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a b s t r a c t

We study the existence of infinitely many finite energy radial solutions to the nonlinear
Schrödinger–Poisson equations

∆u − u − φ(x)u + f (u) = 0 in R3

∆φ + u2
= 0, lim

|x|→∞

φ(x) = 0 in R3

(NSPE for short) under some structure conditions on the nonlinearity function f . As
consequences of the main result, we can provide examples of f which guarantee the
existence of infinitely many finite energy solutions but

(i) f (t) grows faster than t2 and slower than tp for all p > 2 or
(ii) f (t) is the same as |t|t when |t| ≤ t0 for arbitrarily given t0 > 0.

If f (t) = |t|p−1t , it is known that (NSPE) admits no finite energy nontrivial solutions when
p ∈ (1, 2] and admits infinitely many finite energy solutions when p ∈ (2, 5) so examples
(i) and (ii) show some interesting features of (NSPE).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main result

Consider the following system of PDEs
∆u − u − λφ(x)u + |u|p−1u = 0 in R3

∆φ + u2
= 0, lim

|x|→∞

φ(x) = 0 in R3 (1.1)

where λ ∈ (0, ∞), p ∈ (1, 5) and u, φ are real valued unknown functions defined on R3. This is called the system of
Schrödinger–Poisson equations because it consists of a Schrödinger equation coupled with a Poisson term. It describes
systems of identical charged particles interacting each other in the case that effects of magnetic field could be ignored and
its solution represents, in particular, a standing wave for such a system. For the details, we refer to [4,15].

In this paper, we restrict our interest to the solutions of finite energy, i.e., solutions (u, φ) belonging to the energy space
H1(R3) × D1,2(R3), where

H1(R3) :=

u ∈ L2(R3) | ∇u ∈ L2(R3)


and

D1,2(R3) :=

u ∈ L6(R3) | ∇u ∈ L2(R3)


.
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Then, one can easily reduce the Eq. (1.1) to a single equation by solving φ in terms of u. It is just the convolution of the
fundamental solution of Laplace equation 1

4π |x| with u2, which is well defined since u ∈ H1(R3) so one can rewrite the
Eq. (1.1) as

∆u − u − λ


1

4π |x|
∗ u2


u + |u|p−1u = 0 in R3, u ∈ H1(R3). (1.2)

This is a semilinear elliptic PDE with a nonlocal term.
It turns out that the solution structure of (1.2) is more complicated than that of the case where the nonlocal term is

discarded. If we just consider the equation

∆u − u + |u|p−1u = 0 in R3,

there is a simple threshold p = 5 between existence and nonexistence for nontrivial finite energy solutions; there are
infinitely many finite energy solutions if p ∈ (1, 5) and there is no nontrivial finite energy solution if p ≥ 5. It is also known
that the positive radial solution is unique.

On the other hand, such a simple characterization no longer holds when we consider the Eq. (1.2). While it is still true
that there is no nontrivial finite energy solution for p ≥ 5, the existence range of p depends on the parameter λ > 0. In fact,
if λ > 1/4, there is no nontrivial solution when p ∈ (1, 2] and there are infinitely many solutions when p ∈ (2, 5). On the
other hand, if λ > 0 is sufficiently small, one can find at least two positive radial solutions when p ∈ (1, 2) thus there is no
uniqueness of positive radial solution at all in the range of p ∈ (1, 2). See [1,15] for all above results. We also refer to [3,7,9,
8,12] for further results about (1.2).

In this paper, we put λ = 1 and consider the Schrödinger–Poisson equations with general potential;

∆u − u −


1

4π |x|
∗ u2


u + f (u) = 0 in R3, (1.3)

where f : R → R is an odd continuous function. Then one can ask the following questions:

Question 1. Is there an example of f (t)which grows faster than t2 but slower than tp for all p > 2 as t → ∞ and guarantees
the existence of infinitely many solutions to (1.3)?

Question 2. For an arbitrarily given t0 > 0, is there an example of f (t) which satisfies f (t) = |t|t if |t| ≤ t0 and guarantees
the existence of infinitely many solutions to (1.3)?

