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a b s t r a c t

Weconsidermultilinearmultipliers associated in a naturalwaywith localization operators.
Boundedness and compactness results are obtained. In particular, we get a geometric
condition on a subset A ⊂ R2d which guarantees that, for a fixed synthesis window ψ ∈

L2(Rd), the family of localization operators LAϕ,ψ obtained when the analysis window ϕ

varies on the unit ball of L2(Rd) is a relatively compact set of compact operators.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Localization operators or,more generally, pseudodifferential operators on L2(Rd)have recently received attention (see for
instance [1–11] and the references therein). Boundedness, Schatten class conditions and compactness have been thoroughly
investigated. Each localization operator is determined by a symbol F and two windows ϕ, ψ called the analysis and the
synthesis windows. In this paper we are interested in the behavior of these operators as multilinear functions, that is in
their dependence on the signals but also on the windows. For a given symbol F we consider the operator

(ψ, ϕ, f ) → LFϕ,ψ (f ).

We first represent the previous operator as a multilinear Fourier multiplier, where the multiplier is given by m(x, y, z) =

a(x+y, y+z) and a is the partial Fourier transform of F with respect to the first d variables. This representation suggests the
definition of a special class of Fourier multipliers Ta. The study of multilinear multipliers was started by Coifman andMeyer
for smooth symbols [12]. After giving some continuity results, we concentrate on the bilinear operator Ta(ψ, ·, ·) obtained
when the synthesis window is fixed. This is a bilinear pseudodifferential operator as in [13] but the results obtained in that
paper cannot be applied in the present context. We show that, under a mild hypothesis on a and ψ ,

Ta(ψ, ·, ·) : L2(Rd)× L2(Rd) → L2(Rd)

is a compact bilinear pseudodifferential operator. Then we turn our attention to the behavior of the family of localization
operators obtained when the synthesis window ψ remains fixed and the analysis window varies on the unit ball of L2(Rd).
It turns out that {LFϕ,ψ : ϕ ∈ BL2} is a relatively compact set of compact operators on L2(Rd) whenever F ∈ Lp(R2d) and
1 ≤ p < ∞. However, for F ∈ L∞(R2d) the relative compactness of {LFϕ,ψ : ϕ ∈ BL2} in the Banach space of compact
operators on L2(Rd) is equivalent to the bilinear pseudodifferential operator Ta(ψ, ·, ·) being compact. An example shows
that this is not always the case even if LFϕ,ψ is a compact operator for every pair of windows. At this point, it is worth noting
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that the multilinear map (ψ, ϕ, f ) → LFϕ,ψ (f ) is never compact for F ∈ Lp(R2d), 1 ≤ p ≤ ∞. In the special case where F is
the characteristic function of a subset A ⊂ R2d, we get a geometric condition on Awhich suffices to guarantee that {LAϕ,ψ : ϕ

∈ BL2} is a relatively compact set of compact operators for every ψ ∈ L2(Rd). That is, in a certain sense, the compactness of
LAϕ,ψ is uniform with respect to the analysis window.

2. Notation and preliminaries

We start with the basic definitions and we recall the properties of the time–frequency representations that will be used
throughout the paper. We refer the reader to [14] for the necessary background.

Given ϕ ∈ L2(Rd) \ {0}, the short time Fourier transform (also called the continuous Gabor transform) of f ∈ L2(Rd)with
respect to the window ϕ is

Vϕ f (x, ω) =


Rd

f (t)ϕ(t − x)e−2π iωtdt.

The short time Fourier transform has the property that

Vϕ f ∈ L2(R2d) ∩ L∞(R2d)

when f , ϕ ∈ L2(Rd) and ∥Vϕ f ∥2 = ∥f ∥2∥ϕ∥2, whereas ∥Vϕ f ∥∞ ≤ ∥f ∥2∥ϕ∥2. Clearly, we may also write Vϕ f (x, ω) =

⟨f ,MωTxϕ⟩, where

Mωf (t) = e2π iωt f (t) and Txf (t) = f (t − x)

are the modulation and translation operators. Hence Vϕ f can also be defined for f ∈ S′(Rd) and ϕ ∈ S(Rd). Here we denote
by S(Rd) the Schwartz space of C∞ and rapidly decreasing functions and by S′(Rd) its dual space.
Moreover, f can be recovered from Vϕ f by means of the following formula:

f =
1

⟨ϕ,ψ⟩


R2d

Vϕ f (x, ω)MωTxψdxdω

whenever ⟨ϕ,ψ⟩ ≠ 0, interpreting the integral in a weak sense. If we multiply Vϕ f by a suitable function F before
reconstructing f , we recover a filtered version of the original function. The operators obtained in this way,

