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1. Introduction

The notion of frame was introduced by Duffin and Schaeffer in [24]. It is a generalization of basis, and can be viewed as
some kind of “overcomplete basis”. A basis in a Hilbert space allows one to represent each element in a unique way. An
overcomplete frame also allows one to represent each element via it, but the representation is not unique. This property
plays a significant role in mathematics (such as nonlinear approximation), signal transmission and modern time-frequency
analysis. In the past more than twenty years, the theory of frames has been growing rapidly. Gabor frames are a class of
important frames among all kinds of frames. Given 7, i € RY, define the modulation operator M,, and translation operator

T, on [?(R?) respectively by

M,f(-) = e If () and T, f() =f(-— ) (1.1)
for f € [2(RY), where (-, -) denotes the Euclidean inner productin RY. For e, 8 > Oand g € L?(R%), we denote by 4(g, o, 8)
the Gabor system:

(g, @, B) = {(MpToug : 1, k € 27, (12)

where 29 is the set of d-dimensional integer pointsin RY. §(g, «, B) is called a (Gabor) frame for L? (R?) if there exist constants
Cq, C; > O such that

GIFIZ < D 1 MpnTue®) * < GIIFI1? (1.3)

n,kezd
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for f € [?(R%), where C; and G, are called frame bounds. In particular, the frame is called a tight (Gabor) frame for L*(R?) if
C; = Gy; called a Parseval (Gabor) frame for L?(R?) if C; = C, = 1; called a (Gabor) Riesz basis for L*(R%) if it ceases to be a
frame for L?(R%) whenever any one of its elements is removed. (g, «, ) is called a (Gabor) Bessel sequence in L*(R?) if the
right-hand side inequality in (1.3) holds, where C; is called Bessel bound. The fundamentals of frames can be found in [6,7,
11,12,16,24].

In this paper, we focus on super Gabor frames. Given a positive integer L, the direct sum Hilbert space G},; L2(RY) is
exactly the vector-valued Hilbert space L?(R?, C') endowed with the inner product defined by

L
(f,g) = Z/dmx)g,(x)dx forf=(fi,fo,...f1), 8= (81,8, ....8) € P®R',CH.
I=1 /R

In what follows, for f € [>(RY, C!) and 1 < I < L, we always denote by f; the I-th component of f. Similarly to (1.1), for #,
w € RY, we define the modulation operator M, and translation operator T,, on [*(RY, C) respectively by

MyE() = (Myfi (). Myfa (), ... Myfi ()

T = (T, To(), .. T ()
for f € [2(RY, CL). Obviously, they are both unitary operators on L?(R?, C!), and it is easy to check that

M, T, f(:) = > 1T, M £(-) for f e [*(R?, Ch). (1.4)
Fora, B > 0and g € [*(RY, Ch), define the Gabor system §(g, «, B) generated by g as

9(g a, B) = (MpaTorg : 1, k € Z°}. (1.5)

6(g, o, B) is called a super (Gabor) frame for [*(R¢, C) if it is a frame for L*(R¢, C1), i.e., there exist constants C;, C; > 0
such that

GIFI> < > 1{f MpaTu®)l” < Gl (16)

n,kezd

for f € [*(RY, C'), where C; and G, are called frame bounds, L is called the length of super (Gabor) frame. Tight (Parseval)
super Gabor frame, super Gabor Riesz basis and super Gabor Bessel sequence are defined similarly. We always denote by I the
identity operator, regardless of its acting space. Let (g, «, 8) and §(h, «, B) be both Bessel sequences in L?>(R¢, C}). We
define 8 ¢ : [(RY, Cl) — [2(RY, C!) by

Sngf= D (f. MpToyh)Mp, Tig forf e (R, C. (1.7)
n,kezd

It is well-known that, if 45 ¢ = I, then §(g, o, B) and §(h, &, B) are both frames for L?(R?, C) by the theory of frames. In
this case, we say h is a super Gabor dual of g. In particular, y = /ng;g is a super Gabor dual of g when 4.(g, «, B) is a frame

for [(RY, Ch), which is so-called the canonical dual of g. It is noteworthy that there exist dual frames not having the Gabor
structure for an overcomplete frame (not a Riesz basis) §(g, «, 8), which can be proved by Lemma 5.6.1 in [6].