We remind that when f (t) is |t|t , (1.3) admits only the trivial solution and when f (t) is |t|p−1t, p > 2, (1.3) admits infinitely
many solutions so it seems interesting to ask such questions.

We prove in this paper that the answers are affirmative. Furthermore, we propose the following general conditions
on f :

(F1) f ∈ C(R, R) is odd and limt→0+ f (t)/t = 0;
(F2) lim supt→∞ |f (t)/tp| < ∞ for some p ∈ (1, 5);
(F3) 2f (t)/t2 − 3F(t)/t3 is monotone increasing to ∞ on (0, ∞) where F(t) :=

 t
0 f (s) ds,

and prove the following:

Theorem 1.1. Under the conditions (F1)–(F3), there are infinitely many finite energy radial solutions to (1.3). In addition, at
least one of them is positive everywhere.

Remark 1.1. In fact, the oddness of f is not needed when proving the existence of at least one positive solution to (1.3). See
the last section of the paper.

We can give two examples of f satisfying (F1)–(F3). By elementary computations, one can see that odd continuous functions
f1 and f2 defined asf1(t) = t2 log t, t > 0,

= 0, t = 0,
= −f (−t), t < 0,

(1.4)

and for given t0 > 0,f2(t) = t2, 0 ≤ t ≤ t0,
= t4/t20 , t ≥ t0,
= −f (−t), t < 0,

(1.5)

fulfill the conditions (F1)–(F3). It is also clear that f1 and f2 satisfy the hypothesis of Questions 1 and 2 respectively. Thus we
obtain the following corollary.
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Corollary 1.1. There are examples of f which positively answer the Questions 1 and 2.

Also, we believe that Theorem 1.1 is a first step toward answering the following question, which is more fundamental
than the Questions 1 and 2 are.

Question 3. Are there optimal assumptions for f to guarantee the existence of a (or infinitely many) nontrivial finite energy
solution(s) to (1.3).

This question is motivated by the celebrated work of Berestycki and Lions [5,6], in which they found the almost optimal
conditions of f for the equation

∆u − u + f (u) = 0 in RN (1.6)

to have a (or infinitely many) nontrivial finite energy solution(s). Under the conditions on f :

(F1
′

) (superlinearity near zero) f ∈ C(R, R) and limt→0+ f (t)/t = 0;
(F2

′

) (subcriticality near infinity) lim supt→∞ |f (t)/tp| < ∞ for some p ∈ (1, (N + 2)/(N − 2));
(F3

′

) (the Berestycki–Lions condition) there exists T > 0 such that 1
2T

2 < F(T ), where F(t) =
 t
0 f (s)ds,

they proved that the Eq. (1.6) admits a nontrivial least energy solution. They also showed that if f is odd, the Eq. (1.6) admits
infinitelymany finite energy radial solutions. Note that the condition (F3

′

) is necessary for existence since every finite energy
solutions to (1.6) must satisfy the following Pohozaev’s identity:

N − 2
2


RN

|∇u|2 dx = N


RN
F(u) −

1
2
u2 dx.

For the Eq. (1.3), it is proved by Azzollini, dAvenia and Pomponio [2] that there is a finite energy solution of (1.3) under
the assumptions (F1

′

)–(F3
′

) when the parameter λ > 0 is inserted again and sufficiently small. We can check the condition
(F3

′

) is also necessary for (1.3) because we also have a Pohozaev type identity for (1.3) (see Proposition 4.1):
1
2


R3

|∇u|2 dx +
5
4


R3

φuu2 dx = 3


R3
F(u) −

1
2
u2 dx.

However, the nonexistence result in the range of p ∈ (1, 2] tells us that (F1
′

)–(F3
′

) are not sufficient for (1.3) if λ is larger
than 1/4. Instead of (F1

′

)–(F3
′

), Theorem 1.1 provides sufficient conditions (F1)–(F3) although it is hard to expect that they
are optimal.