LFϕ,ψ f =


R2d

F(x, ω)Vϕ f (x, ω)MωTxψdxdω,

are called localization operators and were defined in 1988 by Daubechies [5] in order to localize a signal both in time and
in frequency. The function F is called the symbol of the operator, whereas ϕ is the analysis window and ψ is the synthesis
window. When F is the characteristic function of a measurable set A in R2d we write LAϕ,ψ .

The expression above can also be written as ⟨LFϕ,ψ f , h⟩ = ⟨F , VψhVϕ f ⟩. Hence, it is clear that LFϕ,ψ is a bounded linear
operator from L2(Rd) into itself whenever F ∈ Lp(R2d) and ϕ,ψ ∈ L2(Rd), and

∥LFϕ,ψ f ∥2 ≤ ∥F∥p∥f ∥2∥ϕ∥2∥ψ∥2. (1)

The class of symbols can be enlarged if we restrict the class of windows: taking ϕ,ψ ∈ S(Rd), the boundedness of the
localization operator is guaranteed if the symbol F belongs to themodulation spaceM∞(R2d) (see [3] where it is also shown
that this class is, in a certain sense, optimal). To define this modulation space, fixΦ ∈ S(R2d) \ {0} and put

M∞(R2d) := {T ∈ S′(R2d) : VΦT ∈ L∞(R4d)}.

Equippedwith the norm ∥T∥M∞ = ∥VΦT∥∞,M∞(R2d) is a Banach spacewhose definition is independent on thewindowΦ ,
and differentwindows give rise to equivalent norms.M∞(R2d) contains Lp(R2d)with continuous inclusion for all 1 ≤ p ≤ ∞

and some tempered distributions like the point evaluations δz . The closure of S(R2d) inM∞(R2d) is denoted asM0(R2d) and
it can be characterized as the set of those T ∈ S′(R2d) such that VΦT vanishes at infinity. Again [14] is the standard reference
for modulation spaces.

Localization operators are special pseudodifferential operators. In fact, LFϕ,ψ can also be interpreted as a Weyl operator
Lσ with Weyl symbol σ = F ∗ W (ψ, ϕ). Here Lσ : S(Rd) → S′(Rd) is given by (see for instance [1])

⟨Lσ f , h⟩ = ⟨σ ,W (h, f )⟩.

The Wigner cross-distribution of f , ϕ ∈ L2(Rd) is

W (f , ϕ)(x, ω) =


Rd

f

x +

t
2


ϕ


x −

t
2


e−2iπωtdt.
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The mixed Lebesgue spaces Lp,q(R2d), 1 ≤ p, q ≤ ∞, consist of all measurable functions F in R2d such that

∥F∥p,q =


Rd


Rd

|F(x, y)|pdx
q/p

dy

1/q

< ∞

with obvious modifications if p or q are ∞. The spaces (Lp,q(R2d), ∥ · ∥p,q) are Banach spaces and Lp,p(R2d) = Lp(R2d). The
Schwartz class is dense in Lp,q(R2d) for p, q < ∞.
The Fourier transform for f ∈ S(Rd) is

f (ω) =


Rd

f (t)e−2π iωt dt, ω ∈ Rd.

It defines an isomorphism F : S(Rd) → S(Rd), f →f , which extends to an isomorphism F : S′(Rd) → S′(Rd). We still
denote byσ = F (σ ) the Fourier transform of the tempered distribution σ . We will also need to consider the Banach space

F L1(Rd) = {f ∈ S′(Rd) :f ∈ L1(Rd)}

endowed with the norm ∥f ∥F L1 = ∥f ∥1. We note that the map (ψ, ϕ, f ) → LFϕ,ψ (f ) is bilinear in (ψ, f ) but conjugate
linear in ϕ. Hence

TF (ψ, ϕ, f ) := LFϕ,ψ (f )

is a multilinear map.
From now on BL2 will denote the closed unit ball of L2(Rd).