The notion of superframe in general Hilbert spaces was introduced by Balan [1] in the context of “multiplexing”, which
has been widely used in mobile communication network, satellite communication network and computer area network.
The idea of “multiplexing” is to encode L independent signals f;,| = 1,2, ..., L, as a single sequence that captures the
time-frequency information of each f;. Given a Gabor system §(g, «, 8) of the form (1.5), for f € L*>(R%, C), one then

considers the sequence of numbers (f, Mg To(8) = Z,L:I(f,, MgnTug1) forn, k € 7¢. One requires that f is completely
determined by this sequence, and that there exists a stable reconstruction. This requirement leads to the definition of super
Gabor frame. In recent years, super wavelet and Gabor frames in L?(RY, C!) have interested some mathematicians and
engineering specialists. The details can be found in [2-4,9,10,13,17-19,22] and references therein, where super wavelet and
Gabor frames were sometimes called vector-valued wavelet and Gabor frames. In 2008, Fiihr in [13] derived frame bound
estimates for super Gabor system in L?(R, C*) with window functions belonging to Schwartz space, and obtained estimates
for the windowh = (ho, hy, ..., h) € [*(R, C**")composed of the first L+ 1 Hermite functions, where super Gabor
systems were called vector-valued Gabor systems. The proof is based on a sampling estimate for the Paley-Wiener space
established by Fiihr and Grochenig in [14]. In 2009, using growth estimates for the Weierstrass o -function and a new type of
interpolation problem for entire functions on the Bargmann-Fock space, Grochenig and Lyubarskii in [17] characterized all
lattices A C R? such that the Gabor system (M), Th,h: A = (A1, Ay) € A} is a frame for L*(R, C1). However, less is known
about a general super Gabor system. Necessary density conditions were studied in [2] by Balan. A sufficient and necessary
density condition was obtained in [22] by Li and Han for the rational time-frequency lattice case. Motivated by the above
works, we in this paper investigate general Gabor systems 4.(g, «, 8) of the form (1.5) under the following assumptions:

Assumption 1. L is a positive integer.
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Assumption 2. ¢, 8 > 0,and a8 = % with p and q being relatively prime positive integers.

Throughout this paper, we denote by N the set of positive integers, by A* its conjugate transpose for a complex matrix

A, by Q, the set [0, n?forn > 0,by E; theset {0, 1,...,t — 1} for t € N, by C' the complex Euclidean space consisting
o)
@

of complex vectors indexed by E;, by C#t the complex Euclidean space consisting of the vector X = | . [withx™ e CF,
NO)

1 < m < L, and by ||X||ce the Euclidean norm of X. The relation such as inclusion or equality between two (Lebesgue)

measurable sets in RY means that it holds up to a set of measure zero.
From (1.7), we have

f= ) (f. MgaToth)Mp,Tuig forf e >R, CH)

n,kezd

if h is a super Gabor dual of g. In particular, we have much freedom to represent f when g admits many Gabor duals. Such
freedom is exactly why frames attract many researchers, and has important applications in signal transmission. A detailed
argument can be found in [8]. Our main goal in this paper is to establish a general theory of super Gabor dual frames. We
first obtain a characterization of super Gabor frames which allows us to easily design super Gabor frames, and then derive an
explicit expression of super Gabor duals (see Theorems 4.2-4.5 below). Our main novelty is to introduce a new Zak transform
matrix, and to establish all theorems in terms of such matrix. This matrix method allows us to easily obtain super Gabor
dual frames. Our Zak transform matrix here is related to but different from the Zibulski-Zeevi matrix in [25]. It is more
convenient for our purposes.

The rest of this paper is organized as follows. Section 2 is an auxiliary one. In this section, we associate a Gabor system
6(g, a, B) with a ¢¢ x Lp® matrix-valued function G(x, w) via a Zak transform which was first introduced in [15]. Some
properties of G are presented. In Section 3, we obtain necessary and sufficient conditions for (g, «, §) to be complete, a
Bessel sequence, a frame for [*(R?, C!), and prove that a super Gabor frame is a Riesz basis for [*(R¢, C!) if and only if
(@B) = % This allows us to easily construct super Gabor frames and Riesz bases by designing corresponding Zak transform
matrices. In Section 4, for an arbitrary Gabor frame 4(g, «, 8), we derive an explicit expression of the canonical dual and a
parametrization of all super Gabor duals of g, and prove that the canonical dual is the norm-minimal one among all super
Gzabczr dlLlalS. We also prove that a super Gabor frame has a unique super Gabor dual if and only if it is a Riesz basis for
L~ (RY, CY).

2. Zak transform matrix

This section is an auxiliary one to following sections. To begin with we introduce some notions. Given a measurable set
S inRY a collection {Sy : k € Z%} of measurable sets in R? is called a partition of S if
|JSk=s and s,NSy =@fork#K inz’.
kezd
For A > 0 and measurable sets S, S’ C RY we say S is AZ%-congruent to S’ if there exists a partition {Sy : k € Z%} of S such
that {S + Ak : k € Z%} is a partition of S’. In particular, only finitely many S, among S, k € Z¢, are nonempty if both S and
S’ are bounded in addition. Obviously, S’ is also AZ%-congruent to S if S is AZ¢-congruent to S’. So we usually say S and S’ are
AZ%-congruent in this case. Similarly, for a set S in Z%, a collection {Sy : k € Z%} of subsets of Z¢ is called a partition of S if
U S¢=S and SyNSy =@ fork # Kk inZz°.
kezd
For A, € Nand S, S’ C Z% we say S is AZ%-congruent to S’ if there exists a partition {S; : k € Z%} of S such that