The rest of the paper is organized as follows.Wewill use the variational approach to prove Theorem1.1.We first prove the
existence of infinitely many solutions. Then the existence of a positive solution follows by mildly modifying the argument.
In Section 2, we introduce various definitions, variational settings and preliminaries. In Section 3, we construct a sequence
of Z2-homotopy stable families (see Section 2 for definition) satisfying some linking structure, which plays a crucial role in
obtaining our main result. In Section 4, we prove Theorem 1.1.

2. Variational settings and preliminaries

Let H1
r (R

3) and D1,2
r (R3) be the set of radially symmetric functions in H1(R3) and D1,2(R3) respectively. Denote the

Sobolev norm of H1
r (R

3) as

∥u∥ :=


R3

|∇u|2 + u2 dx
1/2

.

The following lemma is well known in literature.

Lemma 2.1. (i) For any u ∈ H1
r (R

3), there is a unique solution φu(x) ∈ D1,2
r (R3) of

∆φ + u2
= 0, lim

x→∞
φ(x) = 0,

such that it is represented as

φu(x) =


R3

1
4π

u2(y)
|x − y|

dy.

(ii) Let {un} be a sequence such that un ⇀ u weakly in H1
r (R

3). Then, φun → φu in D1,2
r (R3) and

R3
φunu

2
n dx →


R3

φuu2 dx,

as n → ∞ up to a subsequences.

We refer to [15] for the proof.



J. Seok / J. Math. Anal. Appl. 401 (2013) 672–681 675

Now, define a functional I : H1
r (R

3) → R

I(u) :=


R3

1
2
|∇u|2 +

1
2
u2

+
1
4
φuu2

− F(u) dx, u ∈ H1
r (R

3). (2.1)

By elementary computations and Palais’s principle of symmetric criticality [14], it is easy to see that (2.1) is a well-defined
C1 functional on H1

r (R
3), whose critical points are radial solutions of the (1.3).

In the paper, we will find infinitely many critical points of I under the conditions (F1)–(F3). To do this, we introduce
several terminologies adopted from the survey paper [10].

Definition 2.1. Let X be a Banach space and G be a compact Lie group acting on X .

(i) A functional I on X is called G-invariant if I(gx) = I(x) for all g ∈ G;
(ii) A subset A of X is called G-invariant if gx ∈ A for all g ∈ G and x ∈ A;
(iii) A map η ∈ C(X, X) is called G-equivariant if η(gx) = gη(x) for all g ∈ G and x ∈ A;
(iv) A map η ∈ C(X, X) is called a deformation of identity if it is homotopic to the identity, i.e., there exists a h ∈

C([0, 1] × X, X) such that h(0, ·) = Id and h(1, ·) = η;
(v) A homotopy h ∈ C([0, 1] × X, X) is G-equivariant if h(t, ·) is G-equivariant for all t ∈ [0, 1];
(vi) Let B be a closed subset of X . Then, a classF of compact subsets of X is called aG-homotopy stable familywith boundary

B if
(a) every set in F is G-invariant and contains B;
(b) η(A) ∈ F for all A ∈ F and all G-equivariant deformation of identity η that leaves B invariant (i.e. η(x) = x if x ∈ B).

The following result is essentially known (see [11,16]) although this specific version does not appear in literature.

Theorem 2.1. Let J ⊂ R be a compact interval and Iλ be a family of G-invariant C1 functionals on X parametrized by λ ∈ J .
Suppose that there exists a G-homotopy stable family F with boundary B such that

c(λ) := inf
A∈F

max
x∈A

Iλ(x) > sup
x∈B

Iλ(x) (2.2)

for all λ ∈ J . Suppose also that Iλ satisfy the following property (H):

(H) Let λ0 ∈ J and {(λn, un)} be a sequence in J × X such that {λn} is strictly increasing to λ0. If

−I(λ0, un), I(λn, un),
I(λn, un) − I(λ0, un)

λ0 − λn

are all bounded above, then {∥un∥} is bounded and for every ε > 0, there exists N > 0 such that

I(λ0, un) ≤ I(λn, un) + ε for all n ≥ N.

