I) 1 < p < ∞ and 1 < q < ∞;
(II) 1 < p < ∞ and 0 < q ≤ 1;
(III) 1 < p < ∞ and q = ∞ or p = ∞ and 0 < q ≤ ∞;
(IV) max( n

n+1 ,
n

n+1+s ) < p ≤ 1.
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We now consider case (I). By the duality and Proposition 2.3, we have

|⟨fn − fm, gh⟩| ≤ ∥fn − fm∥Bs,qp
∥gh∥

B−s,q′

p′
. ∥g∥Cα(X)∥h∥B−s,q′

p′
(X)

∥fn − fm∥Bs,qp
.

Note that ∥h∥
B−s,q′

p′
(X)

. ∥h∥ M(β,γ ) and ∥fn−fm∥Bs,qp
tends to zero as n,m tend to infinity. This implies that |⟨fn−fm, gh⟩| →

0 as n,m → ∞ when s ∈ (−1, 1), 1 < p < ∞ and 1 < q < ∞ and hence case (I) is concluded.
For case (II), the fact (2.9) implies

j
τ=m+1

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )|DQ 0,ν

τ
(gh)|p

′

 1
p′

. ∥g∥Cα(X)∥h∥M(β,γ )

 
τ≥logm2


{y:2τ <d(x0,y)≤2τ+1}


1

V1(x0) + V (x0, y)

p′

1
(1 + d(y, x0))γ p′

dµ(y)


1
p′

. ∥g∥Cα(X)∥h∥M(β,γ )

 
τ≥logm2

2−τγ p′


1
p′

= m−γ
∥g∥Cα(X)∥h∥M(β,γ ),

and

sup
k∈N,m+1≤k≤j

2−ks
∥D∗

k(gh)∥Lp′ (X)
. ∥g∥Cα(X)∥h∥M(β,γ ) sup

k∈N,m+1≤k≤j
2−k(s+β∧α)

×


X


1

V1(x0) + V (x0, y)

p′

1
(1 + d(y, x0))γ p′

dµ(y)

 1
p′

. ∥g∥Cα(X)∥h∥M(β,γ )2−m(s+β∧α),

and

sup
k∈N, 1≤k≤j


j

τ=m+1

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )|2−ksD∗

k(gh)(y
k,ν
τ )|p

′

 1
p′

. ∥g∥Cα(X)∥h∥M(β,γ ) sup
k∈N, 1≤k≤j

2−k(s+β∧α)m−γ

. ∥g∥Cα(X)∥h∥M(β,γ )m−γ .

Applying the Hölder inequality for p > 1 and (2.8) for q ≤ 1, it follows that

|⟨fj − fm, gh⟩| ≤


j

τ=m+1

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )[mQ 0,ν

τ
(|D0(f )|)]p

 1
p

×


j

τ=m+1

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )|DQ 0,ν

τ
(gh)|p

′

 1
p′

+


j

k=m+1

[2ks
∥
Dk(f )∥Lp(X)]

q

 1
q

sup
k∈N,m+1≤k≤j

2−ks
∥D∗

k(gh)∥Lp′ (X)

+

 j
k=1


j

τ=m+1

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )|2ksDk(f )(yk,ντ )|p

 q
p


1
q

× sup
k∈N, 1≤k≤j


j

τ=m+1

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )|2−ksD∗

k(gh)(y
k,ν
τ )|p

′

 1
p′

. ∥g∥Cα(X)∥f ∥Bs,qp (X)∥h∥M(β,γ ){2−m(s+β∧α)
+ m−γ

}.

Using the fact that s+β ∧α > 0, this proves |⟨fj − fm, gh⟩| → 0 as j,m → ∞when s ∈ (−1, 1), 1 < p < ∞ and 0 < q ≤ 1.
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For case (III) , if p = ∞, q = ∞, we obtain

|⟨fj − fm, gh⟩| ≤ ∥f ∥Bs,∞∞ (X)

 j
τ=m+1

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )DQ 0,ν

τ
(gh)


+ ∥f ∥Bs,∞∞ (X)

j
k=m+1


X

|2−ksD∗

k(gh)(x)|dµ(x)

+ ∥f ∥Bs,∞∞ (X)

 j
k=1

j
τ=m+1

N(k,τ ,M)
ν=1

µ(Q k,ν
τ )2−ksD∗

k(gh)(y
k,ν
τ )

 .
Applying Proposition 2.3, we have gh ∈ B−s,1

1 (X). Note that the terms in brace are remainder of (gh)j−(gh)m in the norm
of B−s,1

1 (X), which go to zero as n,m tend to infinity. Thus |⟨fj − fm, gh⟩| → 0 as j,m → ∞ when s ∈ (−1, 1), p = ∞ and
q = ∞.

The estimate of case ∞ > p > 1, q = ∞ or p = ∞, q ≠ ∞ is similar to case (III) above.
For case (IV), applying (2.8) for max( n

n+1 ,
n

n+1+s ) < p ≤ 1, we have

|⟨fj − fm, gh⟩| .


j

τ=m+1

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )[mQ 0,ν

τ
(|D0(f )|)]p

 1
p

× sup
m<d(x0,y

0,ν
τ )≤j

µ(Q 0,ν
τ )

1− 1
p

V1(x0) + V (x0, y
0,ν
τ )

1

(1 + d(y0,ντ , x0))γ

+

j
k=m+1

2ks
∥
Dk(f )∥Lp(X) sup

yk,ντ ∈X

2−ksµ(Q k,ν
τ )

1− 1
p |D∗

k(gh)(y
k,ν
τ )|

+

j
k=1

2ks
∥
Dk(f )∥Lp(X) sup

m<d(x0,y
k,ν
τ )≤j

2−ksµ(Q k,ν
τ )

1− 1
p |D∗

k(gh)(y
k,ν
τ )|.