{Sk + Ak : k € Z%} is a partition of §'. It has properties similar to the above sets in RY. The Zak transform Zy,f of f € L[?(RY)
is defined by

anf(x, w) = Zf(x — qak)ebri(k,w)

kezd

for a.e. (x, w) € R% It is easy to check that Zyo has quasi-periodicity:

Zeof (X + qom, w + n) = 7™ Z0 f (x, w) 2.1)
forf € [?(RY), m,n € Z% and a.e. (x, w) € R?. Let #, be the Hilbert space #, = LZ(Q% x Q1, CE). It consists of all

column vector-valued functions s(x, w) = (sj(x, w)) indexed by E, with the components s; € 12 (Q% X Q) and with

jeEp
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2
the norm ||s]| 5, = (ZjeEp le <0 Isj(x, w)|2dxdw) . We define the vector-valued Zak transform Zg.f of f € L2(RY) by

Zgof (X, w) = ( wof (X + 2 5 w)) for a.e. (x, w) € R,
Jjekp
By simple arguments, we have the following two lemmas:

Lemma 2.1. (i) For (i, ) € R%?, we have
Zga My T ) (%, w) = 70700 f (X — 1, w — gan)

for f € [>(RY) and a.e. (x, w) € R*;
(ii) Zgq is a unitary operator from L*(R%) onto [*(Qge % Q1);
(iii) Zgq is a unitary operator from L?(RY) onto #,.

Lemma 2.2. The set K = UjeEp ek (Qi}3 + JE - al) is qaZ-congruent to Qgg.
’ q

Remark 2.1. By (i) in Lemma 2.1 and (2.1), for f € [2(RY), Zyof € [?((Qqe + qatk) x Q) for k € Z9. S0 Zyof € *(E x Q)
for an arbitrary bounded and measurable set E in R? since E can be covered by finitely many such Qq« + qak. This fact will
be used frequently in the context, and we will not specify it.

Given g € [*(R%), we denote by G the g¢? x p? matrix-valued function:

Gx, w) = (ang (x + % —al, w)) forae. (x, w) € R, (2.2)

l€Eq.jeEp

For g € [*(RY, C), define g x Lp? matrix-valued function G by

G(x, w) = (G1(x, w), G(x, ), ..., G (x, w)) forae. (x, w) € R, (2.3)

where G,;,, 1 < m < L, are defined as in (2.2), i.e., G, (X, w) = (angm(x + é —al, w))l . Similarly, we associate f, h
€Eq.jeEp

and y e [*(R%) with F(x, w), H(x, w) and I" (x, w), and associate f, hand y e [*(R¢, C") with F(x, w), H(x, w) and I'(x, w)
respectively. By (ii) in Lemmas 2.1 and 2.2 and (2.1), g is uniquely determined by the values of G(x, w) on Q L X Q1.S0 an

arbitrary q¢ x Lp? matrix-valued function G(x, w) defined on Q 13 x Qq with entries belonging to L2(Q 1 X Ql) determmes a

unique g € L*(R?, C') such that g is related to G by (2.3). For f € L2(R?, C'), we always denote by F (x, w) the vector-valued
function

Zauf1(x, w)
Zqotfz (Xa U)) 2d
Fx, w) = . for a.e. (x, w) € R™. (2.4)

anfL(X, w)
Then we have the following lemma and theorem by Lemma 2.1 and (2.1):

Lemma 2.3. Let f € [>(RY, CL). Then |f|? = fQ1 g IF (%, w)||CLEp dxdw.

Theorem 2.1. For f, g € [>(RY, C!), we have

(£, MpnTo s 8) = f (G(x, ) F (x, w)), e~ 27027k w) dxly)
Q1 xQq

for (n, k, 1) € Z¢ x 7% x Eg4, where (G(x, w)F (x, w)), is the I-th component of G(x, w)¥F (x, w):

L - .
(G(x, w)F (x, w)); = Zquagm <x+ ]E —al, w)anfm <x+ ]E w) .

m=1 jeEp

Letg h e [?(RY, C!). Next we show how the values of (G*H) (x, w) on Qlﬁ x Qq determine its behavior on R, Similarly
q,
to Lemma 2.3 in [23], we have the following lemma:
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Lemma 2.4. For every j € Z¢, there exists a unique (k;, lj, m;) € E, x Eq x Z* such that

j= qkj + plj + pgm,;.
Lemma 2.5. For every j € 7, there exists a Z%-periodic p? x p? unitary matrix-valued function U;(w) such that

(G*H) (x + o w) = U} (w) (GH) (x. w)Uj(w) (25)
q

for g, h € [2(RY) and a.e. (x, w) € R*.