Then, for all λ0 ∈ J satisfying

c(λn) − c(λ0)

λ0 − λn
≤ M(λ0) for some M(λ0) > 0 and λn ↑ λ0,

Iλ0 has a bounded (PS) sequence at level c(λ0). In particular, Iλ has a bounded (PS) sequence at level c(λ) for almost every λ ∈ J
by Denjoy’s theorem [11].

A very close version appears in [18] in which the author shows the almost identical result with Theorem 2.1 in a case where
the functional Iλ is of the form

Iλ(u) := A(u) − λB(u),

where B(u) is sign definite. Instead of this, Theorem 2.1 imposes the property (H) in [11], which does not require the sign
definiteness. One can prove this theorem by combining ideas of proofs of Theorem 2.1 in [11] and Proposition 2.3 in [1] with
minor modifications. We omit the proof for the sake of simplicity.

To make use of Theorem 2.1, we consider the following functional with parameter λ ∈ [1/2, 1],

Iλ(u) =
1
2


R3

|∇u|2 + u2 dx +
1
4


R3

φuu2 dx − λ


R3

F(u) dx. (2.3)

By the condition (F1), Iλ is an even functional. In the next section, we construct a sequence of Z2-homotopy stable families
for Iλ where Z2 acts on H1

r (R
3) as {id, −id} and apply Theorem 2.1 to find bounded (PS) sequences of Iλ for almost every

λ ∈ [1/2, 1].
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3. Constructing Z2-homotopy stable families for Iλ

For each u ∈ H1
r (R

3), we define a curve ut in H1
r (R

3) such that

ut(x) := t2u(tx).

Then for fixed λ, we obtain a function cu(t) : [0, ∞) → R

cu(t) := Iλ(ut) =
1
2
t3


R3
|∇u|2 dx +

1
2
t


R3
u2 dx +

1
4
t3


R3
φuu2 dx −

λ

t3


R3

F(t2u) dx.

Lemma 3.1. For each fixed nonzero u ∈ H1
r , there exist t0 > 0 such that

(i) cu(t) is strictly increasing on (0, t0) and limt→0 cu(t) = 0;
(ii) cu(t) attains the global maximum at t = t0;
(iii) cu(t) is strictly decreasing on (t0, ∞) and limt→∞ cu(t) = −∞.

Proof. By differentiating cu(t), we get

c ′

u(t) =
3
2
t2


R3
|∇u|2 dx +

1
2


R3

u2 dx +
3
4
t2


R3
φuu2 dx − λ


R3

2
t2

f (t2u)u −
3
t4

F(t2u) dx.

We define

P(t) :=
3
2
t2


R3
|∇u|2 dx +

1
2


R3

u2 dx +
3
4
t2


R3
φuu2 dx

=


3
2


R3

|∇u|2 dx +
3
4


R3

φuu2 dx

t2 +

1
2


R3

u2 dx

:= at2 + b.

Note that P(t) is a polynomial of degree two with P(0) = b =
1
2


R3 u2 > 0. The remaining part of c ′

u(t) is

λ


R3

2
t2

f (t2u)u −
3
t4

F(t2u) dx = t2


{u≠0}
λ


2f (t2u)
(t2u)2

−
3F(t2u)
(t2u)3


u3 dx := t2g(t).

Let us denote

c ′

u(t) = P(t) − t2g(t) = t2


b
t2

+ a − g(t)


.

While the function b/t2 + a is strictly decreasing to a and has the value ∞ at t = 0, the condition (F3) tells us that g(t) is
monotone increasing to infinity so that g(0) < ∞. Therefore we can conclude that there exists a t0 > 0 such that c ′

u(t) > 0
for 0 < t < t0, c ′

u(t0) = 0 and c ′
u(t) < 0 for t > t0. Thus, cu(t) is strictly increasing on (0, t0), attains the global maximum

at t0 and is strictly decreasing on (t0, ∞).
It remains to show that limt→0 cu(t) = 0 and limt→∞ cu(t) = −∞. To prove the former, it is sufficient to see that

lim
t→0

1
t3


R3

F(t2u) dx = 0.