3. Multilinear Fourier multipliers

We first express the multilinear map TF in terms of a multilinear Fourier multiplier where the multiplier is given by
m(x, y, z) = a(x + y, y + z) and a is related to the symbol F . Then some boundedness and compactness results for such
a particular class of Fourier multipliers are given. As a consequence we get a geometric property on a subset A ⊂ R2d

which guarantees that, for a fixed synthesis window ψ ∈ L2(Rd), the family of localization operators LAϕ,ψ obtained when
the analysis window ϕ varies on the unit ball of L2(Rd) is a relatively compact set of compact operators. That is, in a certain
sense, the compactness of the localization operator is uniform with respect to the analysis window used when filtering the
signal.
In order to avoid technicalities let us first assume that both the symbol F and thewindowsϕ,ψ are functions in the Schwartz
class. We put

F(x, ω) =


Rd

a(v, ω)e2π ivx dv.

That is, a ∈ S(R2d) is the partial Fourier transform of F with respect to the first d variables. Then, for f ∈ S(Rd), we have

LFϕ,ψ (f )(t) =


R2d

F(x, ω)Vϕ f (x, ω)ψ(t − x)e2π iωt d(x, ω)

=


R3d

a(v, ω)Vϕ f (x, ω)ψ(t − x)e2π i(ωt+vx) d(x, ω, v).

On the other hand, by the Parseval identity,

Vϕ f (x, ω) =


Rd

f (t)ϕ(t − x)e−2π iωt dt = e−2π iωx


Rd

f (u)ϕ(u − ω)e2π iux du

and we finally obtain

LFϕ,ψ (f )(t) =


R4d

a(v, ω)f (u)ϕ(u − ω)ψ(t − x)e2π i(ωt+vx+ux−ωx) d(x, ω, u, v).

Since 
Rd
ψ(t − x)e2π i(−ωx+ux+vx) dx = e2π it(u+v−ω)ψ(u + v − ω)

we have

LFϕ,ψ (f )(t) =


R3d

a(v, ω)f (u)ϕ(u − ω)ψ(u + v − ω)e2π itωe2π it(u+v−ω) d(u, v, ω).

Then the coordinate change

u + v − ω = x, ω − u = y, u = z
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gives

LFϕ,ψ (f )(t) =


R3d

a(x + y, y + z)ψ(x)ϕ(−y) f (z) e2π it(x+y+z) d(x, y, z).

This identity suggests the following definition.

Definition 3.1. Let a ∈ Lp,q(R2d), 1 ≤ p, q ≤ ∞, be given. Then

Ta : S(Rd)× S(Rd)× S(Rd) → L∞(Rd)

is defined by

Ta(ψ, ϕ, f )(t) :=


R3d

a(x + y, y + z)ψ(x)ϕ(y)f (z) e2π it(x+y+z) d(x, y, z).

Denoting by p′ and q′ the conjugate exponents of p and q,
R3d

a(x + y, y + z)ψ(x)ϕ(y)f (z) d(x, y, z)
is less than or equal to

R2d
∥a(·, y + z)∥p

ψp′

ϕ(y)f (z) d(y, z) ≤ ∥a∥p,q

ψp′ ∥ϕ∥q′

f 1 .
When a ∈ L∞(R2d)we can make the following extension:

Ta : F L1(Rd)× F L1(Rd)× F L1(Rd) → L∞(Rd).

Ta coincides with the multilinear Fourier multiplier as defined in [15] for

m(x, y, z) = a(x + y, y + z).

If we fix ψ then Ta(ψ, ·, ·) is a particular case of the bilinear pseudodifferential operators considered in [13,16].
According to the previous discussion, in the case where F ∈ S(R2d), a is the partial Fourier transform of F with respect to
the first d variables and ϕ,ψ, f ∈ S(Rd), we have

LFϕ,ψ (f ) = Ta(ψ, ϕ, f ).

For a ∈ Lp,q(R2d) and ψ, f ∈ S(Rd)we have

a ∗

M−t

̌
ψ ⊗ M−t

̌f (y, y) =


R2d

a(u, v)ψ(u − y)f (v − y)e2π it(u+v−2y) d(u, v)

where f̌ (t) = f (−t), and hence

Ta(ψ, ϕ, f )(t) =


Rd

a ∗

M−t

̌
ψ ⊗ M−t

̌f (y, y)Mtϕ(y) dy. (2)

Since, for a ∈ S′(R2d),

b(t, y) := a ∗

M−t

̌
ψ ⊗ M−t

̌f (y, y)
is a C∞ function dominated by a polynomial, the expression (2) can be used to define

Ta : S(Rd)× S(Rd)× S(Rd) → S′(Rd)

even if a ∈ S′(R2d) is an arbitrary tempered distribution.