By (2.9), for i ∈ N we have

sup
yk,ντ ∈X

2−ksµ(Q k,ν
τ )

1− 1
p |D∗

k(gh)(
k,ν
τ )| . ∥g∥Cα(X)∥h∥M(β,γ )2

−k[s+β∧α−n( 1
p −1)]

,

and

sup
m<d(x0,y

k,ν
τ )≤j

2−ksµ(Q k,ν
τ )

1− 1
p |D∗

k(gh)(
k,ν
τ )|

. ∥g∥Cα(X)∥h∥M(β,γ ) sup
m<d(x0,y

k,ν
τ )≤j

(V1(yk,ντ ) + V (x0, yk,ντ ))
1
p −1

µ(Q k,ν
τ )

1
p −1

1

V1(x0)
1
p

2−ks2−k(β∧α)

(1 + d(yk,ντ , x0))γ

. ∥g∥Cα(X)∥h∥M(β,γ )2−k[s+β∧α] sup
logm2 <i

sup
2i<d(x0,y

k,ν
τ )≤2i+1

V (x0, yk,ντ )
1
p −1

µ(Q k,ν
τ )

1
p −1

1

(1 + d(yk,ντ , x0))γ

. ∥g∥Cα(X)∥h∥M(β,γ )2
−k[s+β∧α−n( 1

p −1)]m−[γ−n( 1
p −1)]

,

where i ∈ N.
Similar, by the Hölder inequality for ∞ ≥ q > 1, it follows that

|⟨fj − fm, gh⟩| .


j

τ=m+1

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )[mQ 0,ν

τ
(|D0(f )|)]p

 1
p

× sup
y0,ντ ,m<d(x0,y

0,ν
τ )≤j

µ(Q 0,ν
τ )

1− 1
p

V1(x0) + V (x0, y
0,ν
τ )

1

(1 + d(y0,ντ , x0))γ

+


j

k=m+1

[2ks
∥
Dk(f )∥Lp(X)]

q

 1
q
 j

k=m+1


sup

yk,ντ ∈X

2−ksµ(Q k,ν
τ )

1− 1
p |D∗

k(gh)(y
k,ν
τ )|

q′


1
q′
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+


j

k=1

[2ks
∥
Dk(f )∥Lp(X)]

q

 1
q
 j

k=1


sup

m<d(x0,y
k,ν
τ )≤j

2−ksµ(Q k,ν
τ )

1− 1
p |D∗

k(gh)(y
k,ν
τ )|

q′


1
q′

. ∥g∥Cα(X)∥h∥M(β,γ )∥f ∥Bs,qp (X)m
−γ

+ ∥g∥Cα(X)∥h∥M(β,γ )∥f ∥Bs,qp (X)


j

k=m+1

[2−k[s−n( 1
p −1)]2−k(α∧β)

]
q′

 1
q′

+ ∥g∥Cα(X)∥h∥M(β,γ )∥f ∥Bs,qp (X)


j

k=1

[2−k[s−n( 1
p −1)]2−k(α∧β)

]
q′

 1
q′

m−[γ−n( 1
p −1)]

. ∥g∥Cα(X)∥h∥M(β,γ )∥f ∥Bs,qp (X)[m
−γ

+ 2−m[s−n( 1
p −1)]2−m(α∧β)

+ m−[γ−n( 1
p −1)]

].

From (2.8) and (2.9) for 0 < q ≤ 1, we also have

|⟨fj − fm, gh⟩| ≤


j

τ=m+1

N(0,τ ,M)
ν=1

µ(Q 0,ν
τ )[mQ 0,ν

τ
(|D0(f )|)]p

 1
p

sup
y0,ντ ∈{m<d(x0,y

0,ν
τ )≤j}

|DQ 0,ν
τ

(gh)|

+


j

k=m+1

[2ks
∥
Dk(f )∥Lp(X)]

q

 1
q

sup
k∈N,m<k≤j

sup
yk,ντ ∈X

2−ksµ(Q k,ν
τ )

1
p −1

|D∗

k(gh)(y
k,ν
τ )|

+


j

k=1

[2ks
∥
Dk(f )∥Lp(X)]

q

 1
q

sup
k∈N,1≤k≤j

sup
m<d(x0,y

k,ν
τ )≤j

2−ksµ(Q k,ν
τ )

1
p −1

|D∗

k(gh)(y
k,ν
τ )|

. ∥g∥Cα(X)∥h∥M(β,γ )∥f ∥Bs,qp (X)[2
−m[s+α∧β−n( 1

p −1)]
+ m−γ

+ m−[γ−n( 1
p −1)]

]

where we use the arbitrariness of yk,ντ , and β ∧ α > n
p − n − s when p ≤ 1. This proves |⟨fj − fm, gh⟩| → 0 as j,m → ∞

when s ∈ (−1, 1), max( n
n+1 ,

n
n+1+s ) < p ≤ 1 and 0 < q ≤ ∞, and hence the proof of Lemma 2.4 is concluded. �
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