By the condition (F1) and L’Hospital theorem, we have

1
t3


R3

F(t2u) dx =
1
t3


{u≠0}

F(t2u)
(t2u)2

t4u2 dx = t


{u≠0}

F(t2u)
(t2u)2

u2 dx → 0 as t → 0.

Also, observe that c ′
u(t) = P(t) − t2g(t) → −∞ as t → ∞, which implies the latter. This completes the proof. �

Now, we construct a sequence of Z2-homotopy stable families for Iλ satisfying (2.2). As a first step, we prove Iλ satisfies
certain kind of linking structure (see [17]). Let {ui}

∞

i=1 be an orthonormal basis of H1
r (R

3), Yk be the subspace of H1
r (R

3)

spanned by {u1, u2, . . . , uk} and Zk be spanned by {uk, uk+1, . . .}. For any nonzero u ∈ H1
r (R

3), define T (u) > 0 as a unique
positive real number t satisfying

∥t−2u(t−1x)∥ = 1. (3.1)

Such a t > 0 should exist and be unique because the Eq. (3.1) is equivalent to

t3 −


R3

u2 dx

t −


R3

|∇u|2 dx = 0

and it is easy to see that this polynomial has the unique positive root. We define T (0) = 0 to make T (u) continuous.
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Lemma 3.2. There exist real sequences ρj, rj and kj such that kj → ∞ as j → ∞, ρj > rj > 0 and

(i) aj(λ) := inf{u∈Zkj | T (u)=rj} Iλ(u) ≥ j for all λ ∈ [1/2, 1] and all j;
(ii) bj(λ) := max{u∈Ykj | T (u)=ρj} Iλ(u) ≤ 0 for all λ ∈ [1/2, 1] and all j.

Proof. (i) We see from the conditions (F1) and (F2) that there exists C > 0 such that

|F(u)| ≤
1
4
|u|2 + C |u|p+1.

Thus, we have

Iλ(u) =
1
2


R3

|∇u|2 dx +
1
2


R3

u2 dx +
1
4


R3

φuu2 dx − λ


R3

F(u) dx (3.2)

≥
1
2


R3

|∇u|2 dx +


1
2

−
λ

4


R3

u2 dx +
1
4


R3

φuu2 dx − λC


R3
|u|p+1 dx (3.3)

≥
1
4


R3

|∇u|2 dx +
1
4


R3

u2 dx − C


R3
|u|p+1 dx. (3.4)

For given any t > 0, we define

Wk,t := {v ∈ H1
r (R

3) | ∥v∥ = 1, vt = t2v(t·) ∈ Zk}.

Note that for each t > 0, the map Lt : H1
r → H1

r defined by v → vt is a linear isomorphism so that L−1
t (Zk) is a vector space

with codimension k − 1 andWk,t is the unit sphere in L−1
t (Zk). Now, we represent a function u ∈ Zk as

u(x) = T 2(u)v(T (u)x), where v ∈ Wk,T (u).

Then, we see for u ∈ Zk such that T (u) > 1

Iλ(u) ≥
1
4
T (u)3


R3

|∇v|
2 dx +

1
4
T (u)


R3

v2 dx − CT (u)2p−1


R3
|v|

p+1 dx

≥
1
4
T (u) − CT (u)2p−1βk,T (u),

where

βk,t := sup
v∈Wk,t


R3

|v|
p+1 dx.

We claim that for fixed t > 0, βk,t → 0 as k → ∞. To prove the claim, suppose the contrary. By the definition of βk,t , it
holds that βk,t ≥ βk+1,t for all k. Thus, there exists a βt > 0 such that βk,t → βt as k → ∞. Choose vk,t ∈ Wk,t satisfying

R3
|vk,t |

p+1 dx >
βk,t

2
.

Since the vector space L−1
t (Zk) has codimension k − 1 and ∥vk,t∥ = 1, the sequence vk,t converges weakly in H1

r (R
3) and

strongly in Lp+1(R3) to 0, up to a subsequences, as k → ∞. However, this makes a contradiction because limk→∞


R3

|vk,t |
p+1 dx ≥ βt/2 > 0. Now, we take rj = 8j to see

Iλ(u) ≥ 2j − C(8j)2p−1βk,8j

for every u ∈ Zk such that T (u) = rj. Then, we are able to choose kj satisfying C(8j)2p−1βkj,8j < j by the claim. This shows (i).
(ii) For given any t > 0, we define

Vk,t := {v ∈ H1
r (R

3) | ∥v∥ = 1, vt = t2v(t·) ∈ Yk},

which is homeomorphic to

Uk,t := {u ∈ Yk | T (u) = t}.