Proposition 3.2. Let us assume that a ∈ L∞,1(R2d); then Ta can be extended as a continuous multilinear operator
Ta : L2(Rd)× L2(Rd)× L2(Rd) → L2(Rd).

Proof. We put ρ(ω) = ∥a(·, ω)∥∞ , ρ ∈ L1(Rd). Then, for ψ, ϕ, f , χ ∈ S(Rd),

⟨ Ta(ψ, ϕ, f ), χ⟩ = ⟨Ta(ψ, ϕ, f ),χ⟩

is given by
R3d

a(x + y, y + z)ψ(x)ϕ(y)f (z) χ(x + y + z) d(x, y, z).
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The coordinate change t = x + y + z (with fixed y and z) gives

⟨ Ta(ψ, ϕ, f ), χ⟩ =


R3d

a(t − z, y + z)ψ(t − y − z)ϕ(y)f (z) χ(t) d(t, y, z),
that is,

Ta(ψ, ϕ, f )(t) =


R2d

a(t − z, y + z)ψ(t − y − z)ϕ(y)f (z)d(y, z).
Therefore

| Ta(ψ, ϕ, f )(t)| ≤


R2d
ρ(u)|ψ(t − u)ϕ(y)f (u − y)|d(y, u)

≤


Rd
ρ(u)|ψ(t − u)|(|ϕ| ∗ |f |)(u)du

≤ ∥ϕ∥2 ∥f ∥2(ρ ∗ |ψ |)(t)

and hence, as the Fourier transform is an isometry on L2(Rd), Ta(ψ, ϕ, f ) ∈ L2(Rd) and its norm is controlled by
∥a∥L∞,1∥ψ∥2∥ϕ∥2∥f ∥2. �

We now obtain continuity results for the case where a ora ◦ I is in L∞,2(R2d), where I : R2d
→ R2d denotes the linear

transformation ℓ(v, u) = (u, v). In particular, we show that forψ in appropriate Banach spaces, Ta(ψ, ·, ·) defines a bilinear
pseudodifferential operator on L2(Rd) and we obtain an estimate for its norm.

Theorem 3.3. Let a ∈ L∞,2(R2d) be given. Then, Ta can be extended to a multilinear continuous operator

Ta : F L1(Rd)× L2(Rd)× L2(Rd) → L2(Rd).

Moreover,

∥Ta∥ ≤ ∥a∥∞,2.

Proof. Let us fixψ, ϕ, f ∈ S(Rd), and define ρ(v) = ∥a(·, v)∥∞, so ∥a∥∞,2 = ∥ρ∥2. Then, as in the proof of Proposition 3.2,

Ta(ψ, ϕ, f )(t) =


R2d

a(t − z, y + z)ψ(t − y − z)ϕ(y)f (z) d(y, z).
We note that Fubini’s theorem gives the existence of this last Lebesgue integral for almost all values of t ∈ Rd. Then

| Ta(ψ, ϕ, f )(t)| ≤


Rd

|ψ(s)|
Rd

|a(y + s, t − s)| |ϕ(y)f (t − y − s)| dy


ds

≤ ∥ϕ∥2 ∥f ∥2


Rd

|ψ(s)| ρ(t − s) ds.

Now, Plancherel’s and Minkowski’s theorems give

∥Ta(ψ, ϕ, f )∥2 ≤ ∥ϕ∥2 ∥f ∥2 ∥ψ∥1 ∥a∥∞,2

and we obtain the conclusion. �

We recall that I : R2d
→ R2d denotes the linear transformation I(v, u) = (u, v).

Theorem 3.4. Let a ∈ S′(R2d) be given such thata ◦ I ∈ L∞,2(R2d). Then, Ta can be extended to a multilinear continuous
operator

Ta : L1(Rd)× L2(Rd)× L2(Rd) → L2(Rd).

Moreover,

∥Ta∥ ≤ ∥a ◦ I∥∞,2 .