Proof. For an arbitraryj € 2%, there exists a unique (k;, lj, m;) € E, x Eq x Z4 such that qj—ﬂ = % + alj + qam; by Lemma 2.4

and the fact that a8 = %. It follows that

<(G*H) (X—}—i,w)) =Zang (X—i—jlikj —a(l—b),w)anh <X+M—a(1—lj),w> (2.6)
qp 12 B B

leEq

for (j1,j2) € Ep x Ey and ae. (x, w) € R?¢ by (2.1). Again by qZ¢-congruence between E; and E; — lj and (2.1), (2.6) can be
rewritten as

. . —
((G*H) (x+ 1. w)) = Zug (X+ ntk w) Zooh <x LRl ) w).
ap Jrj2 lekq p B

Observe thattoeverym € {§ : £ = x4y, x,y € E,} there corresponds a unique A, € {0, 1}¢ such that m — pA, € Ep. There
exist unique )f?, Ajg) € {0, 1)¢ such that j; + ki — p)»;:),jz + ki — pkjg) € Ep. So

» J iy _ _
((G H) (X + ﬁ, W>>jlyj2 ="V T ((G H)(x, w))h+kjfp)»j(;),j2+kjfp)»g) (2.7)
fora.e. (x, w) € R* by (2.1). For w € RY define Uj(w) : CE — C% by

150
: _ p2mi(Ay W) i
(Uf(w)g)n =€ " §n7’(j+p5\:,(1]>

foré e C¥ andn e E,, where i,&” € {0, 1}¢is such thatn — k; +p)~»g) € E,. Then it is easy to check that Uj(w) is Z%-periodic
and unitary for w € R Also observe that

{1+ ki —p)\].(? hheE)y=1{+k— pk}? 1J» € Ep} = Ep.

We have ((G*H)(x + q’—ﬂ w)é, ¢) = (Uj*(w)(G*H)(x, w)Uj(w)€, ¢) for &, ¢ € C and ace. (x, w) € R?¢ by (2.7). This leads
to (2.5). The proof is completed. O

Theorem 2.2. For every j € Z¢, there exists a Z4-periodic Lp? x Lp® unitary matrix-valued function U;(w) such that

(G*H) (x + q]Ts w> = U (w)(G'H)(x, w)Uj(w) for g, h € [*(R?, C") and a.e. (x, w) € R*.

Proof. By Lemma 2.5, to each j € Z‘ there corresponds a Z?-periodic p? x p? unitary matrix-valued function U;(w) such
that

(G Hu) (x + 173 w) = U} (w)(GpHm) (. w)Uj(w) for1 <m,m' <Landae. (x, w) € R*.
q

Define
Ui(w)
Uj(w)
Uj(w) =
Uj(w)

Then it is as desired. The proof is completed. O
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3. Super Gabor frame characterization

This section focuses on the characterization of g € L?(RY, C') with (g, o, ) being complete, a Bessel sequence, a frame
for L?(RY, C1). For the situation L = 1, a similar characterization was obtained in [5,20,25] using Zibulski-Zeevi matrices.
We also prove that a frame §.(g, «, ) is a Riesz basis for L*(R?, C") if and only if («8)? = 1, which is well-known when
L=1.

Lemma 3.1. Fors € L! (Q% x Q4), we have

2

[ s(x, w)e 2T 2rilkw) gudyy)| = g4 Is(x, w)|dxdw. (3.1)
Q% xQq

n,kezd Q% xQq

Proof. Write ¢, = le g, S, w)e~ZriBIX 2mitkw) dydy) for (n, k) € 24 x Z%. If s € LZ(Q% x 01), (3.1) holds since
B

(BEermifnng=2mitkw) . k¢ 74} is an orthonormal basis for LZ(Q% x Q). Ifs ¢ LZ(Q% x Qy), then p~¢ le o
B

Is(x, w)|?dxdw = oo, we only need to prove Y, ., [cnk|?> = 0o to finish the proof. We argue by contradiction. Suppose
> nkezd [enkl® < 0o. Then

d . .
txow) = Y etk ¢ 2 (Q% x Q)

n,kezd
d 5 ; . . . d
due to {f2e?BinX)e=2mikw) - y | ¢ 79} being an orthonormal basis for L2 (Q% x Q1). Observe that two functions 8~ 2s(x, w)

and t(x, w) inL! (Q% % Q) have the same Fourier coefficients ¢, x, (n, k) € 74 x 7.1t follows that ﬁ’%s(x, w) = t(x, w) for

ae. (x,w) € Q% x Q1,and thus s € [2 (Q% X Qp)duetot € LZ(Q% X Qq). This is a contradiction. The proofis completed. O
By Theorem 2.1 and Lemma 3.1, we have the following lemma:

Lemma 3.2. For f € [*(RY, Cl), we have

D UE MpaTuig)* = g~ / ((G*G)(x, w)F (x, w), F (x, ))cisp dxcuw.
Q1 xQ
B

n,kezd

By Theorem 2.2 and Z%-periodicity of G(x, w) with respect to w, we have the following lemma:

Lemma 3.3. For g € [*(RY, C") and constants C;, Cy, Cs, we have
(i) rank(G(x, w)) = Cq for a.e. (x, w) € Q;ﬁ x Qg ifand only if rank(G(x, w)) = C; for a.e. (x, w) € R?*;
q

(i) (G*G)(x, w) = GI (< G3I) fora.e. (x, w) € Qiﬁ x Qq ifand only if (G*G)(x, w) > Gl (< G3l) for a.e. (x, w) € R*.
q