It is clear that Uk,t is compact because it is closed and bounded in the finite dimensional space Yk so that Vk,t is compact.
Also, Lemma 3.1 says that Iλ(vt) → −∞ as t → ∞. By combining these two facts and compactness of interval [1/2, 1],
we deduce that there exists a ρj > 0 such that ρj > rj > 0 and Iλ(vρj) ≤ 0 for all v ∈ Vkj,ρj and all λ ∈ [1/2, 1]. This
proves (ii). �
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Let us define

Bj := {u ∈ Ykj | T (u) ≤ ρj}, Nj := {u ∈ Zkj | T (u) = rj}

for ρj, rj and kj of Lemma 3.2.

Lemma 3.3 (Intersection Lemma). If γ ∈ Γj, where Γj denotes the set of continuous maps γ ∈ C(Bj,H1
r (R

3)) satisfying γ |∂Bj =

id, the intersection γ (Bj) ∩ Nj is nonempty.

Proof. Let us define

U := {u ∈ B̊j | T (γ (u)) < rj},

where B̊j denotes the interior of Bj in Ykj . We claim that U is a symmetric bounded neighborhood of 0 in Ykj satisfying
T (γ (∂U)) = rj. It is clear that U is a symmetric open set containing 0 because γ is odd continuous and T is even continuous
so that γ (0) = 0 and T (γ (u)) = T (γ (−u)). To see U is bounded, it is suffices to show Bj is bounded in Ykj . On the contrary
suppose that Bj is not bounded. Then there exists a sequence {un} such that ∥un∥ → ∞ but T (un) ≤ ρj for all n. However,
this contradicts the relation,

R3
|∇un|

2 dx = T (un)
3
−


R3

u2
n dx


T (un).

Finally, to prove T (γ (∂U)) = rj, we will suppose two cases:

(i) there is a u0 ∈ ∂U such that T (γ (u0)) > rj;
(ii) there is a u0 ∈ ∂U such that T (γ (u0)) < rj;

and get a contradiction. Note that the case (i) immediately contradicts the continuity of T and γ . Suppose the case (ii). Due
to the continuity of T and γ , there is a neighborhood V of u0 in Ykj such that T (γ (V )) < rj. Then for all v ∈ V such that
v ∉ U , v ∉ Bj, which shows that u0 ∈ ∂Bk. However, this contradicts the fact that γ leaves ∂Bj invariant and the definition
of Bj. This proves the claim.

Now, let Pj be the projection map from H1
r (R

3) onto Ykj−1 and consider a continuous odd map Pj ◦ γ : ∂U → Ykj−1. The
famous Borsuk–Ulam theorem implies that there is a u0 ∈ ∂U such that Pj ◦ γ (u0) = 0, which means u0 ∈ γ (Bj) ∩ Nj. This
completes the proof. �

At this point, we can give a sequence of Z2-homotopy stable families Fj for Iλ as the following:

Fj := {γ (Bj) | γ ∈ Γj}.

Observe that Fj has the boundary ∂Bj. Then, by applying Theorem 2.1, we can obtain the following result.

Theorem 3.1. Let

Cj(λ) := inf
A∈Fj

max
u∈A

Iλ(u).

Then for each j, Cj(λ) ≥ j for all λ ∈ [1/2, 1] and there is a critical point uj,λ of Iλ such that Iλ(uj,λ) = Cj(λ) for almost every
λ ∈ [1/2, 1].