Proof. Here ρ(u) = ∥a(u, ·)∥∞ and, as before, we consider ψ, ϕ, f ∈ S(Rd). The Fourier transform of

Φx,t(y, z) = a(x + y, y + z)e2π it(y+z)

is given byΦx,t(v, ω) = e2π ix(v−ω)a(v − ω,ω − t).
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Hence,

Ta(ψ, ϕ, f )(t) =


R3d

Φx,t(v, ω)ψ(x)(ϕ ⊗ f )(v, ω)e2π itx d(x, v, ω)

=


R3d
a(v − ω,ω − t)e2π ix(v−ω+t)ψ(x)ϕ(v)f (ω) d(x, v, ω)

=


R2d
a(v − ω,ω − t)ψ(v − ω + t)ϕ(v)f (ω) d(v, ω).

As in Theorem 3.3,

|Ta(ψ, ϕ, f )(t)| ≤


Rd

|ψ(s)|


Rd

|a(s − t, v − s)| |ϕ(v)f (v + t − s)| dv


ds

≤ ∥f ∥2 ∥ϕ∥2


Rd

|ψ(s)| ρ(s − t) ds = ∥f ∥2 ∥ϕ∥2 (ψ ∗ ρ̌)(t),

and thus Ta(ψ, ϕ, f ) ∈ L2(Rd) and

∥Ta(ψ, ϕ, f )∥2 ≤ ∥f ∥2 ∥ϕ∥2 ∥ψ∥1 ∥ρ∥2 . �

The two previous results give sufficient conditions on a for the continuity of the bilinear operator Ta(ψ, ·, ·) on L2(Rd).
When these two conditions hold simultaneously, it is compact. We remark that the next result does not require that
ψ ∈ L1(Rd) ∩ F L1(Rd).

We recall that a subset C ⊂ L2(Rd) is relatively compact if, and only if, for any ϵ > 0 there is an A > 0 such that
|u|≥A

|f (u)|2 du ≤ ϵ and


|u|≥A
|f (u)|2 du ≤ ϵ

for every f ∈ C . See for instance [17] and also [18] for a more general result.

Theorem 3.5. Let a be a measurable function such that a,a ◦ I ∈ L∞,2(R2d) and ψ ∈ L1(Rd) ∪ F L1(Rd). Then,

Ta(ψ, ·, ·) : L2(Rd)× L2(Rd) → L2(Rd)

is a bilinear compact operator.

Proof. We first assume that ψ ∈ S(Rd) and we consider two subcases. (i) In the case where a also belongs to L∞(R2d) we
fix ϵ > 0 and take R > 0 such that

ψ1


|v|≥R
∥a(·, v)∥2

∞
dv

 1
2

≤
ϵ

2
.

Now we define b(u, v) := a(u, v) if |v| ≤ R and b(u, v) := 0 elsewhere. According to Theorem 3.3 we have

∥Ta(ψ, ·, ·)− Tb(ψ, ·, ·)∥ ≤
ϵ

2
. (3)

On the other hand, whenever |t| ≥ 2R and for every ϕ, f in the unit ball of L2(Rd)we have Tb(ψ, ϕ, f )(t)
 ≤


|y+z|≤ |t|

2

a(t − z, y + z)ψ(t − y − z)ϕ(y)f (z) d(y, z)
≤ ∥a∥∞


|s|≥ |t|

2

|ψ(s)| ds.
Since ψ ∈ S(Rd)we can findM > 0 large enough such that

|t|>M
| Tb(ψ, ϕ, f )(t)|2 dt

 1
2

is less than or equal to

∥a∥∞


|t|≥M


|s|≥ |t|

2

|ψ(s)| ds2

dt

 1
2

≤
ϵ

2
(4)
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for every ϕ, f in the unit ball of L2(Rd). From the estimates (3) and (4) we obtain that

sup


|t|>M

| Ta(ψ, ϕ, f )(t)|2dt

 1
2

: ∥ϕ∥2 ≤ 1, ∥f ∥2 ≤ 1


≤ ε.

(ii) In the case where a ∉ L∞(R2d), define an(u, v) = a(u, v) if ∥a(·, v)∥∞ ≤ n and an(u, v) = 0 elsewhere. Then, according
to Theorem 3.3, given ϵ > 0 we find n0 such that for n ≥ n0 we haveTa(ψ, ·, ·)− Tan(ψ, ·, ·)

 ≤
ϵ

2
. (5)

Combining (5) and the subcase (i) we finally obtain that

sup


|t|>M

| Ta(ψ, ϕ, f )(t)|2dt

 1
2

: ∥ϕ∥2 ≤ 1, ∥f ∥2 ≤ 1


goes to zero asM → ∞.