Theorem 3.1. §.(g, «, B) is complete in L*(R?, C) if and only if rank(G(x, w)) = Lp® for a.e. (x, w) € Q% X Q.
q

Proof. By Lemma 3.3, we only need to prove that (g, o, 8) is complete in L?>(R¢, C) if and only if
rank(G(x, w)) = Lp® forae. (x, w) € Q% X Q. (3.2)

And by Lemma 3.2, the completeness of §(g, o, ) in L?(R%, C*) is equivalent to f = 0 being a unique solution to the equation
f (GG (x, w)F (x, w), F (x, w)) e, dxdw = 0 (3.3)
Q1 xQ
B
in [*(RY, Ch). Since the integrand ((G*G)(x, w)F (x, w), F (X, w)) s, in (3.3) is nonnegative, (3.3) holds if and only if

(GG (x, w)F (x, w), F(x, w))op, =0 forae (x,w) e Q% X Q. (3.4)

Therefore, to finish the proof, we only need to prove that f = 0 is a unique solution to the Eq. (3.4) if and only if (3.2) holds.
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Suppose (3.2) holds, and f € L[?(R?, C!) satisfies (3.4). By (3.4), we have G(x, w)F (x, w) = 0 for a.e. (x, w) € Q% x Q1.
This together with (3.2) implies that # (x, w) = 0 for a.e. (x, w) € Q% X Q. It follows that f = 0 by (iii) in Lemma 2.1.

Now suppose f = 0 is a unique solution to the Eq. (3.4) in [*>(RY, Cl). Next we prove (3.2) by contradiction. Sup-
pose rank(G(-,-)) < Lp? on some measurable subset of Q% x Q; with positive measure. Let P(x, w) be the orthog-

onal projection operator of C¥» onto the kernel ker(G(x, w)) of G(x, w) for a.e. (x, w) € Q% X Q. Then P(x, w) =
lim,_, o exp(—n(G*G)(x, w)) for a.e. (x, w) € Q% X Qp by an easy application of the spectral theorem of self-adjoint ma-

trices (see also [8, p. 978]). So P(-, -) is measurable by the measurability of G(-, -). Now we claim that there exists X, € CLt
such that P(x, w)xq # 0 on some E C Q% x Q; with |E| > 0. Indeed, if for an arbitrary x € C“», P(x, w)x = 0 for a.e.

(x,w) € Q% X Qq, then ker (G(-, -)) = {0} a.e. on Q% x Q. This implies that rank(G(-, -)) = Lp® a.e. on Q% X Q, which is a
contradiction. Define f € [?(R¢, Cl) by

P(x, w)Xo, if (x,w) €E;
Fx w) =, if (x, w) € Q3 x Q1 \ E

for a.e. (x, w) € Qi x Q. Then ¥ (x, w) is measurable since P(x, w) does, and [|F (X, w)|l5, < [Xolluz, for ae.

(x,w) € Q% x Q1, which implies that f is well-defined and f # 0 by (iii) in Lemma 2.1. It is obvious that G(x, w) ¥ (x, w) = 0
for ae. (x, w) € Q% x Q;. So f is a nonzero solution to the Eq. (3.4) in L?>(RY, Cl), which contradicts the assumption that

f = 0 is a unique solution to (3.4) in L*>(RY, CL). The proof is completed. O

Remark 3.1. Observe that G is a ¢* x Lp? matrix-valued function. By Theorem 3.1, Lp? < ¢“ if 4(g, «, B) is complete in
L?(RY, C*), which implies that (@B)? < {.So (¢f)? < + is necessary for the existence of complete super Gabor systems

in [?(RY, Ch). In fact, it is sufficient for the existence of complete super Gabor systems (super Gabor frames) in L?(R¢, CL),
which was proved in [22, Theorem 1.1].

Theorem 3.2. §(g, «, B) is a Bessel sequence in L*>(RY, C") with Bessel bound B if and only if
(G*G)(x, w) < BBI forae. (x,w) € Qiﬁ x Q.
q,
Proof. By Lemma 3.3, we only need to prove that 6(g, «, ) is a Bessel sequence in L*(R¢, C!) with Bessel bound B if and
only if
(G*G)(x, w) < BBl forae.(x,w) € Q% x Q1. (3.5)

By Lemmas 2.3 and 3.2, §(g, o, B) is a Bessel sequence in L?(R?, C') with Bessel bound B if and only if

f (G*G) (X, w)F (x, w), F (X, w)) ey dxdw < BB / 1 (x, w) 121z, dxdw (3.6)
Q% xQq Q% xQq

for f € [>(RY, Ch). It is obvious (3.5) implies (3.6). To finish the proof, we only need to prove (3.6) implies (3.5). We argue
by contradiction. Suppose (3.6) holds, while (3.5) fails to hold. Then there exists E C Q% x Qp with |[E| > 0 such that

XE(X, w)
0

(G*G)(x, w) > BUBI for (x, w) € E.Define f € [> (R, CL) by fo = f5 = -+ = fi = 0 and Zgfi (x, w) = : for a.e.