Proof. Lemmas 3.2 and 3.3 imply that Cj(λ) ≥ j and supu∈∂Bj Iλ(u) ≤ 0 for all j. Thus the condition (2.2) of Theorem 2.1,

Cj(λ) = inf
A∈Fj

max
u∈A

Iλ(u) > sup
u∈∂Bj

Iλ(u),

is satisfied. To prove the functional Iλ has the property (H) of Theorem 2.1, suppose that for some λ0 ∈ [1/2, 1] and
{(λn, un)} ⊂ [1/2, 1] × X such that {λn} is strictly increasing to λ0, the sequences

−Iλ0(un), Iλn(un),
Iλn(un) − Iλ0(un)

λ0 − λn

are all bounded above. This means that there is a C > 0 such that

−


1
2


R3

|∇un|
2
+ u2

n dx +
1
4


R3

φunu
2
n dx − λ0


R3

F(un) dx


< C,

1
2


R3

|∇un|
2
+ u2

n dx +
1
4


R3

φunu
2
n dx − λn


R3

F(un) dx < C,
R3

F(un) dx < C,
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from which we deduce 1
2


R3 |∇un|

2
+ u2

n dx +
1
4


R3 φunu

2
n dx < 2C and −2C <


R3 F(un) dx. Thus we see ∥un∥ is bounded

and for fixed ε > 0,

Iλ0(un) = Iλn(un) + (λn − λ0)


R3

F(un) dx

≤ Iλn(un) + (λ0 − λn)2C ≤ Iλn(un) + ε

if n is sufficiently large. Therefore the property (H) is satisfied by Iλ so we can apply Theorem 2.1 to conclude that for each
j, there exists a bounded (PS) sequence {un} of Iλ at the level Cj(λ) for almost every λ ∈ [1/2, 1]. Since {un} is bounded,
there exists a u ∈ H1

r (R
3) such that a subsequence un, still denoted by un, converges to u weakly in H1

r (R
3). To complete

the proof, it is sufficient to show that un converges to u strongly in H1
r (R

3) up to a subsequence. This can be done by the
standard argument. Decompose I ′λ(u) : H1

r (R
3) → H1

r (R
3)∗ as

I ′λ(u) = Lu + Ku,

where L is a boundedly invertible linear operator defined as

L(u)[v] :=


R3

∇u · ∇v + uv dx

and K is an operator defined as

K(u)[v] :=


R3

φuuv dx −


R3

f (u)v dx,

which is compact by Lemma 2.1. Thus we have

un = L−1(−Kun + o(1)),

which shows the compactness of un in H1
r (R

3). This completes the proof. �

4. Proof of Theorem 1.1

We need an integral identity called the Pohozaev’s identity to prove Theorem 1.1.

Proposition 4.1 (Pohozaev’s Identity). Suppose that u ∈ H1(R3) is a critical point of Iλ. Then u satisfies the integral identity
R3

1
2
|∇u|2 +

3
2
u2

+
5
4
φuu2

− 3λF(u) dx = 0.

This identity was firstly proved in [8] when f (t) = |t|p−1t . We refer to [2] for general f .
Now, we are ready to prove Theorem 1.1. Fix j ∈ N. Theorem 3.1 implies that there are sequences {un} ∈ H1

r (R
3) and

{λn} → 1 such that each un is a critical point of Iλn satisfying Iλn(un) = Cj(λn).
First of all, we prove Cj(λn) is bounded for n. Take a A ∈ F such that

max
u∈A

I1(u) ≤ Cj(1) +
1
2
.

Since A is compact, we have

Cj(λn) ≤ max
u∈A

Iλn(u) ≤ max
u∈A

I1(u) + (1 − λn)max
u∈A


R3

F(u) dx ≤ Cj(1) +
1
2

+
1
2

= Cj(1) + 1

if n is large.
Secondly, we prove {un} is bounded. Let vn(x) := T (un)