A similar argument but using Theorem 3.4 instead of Theorem 3.3 gives that also

sup


|A|>M

|Ta(ψ, ϕ, f )(A)|2dA

 1
2

: ∥ϕ∥2 ≤ 1, ∥f ∥2 ≤ 1


goes to zero asM → ∞. The theorem is proved when ψ ∈ S(Rd).

Now, if ψ ∈ F L1(Rd) (resp. ψ ∈ L1(Rd)), by 3.3 (resp. by 3.4) Ta(ψ, ·, ·) is the limit of the sequence of compact bilinear
operators (Ta(ψn, ·, ·))n where (ψn)n converges to ψ in F L1(Rd) (resp. in L1(Rd)) and consequently it is compact. �

It is well known that for symbols F ∈ Lp(R2d), 1 ≤ p < ∞, or vanishing at infinity, the localization operator LFϕ,ψ
is compact on L2(R2d) for all ϕ,ψ ∈ L2(R2d) (see for instance [11]). The relation between localization operators and the
multilinear multipliers Ta mentioned at the beginning of this section can be used to show that the family of localization
operators LFϕ,ψ obtained when the synthesiswindow is fixed and the analysiswindow ϕ varies on the unit ball of L2(Rd) is a
relatively compact set of compact operators.

Proposition 3.6. Fix F ∈ Lp(R2d), 1 ≤ p < ∞, and ψ ∈ L2(Rd). Then {LFϕ,ψ : ϕ ∈ BL2} is a relatively compact set of compact
operators.

Proof. By an approximation argument it suffices to prove the proposition in the case where F ∈ S(R2d) andψ ∈ S(Rd). By
Theorem 3.5, the bilinear operator L2(Rd) × L2(Rd) → L2(Rd), (ϕ, f ) → LFϕ,ψ (f ), is compact. According to [19, Theorem
1.11], in order to conclude it suffices to check that for all h ∈ L2(Rd) the set

{(LFϕ,ψ )
∗(h) : ϕ ∈ BL2}

is relatively compact in L2(Rd). But this follows from the identities
LFϕ,ψ

∗
(h) = LFψ,ϕ(h) = LGψ,h(ϕ)

where G(u, v) =
F(v,−u), and the fact that LGψ,h is a compact operator on L2(Rd). �

We put U : R2d
→ R2d, U(a, b) := (b,−a). Then U−1

= −U.

Lemma 3.7. Let F ∈ L∞(R2d) be given and G =
F ◦ U ∈ S′(R2d). Then,

LGψ,h : L2(Rd) → L2(Rd)

is a compact operator for every ψ, h ∈ S(Rd).

Proof. We fixΦ ∈ S(R2d) and define Ψ ∈ S(R2d) by Ψ (a, b) = (Φ ◦ U)(−a,−b). A routine calculation gives

(VΦG)(x1, x2;ω1, ω2) = (VΨF)(x2,−x1;ω2,−ω1).

Then, we apply [14, p. 40] to get

|(VΦG)(x1, x2;ω1, ω2)| =
(VΨ F)(ω2,−ω1; −x2, x1)

 =
F FT(ω2,−ω1)Ψ


(−x2, x1)

 .
Since the map

R2d
→ L1(R2d), (ω1, ω2) → T(ω2,−ω1)Ψ ,



120 C. Fernández et al. / J. Math. Anal. Appl. 398 (2013) 113–122

is continuous, the set
T(ω2,−ω1)Ψ : |ω| ≤ R


is compact in L1(R2d). Consequently


F

FT(ω2,−ω1)Ψ


: |ω| ≤ R


is a compact set in the Banach space C0(R2d) of continuous

functions vanishing at infinity. In particular,

lim
|x|→∞

sup
|ω|≤R

|(VΦG)(x, ω)| = 0. (6)

From [6, Theorem 3.15] we conclude that LGψ,h is a compact operator for every ψ, h ∈ S(Rd). �

Proposition 3.8. Let F ∈ L∞(R2d) and ψ ∈ L2(Rd) be given. The following conditions are equivalent:
(1) The bilinear map B : L2(Rd)× L2(Rd) → L2(Rd), B(ϕ, f ) = LFϕ,ψ (f ), is compact.
(2) {LFϕ,ψ : ϕ ∈ BL2} is a relatively compact set of compact operators on L2(Rd).