(x, w) € Q% X Q1. Then f is well-defined and f # 0 by (iii) in Lemma 2.1, and

/ (G*G)(x, W) F (x, w), F (X, w)) s, dxdw > BB / (F (x, ), F (x, ), dxdw,
Q1 xQ Q1 xQ
B
which is a contradiction to (3.6). The proof is completed. O
Remark 3.2. We denote by ||G(x, w)|| 5, _, -, the norm of G(x, w) as an operator from CHr to CFa foraee. (x, w) € Qiﬁ X Q1.
q,

Theorem 3.2 implies the equivalence between §(g, o, 8) being a Bessel sequence in L?(R?, C!) and ||G(x, w)]| clp_cEqg €
L (Q%5 x Q). Observe that, for the linear space consisting of all complex q¢ x Lp? matrices, the maximum of moduli of all
q
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entries of a matrix also define a norm, which is of course equivalent to the norm when a matrix is viewed as an operator from
CH» to CFa, Therefore, §(g, o, B) is a Bessel sequence in L2(R¢, C!) if and only if all entries of G(x, w) belong to L (Q;ﬁ x Q1).
q,

Theorem 3.3. 4.(g, o, B) is a frame for L*(RY, C') with frame bounds A and B if and only if
BUAI < (G*G)(x, w) < BBl forae. (x, w) € Qiﬂ x Q.
q

Proof. By Theorem 3.2, we may as well assume that §(g, o, 8) is a Bessel sequence in L>(R¢, C!) with Bessel bound B.
Similarly to the beginning proof of Theorem 3.2, to finish the proof, we only need to prove the equivalence between

BUAl < (G*G)(x, w) forae. (x,w) e Q% X Q (3.7)

and

B / 15 (% )15, dxdw < / (G ) (X, )F (%, ), F (X, ) sy (38)
Q% xQ Q% xQq

for f € [*(RY, Ch). It is obvious that (3.7) implies (3.8). Next we prove the converse implication by contradiction. Suppose
(3.8) holds, and there exists E C Q% x Q; with |[E| > 0 such that (G*G)(x, w) < BYAI for (x, w) € E. Define f € [>(R¢, C")

XE (%, w)

0
byfop =f=---=fi=0and Z,f1(x, w) = : fora.e. (x, w) € Q% X Q. Similarly to Theorem 3.2, we can prove

0
that (3.8) fails to hold for such f. The proof is completed. O
Remark 3.3. Note that YAl < (G*G)(x, w) < B%BI fora.e. (x, w) € Q 5 x Q; if and only if

q,
(G'G(x, w))"' < B79A7 and (G*G)(x, w) < BBl forae. (x, w) € Q1 x Q.
q

By an argument similar to Remark 3.2, (g, «, 8) is a frame for L>(R¢, C!) if and only if all entries of (G*G(x, w))~" and
(G*G)(x, w) (or G(x, w)) belong to L""(Qi}8 X Q).
q,

Next we turn to the characterization of super Gabor frames being Riesz bases for L*(RY, Cl). For this purpose, we
introduce two lemmas:

Lemma 3.4. Let (g, o, B) be complete in L>(RY, C"). Then rank(G(x, w)) = ¢° for ae. (x, w) € Q# X Qq if and only if
@p)! =1.

Proof. Since (g, «, B) is complete in L2(R¢, Cl), we have rank(G(x, w)) = Lp‘ for a.e. (x, w) € Q# x Qp by Theorem 3.1.
So, if rank(G(x, w)) = q¢ for a.e. (x, w) € Q# x Qq, we have Lp? = g%, which implies that (¢8)? = ] due to the fact that
af = 5; and if (@B)? =

, then rank(G(x, w)) =

% (pﬂ)d = qiforae. (x,w) € Qiﬂ X Q;. The proof is completed. O
o q

Lemma 3.5. Let §(g, a, B) be a Bessel sequence in L*(R?, C"). Define 7 : P(2? x 2%) — I*(RY, C") by T ({Ckn}pnezt) =
> nkezd CnMpn T for {Cin}i nezd € P(Z* x Z7), and denote by ker (7°) the kernel of 7. Then

ker(7) = {{ckn}inezd € P(Z* x %) 1 G*(x, w) Ve (x, w) = 0 for ae. (x, w) € Q% x Q1},

where Ve (x, w) = (3, kez qu<+1,nezmﬁ<””‘>6_2”‘“"“’))leEq.