−2un(T (un)
−1x) so that ∥vn∥ = 1. Then, {vn} converges to a

function v weakly in H1
r and strongly in Lq for q ∈ (2, 6) up to a subsequence. We claim that v is not identically zero. To the

contrary, suppose that v ≡ 0. Then, for every R > 0 it holds that
R3

F(R2vn(Rx)) dx →


R3

F(R2v(Rx)) dx = 0

as n → ∞. By Proposition 4.1 we see that

d
dt

Iλn(t
2un(t·))


t=1

=


R3

3
2
|∇un|

2
+

1
2
u2
n +

3
4
φunu

2
n − λn(2f (un)un − 3F(un)) dx

= 2I ′λn(un)un −


R3

1
2
|∇un|

2
+

3
2
u2

+
5
4
φunu

2
n − 3λF(un) dx = 0. (4.1)
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Then Lemma 3.1 implies that the function cun(t) = Iλn(t
2un(t·)) attains its maximum at t = 1. Thus for any R > 1 we have

Iλn(un) ≥ Iλn


R

T (un)

2

un


R

T (un)
·


= Iλn(R

2vn(R·))

=
R3

2


R3

|∇vn|
2 dx +

R
2


R3

v2
n dx +

R3

4


R3

φvnv
2
n dx − λn


R3

F(R2vn(Rx)) dx

>
R
2


R3

|∇vn|
2 dx +

R
2


R3

v2
n dx − λn


R3

F(R2vn(Rx)) dx

=
R
2

− λn


R3

F(R2vn(Rx)) dx.

Since Iλn(un) = Cj(λn) is bounded for n, by choosing R and n large, we get a contradiction so that v is not identically zero.
Now, suppose that ∥un∥ → ∞. From the Eq. (4.1), we see

3
2


R3

|∇vn|
2 dx +

1
2T (un)2


R3

v2
n dx +

3
4


R3

φvnv
2
n dx

= λn


R3


2f (T (un)

2vn)

(T (un)2vn)2
−

3F(T (un)
2vn)

(T (un)2vn)3


v3
n dx. (4.2)

Since ∥un∥ → ∞, we can easily check T (un) → ∞ as n → ∞. Thus the left hand side of (4.2) remains bounded as n → ∞

but the right hand side goes to infinity from the condition (F3) and the fact v ≠ 0. This is a contradiction so that {un} is
bounded. We notice that this type of reasoning appears in [13].

Thirdly, from the boundedness of {un}, it is not difficult to deduce that {un} is a (PS) sequence of I1(u). Then, by using the
same argument in the proof of Theorem 3.1, we obtain a critical point uj of I1(u). Since j ≤ Cj(λn) = Iλn(un) ≤ Cj(1) + 1, it
holds that j ≤ I1(uj) ≤ Cj(1) + 1. This proves the existence of infinitely many radial solutions to (1.3).

Finally, it remains to show that there is also a positive solution to (1.3). To do this, we replace the nonlinearity f with f+
defined as

f+(t) := f (t) if t ≥ 0,
f+(t) := 0 if t ≤ 0.

Let u ∈ H1
r (R

3) be an arbitrary solution to (1.3) with the replaced nonlinearity f+. Then, by multiplying the both side of (1.3)
by u−, the negative part of u, and integrating by parts, we easily see that u− is zero. This means that every solution to (1.3)
with f+ is a nonnegative solution to (1.3) with f . Note that every nonnegative solution to (1.3) is positive everywhere by the
strong maximum principle.

Now, we will find a nontrivial critical point of Iλ with the term F+(u) =
 u
0 f+(s) ds replacing F(u). As a group action G,

we take the trivial group {id} and as a boundary B, we take {0, v0}, where v0 ∈ H1
r (R

3) is a function satisfying Iλ(v0) ≤ 0 for
all λ ∈ [1/2, 1]. Such a function v0 exists by Lemma 3.1. Then, we can define a G-homotopy stable family F with boundary
B as

F := {γ ([0, 1]) | γ ∈ Γ },

where

Γ := {γ ∈ C([0, 1],H1
r (R

3)) | γ (0) = 0, γ (1) = v0}.

By (3.2) and Sobolev embedding, we have that

c(λ) := inf
A∈F

max
x∈A

Iλ(x) > sup
x∈B

Iλ(x).

Wehave already shown that Iλ has the property (H) sowe can apply Theorem2.1. Then, the proof of remaining part is exactly
the same with the argument of Sections 3 and 4. This completes the entire proof of Theorem 1.1.
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