Proof. Clearly (2) ⇒ (1). Let us now assume that condition (1) is satisfied. In order to prove (2), according to [19, Theorem
1.11], it suffices to check that for all h ∈ L2(Rd) the set

{(LFϕ,ψ )
∗(h) : ϕ ∈ BL2}

is relatively compact in L2(Rd). When ψ, h ∈ S(Rd), this follows from the previous lemma and the identities
LFϕ,ψ

∗
(h) = LFψ,ϕ(h) = LGψ,h(ϕ)

where G(u, v) =
F(v,−u). For ψ, h ∈ L2(Rd)we use an approximation argument and (1). �

Remark 3.9. (a) Condition (2) in the previous result is in general stronger than (1). In fact, if we take F = δ then
B(ϕ, f ) = ⟨f , ϕ⟩ψ; therefore it is compact. As


LFϕ,ψ

∗
(h) = ⟨h, ψ⟩ϕ it is clear that {(LFϕ,ψ )

∗(h) : ϕ ∈ BL2} is not relatively
compact in L2(Rd), except for ⟨h, ψ⟩ = 0. Then {LFϕ,ψ : ϕ ∈ BL2} is not a relatively compact set of compact operators on
L2(Rd).

(b) Results similar to those established in Propositions 3.6 and 3.8 are also true when we fix the analysis window and the
synthesis window varies in the unit ball. Just keep in mind that the adjoint operator of LFϕ,ψ is LFψ,ϕ .

The following example shows that Proposition 3.6 cannot be extended to the case p = ∞.

Example 3.10. There is an F ∈ L∞(R2) that meets the condition that LFϕ,ψ is a compact operator on L2(R) for every pair of
windows ϕ,ψ ∈ L2(R) and yet for some ψ ∈ L2(R) the set {LFϕ,ψ : ϕ ∈ BL2} is not relatively compact.

Proof. We consider F(s, t) = eiπ(s
2
+t2). From [20, Theorem 3.1], LFϕ,ψ is a compact operator on L2(R) for every pair of win-

dows ϕ,ψ ∈ L2(R). Let us now assume that {LFϕ,ψ : ϕ ∈ BL2} is a relatively compact set of compact operators for every ψ ∈

L2(R). From [20, Theorem 4.4] we obtain that

{σ = F ∗ W (ψ, ϕ) : ϕ ∈ S(Rd) ∩ BL2}

is a relatively compact set in themodulation spaceM0(R2d) for everyψ ∈ L2(R). That is, for a fixedψ ∈ L2(R) andΦ ∈ S(R2)
and every ϵ > 0 there is an R > 0 such that

|VΦ(F ∗ W (ψ, ϕ))(x, ω)| < ϵ

whenever (x, ω) ∈ R4, ∥(x, ω)∥ > R and ϕ ∈ S(R) ∩ BL2 . By [14, 4.3.2], W (ψ, Tuϕ)(x, ω) = e2π iωuW (ψ, ϕ)(x −
u
2 , ω). In

view of the expression for F , we deduce that

F ∗ W (ψ, Tuϕ)(x, ω) = eiπu
2
T( u2 ,u)M(0,u)(F ∗ W (ψ, ϕ))(x, ω).

Consequently, from [14, 3.1.3], we get

|VΦ(F ∗ W (ψ, Tuϕ))(x1, x2, ω1, ω2)| =

VΦF ∗ W (ψ, ϕ)
 

x1 −
u
2
, x2 − u, ω1, ω2 − u

 .
We now fix (x01, x

0
2, ω

0
1, ω

0
2) ∈ R4d and take u ∈ Rd satisfying

x02 + u
 > R. ThenVΦF ∗ W (ψ, ϕ)


(x01, x

0
2, ω

0
1, ω

0
2)


equalsVΦF ∗ W (ψ, Tuϕ)
 

x01 +
u
2
, x02 + u, ω0

1, ω
0
2 + u

 < ϵ
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for every ϕ ∈ S(Rd) ∩ BL2 . Since ϵ > 0 and ψ ∈ S(Rd) are arbitrary we finally conclude that VΦ

F ∗ W (ψ, ϕ)


= 0, and

hence F ∗ W (ψ, ϕ) = 0 for all ϕ,ψ ∈ S(Rd) ∩ BL2 and F = 0. This is a contradiction. �

We now restrict our attention to localization operators LAϕ,ψ whose symbol is the characteristic function of a set A ⊂ R2d.
We denote by

Ax = {y ∈ Rd
: (x, y) ∈ A} and Ay

= {x ∈ Rd
: (x, y) ∈ A}

the sections of the set A and bymd the Lebesgue measure on Rd.