Proof. Since {Cinlyneze € ker(7) if and only if 37 p 3k s Carrtn(f, MpnTaqun8) = 0 for f € L*(RY, CY), which is
equivalent to

l€Eq k,nezd

S Y Gtn [ G w)F G w2 =0 (39)
Q% xQ

for f € [2(RY, Ct) by Theorem 2.1. Suppose §(g, «, B) is a Bessel sequence in L?(R¢, Cl) with Bessel bound B. Then

GG, w)F (X, w) 12, = (GG (X, w)F (x, w), F (x, w))eir, < BBIF (x, w)|2e,
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for f € [*(RY, C!) and ace. (x, w) € Q% X Qq by Theorem 3.2 and Lemma 3.3, which implies that (G(x, w)¥ (x, w)), €
1? (Q% x Q) for f € [>(RY, C!) and each | € E,. It follows that

> Cartn / (G, ) F (x, w)), e~ 7PN 2T dxduy
k.nezd Q% xQq

:/ (G(x, w)F (x, w)), Z Cokpine TP 2mikw) gyyy)
Q%XQI k,nezd

for each | € E4. So (3.9) can be rewritten as fQ1 <0y (G(x, w)F (x, w), Vc(x, w)) £ dxdw = 0, equivalently,
B
/ (F (x, w), G*(x, w) Ve (X, w))oiep dXdw = 0 (3.10)
Q% xQq

for f € L[*(RY, Ch). By (iii) in Lemma 2.1, when f runs over L*(R%, C!), £ (x, w) runs over the orthogonal direct sum
H, P ¥, P - - - P H, with multiplicity L. So (3.10) is equivalent to

G*(x, w)V.(x,w) =0 forae. (x,w) € Q% x Q.

Therefore, {C n}y neze € ker(7) if and only if G*(x, w) V. (x, w) = 0 fora.e. (x, w) € Q% X Q1. The proof is completed. O
Theorem 3.4. Let §(g, o, B) be a frame for L*(RY, C*). Then §.(g, o, B) is a Riesz basis for L*(R?, C) if and only if (ap)" = 1.
Proof. Since 4(g, «, B) is a frame for L?>(RY, C"), it is a complete Bessel sequence in L?>(RY, C"). So Lemmas 3.4 and 3.5 both

work for g(g, o, B). Also observe that the frame 4(g, «, B) is a Riesz basis if and only if ker (7)) = {0}. So, by Lemmas 3.4
and 3.5, to prove the theorem, we only need to prove that {c n}; nez¢ = 0 is a unique solution to the equation

G*(x, w)V:(x,w) =0 forae. (x,w) € Q% x Q1 (3.11)

in 2(z¢ x 7% if and only if rank(G(x, w)) = q* for a.e. (x, w) € Qiﬂ x Qi, equivalently,
q,

rank(G*(x, w)) = q* forae. (x, w) € Q% x Qq (3.12)

by Lemma 3.3 and the fact that rank(G*(x, w)) = rank(G(x, w)). It is obvious that (3.12) implies that {c s}, peze = Ois a
unique solution to (3.11) in P(Z¢ x Z%). Next we prove the converse implication by contradiction. Suppose {Ckntkneze =0
is a unique solution to (3.11) in 2(Z¢ x z9), and rank(G*(x, w)) < q¢ (equivalent to rank(G(x, w)) < q%) on some
measurable subset of Q1 x Q; with positive measure. Let Q(x, w) be the orthogonal projection operator of C% onto the

kernel ker (G*(x, w)) of G*(x, w) for a.e. (x, w) € Q% X Q. Then, by the same procedure as in Theorem 3.1, there exists

Yo € CFa such that Q(x, w)yg # 0 on some Ey C Q% x Q; with |Eg| > 0, and that {Cy n}y neza € *(Z2% x Z¢) defined by

Q(x, w)yg, if (x, w) € Ep;
Vc(X,w):{o’ 0 if(x,w)eQO%XQl\EO for(x,w)eQ%XQ1

is a nonzero solution to (3.11) in I*(2¢ x Z%). This is a contradiction. The proof is completed. O

4. Super Gabor dual

Let §(g, o, B) be a frame for L2(R?, C). In this section, we investigate the super Gabor duals of g. For the situation L = 1,
a Zibulski-Zeevi matrix characterization of them can be found in [5,21,20,26,25]. By Theorems 2.1 and 3.2 and Lemmas 2.1,
2.3 and 3.3, we can easily obtain the following lemma:

Lemma 4.1. Let 6(g, o, B) and §(h, «, B) be both Bessel sequences in L*(R?, C). Then
an (5h,gf)1 (x, w)

Z o (80,602 (%, w)
! h'g. e = B~ UG*H)(x, w)F (x, w) for f e [*2(RY, C") and ae. (x, w) € R*.