Theorem 3.11. Let A ⊂ R2d satisfy
Rd

md(Ax)
2 dx < +∞ or


Rd

md(Ay)2 dy < +∞.

Then, for each ψ ∈ L2(Rd), the bilinear operator (ϕ, f ) → LAϕ,ψ (f ) is compact.

Proof. Let us first assume that


Rd md(Ay)2 dy < +∞. This means that χA ∈ L1,2(R2d) and we can select a sequence
(Fn) ⊂ S(R2d) which converges to χA in L1,2(R2d). We now denote by a and bn the partial Fourier transforms with respect
to the first d variables of χA and Fn respectively. According to Theorem 3.3,

Ta, Tbn : F L1(Rd)× L2(Rd)× L2(Rd) → L2(Rd)

and Ta − Tbn

 ≤ ∥a − bn∥∞,2 ≤ ∥χA − Fn∥1,2 .

Now, as an application of Theorem 3.5 we get that Tbn(ψ, ·, ·), and hence also Ta(ψ, ·, ·), is compact for every ψ ∈ S(Rd).
This means that (ϕ, f ) → LAϕ,ψ (f ) is compact whenever ψ ∈ S(Rd). For arbitrary ψ ∈ L2(Rd) we use an approximation
argument and (1).
Finally, if A satisfies


Rd md(Ax)

2 dx < +∞, as

Vh1h2(x, ω) = e−2π ixωVĥ1
ĥ2(ω,−x),

one has

⟨LAϕ,ψ f , g⟩ = ⟨LB
ϕ̂,ψ̂

f̂ , ĝ⟩

where B := {(x, ω) : (−ω, x) ∈ A}. Hence md(Bω) = md(A−ω) and as the Fourier transform is an isometry on L2(Rd), we
conclude. �

The sets satisfying the hypothesis of the previous theorem are thin at infinity in the sense of [21, Definition 3.2]. We
observe that for a set A ⊂ R2d with finite measure, the conclusion of Theorem 3.11 follows from Proposition 3.6. However,
Theorem 3.11 applies to sets not having necessarily finite measure.

Theorem 3.12. For a fixed F ∈ Lp(R2d), F ≠ 0 and 1 ≤ p ≤ ∞, the multilinear operator

L2(Rd)× L2(Rd)× L2(Rd) → L2(Rd), (ϕ, ψ, f ) → LFϕ,ψ (f )

is not compact.

Proof. We proceed by contradiction. Assume that, on the contrary, the multilinear operator is compact. Then

{LFϕ,ψ : ϕ, ψ ∈ BL2}

is a relatively compact set of compact operators. In fact, according to Ruess [19, Theorem 1.11], we only have to check that
for each h ∈ L2(Rd) the set {h ◦ LFϕ,ψ : ϕ, ψ ∈ BL2} is compact in L2(Rd). But this follows from

h ◦ LFϕ,ψ = LFψ,ϕ(h).

As in Example 3.10, we obtain from [20, Theorem 4.4] that

{σ = F ∗ W (ψ, ϕ) : ϕ,ψ ∈ S(Rd) ∩ BL2}

is a relatively compact set in the modulation space M0(R2d), that is, for a fixed Φ ∈ S(R2d) and every ϵ > 0 there is an
R > 0 such that

|VΦ(F ∗ W (ψ, ϕ))(x, ω)| < ϵ
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whenever (x, ω) ∈ R4d and ∥(x, ω)∥ > R and ϕ,ψ ∈ S(Rd) ∩ BL2 . We now fix (x0, ω0) ∈ R4d and take y = (u, η) ∈ R2d

satisfying ∥x0 − y∥ > R. Then

|VΦ(F ∗ W (ψ, ϕ))(x0, ω0)| = |VΦ(F ∗ TyW (ψ, ϕ))(x0 − y, ω0)|

= |VΦ(F ∗ W (TuMηψ, TuMηϕ))(x0 − y, ω0)| < ϵ

for every ϕ,ψ ∈ S(Rd)∩BL2 . Since ϵ > 0 is arbitrary we finally conclude that VΦ

F ∗W (ψ, ϕ)


= 0, and hence F ∗W (ψ, ϕ)

= 0 for all ϕ,ψ ∈ S(Rd) ∩ BL2 and F = 0. This is a contradiction. �
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