Zia (Sngb)1 (X, w)



628 Y.-Z. Li, E-Y. Zhou /J. Math. Anal. Appl. 403 (2013) 619-632
Theorem 4.1. Let §(g, , B) and 4(h, , B) be both Bessel sequences in L>(RY, C"). Then 8ng = lifand only if (G'H)(x, w) =
B a.e. on Q;ﬂ x Q1.

q,

Proof. By Theorem 2.2, (G*H)(x, w) = B%I for a.e. (x, w) € Q;B x Q; if and only if
q,

(G'H)(x, w) = B forae. (x,w) € Q% X Q. (4.1)
By Lemma 4.1 and (iii) in Lemma 2.1, 8y of = f for f € [*(RY, C!) if and only if
(G*H)(x, w)F (x, w) = B F (x,w) forf e [>(RY, Cl)andae. (x, w) € Q% x Q1. (4.2)

So, to finish the proof, we only need to prove the equivalence between (4.1) and (4.2). It is obvious that (4.1) implies (4.2).
Next we prove the converse implication. Suppose (4.2) holds, and e is an arbitrary vector in C*¥» with only one component
being 1 and the others being 0. Define f € L?(R?, C!) by F (x, w) = e for (x, w) € Q% X Q. Then fis well-defined by (iii) in

Lemma 2.1. Applying (4.2) to all such f, we obtain (4.1). The proof is completed. O

Lemma 4.2. Let §(g, «, B) and §(h, o, B) be both Bessel sequences in L*(R%, C1), and y € [*(RY, C!). Then there exists f €
[?(RY, C) such that y = S gf if and only if

I(x, w) = B79Fx, w)H*(x, w)G(x, w) forae. (x,w) € Q1 x Q.
q

Proof. By Lemmas 2.2 and 4.1 and (iii) in Lemma 2.1, y = Sp ¢f if and only if
Zgay1(x —al, w)
Zgy2(x — al, w) J

. = B YG'H)(x — al, w)F (x — al, w) (4.3)

Zgyi(x —al, w)

forl € Egand a.e. (x, w) € Qiﬁ X Q. Observe that
q

0 1 -1
0 1 -1
—pl=q|.|+p|q|.|—-!|+pPa] .
0 1 -1

for each | € Eg, which is the unique decomposition as in Lemma 2.4. By an argument similar to the proof of (2.7), we have
(GrHm) (X —al, w) = (G,Hm) (x — w) = (GhHw)(x, w)for1 <m,m’ <L,l € E;andae. (x, w) € R??. So (4.3) can be
rewritten as

bl
qB’

anyl (X —al, w)
zanZ(X —al, w) d
. =B YGCH)(x, w)F (x —al,w) forle E;andae. (x, w) € Qiﬁ x Q.

q

Zgayi(x — al, w)
This is equivalent to I'* (x, w) = B8~4(G*H) (x, w)F*(x, w) for a.e. (x, w) € Q;ﬁ x Q; by the definition of I' and F, and thus
q
y = Snefifandonly if I'(x, w) = B UF(x, w)H* (x, w)G(x, w) for a.e. (x, w) € Qiﬁ X Q. The proofis completed. O
q
Lemma 4.3. Let §(g, o, B) be a frame for L*>(RY, CL). Then, for an arbitrary h € [*(R%, C1), G(h, o, B) is a Bessel sequence in

L>(R?, C") if and only if there exists a q* x q* matrix-valued function A(x, w) defined on Qiﬂ x Q; with each entry being in
q
LOO(Q% x Q1) such that
q

H(x, w) = A(x, w)G(x, w) forae. (x,w) € Q;ﬂ X Q1.
q

Proof. The sufficiency holds by Remark 3.2. Next we turn to the necessity. Define f = 4. ;h. Then h = 44 .f, and thus
H(x, w) = A(x, w)G(x, w) fora.e. (x, w) € Qiﬁ x Qq by Lemma 4.2, where A (x, w) = 879F(x, w)G" (x, w). Since q(g, a, B)
q,

is a frame for [?(R?, C1), Sg ¢ is a bounded and invertible operator. This implies that §(f, o, 8) = ng;g(h, a, B) is a Bessel
sequence in L?(RY, C!) since G(h, o, B) is. By Remark 3.2, all entries of F(x, w) and G(x, w) belong to L* (Qiﬁ X Qq). So all
q

entries of A (x, w) do. The proof is completed. O
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Theorem 4.2. Let §(g, o, B) be a frame for L?(RY, C!). Define y € L*(RY, C*) by
r(x, w) = BG(x, w)((G*G)(x, )™

forae. (x,w) € Qiﬂ X Q1. Then y is the canonical dual of g,
q,
Proof. For an arbitrary h € [?(R¢, C1), h is the canonical dual of g if and only if g = Sg ¢h, which is equivalent to
G(x,w) = ,B’dH(x, w)(G*G)(x, w) forae. (x,w) € Qiﬁ X Qq (4.4)
q

by Lemma 4.2. Since §(g, «, B) is a frame for L*(R?, C"), (G*G)(x, w) is bounded and invertible by Theorem 3.3. So (4.4) can
be rewritten as H(x, w) = B%G(x, w)((G*G)(x, w))~! = I'(x, w) for a.e. (x, w) € Q;ﬁ X Q1, which is equivalent toh = y.
q

So y is the canonical dual of g. The proof is completed. O
Theorem 4.3. Let §(g, a, B) be a frame for [*(RY, C1), and let y° be the canonical dual of g. Then ||y°|| < ||y || for an arbitrary
Gabor dual y of g, with equality if and only if y = y°.

Proof. Suppose y is a Gabor dual of g. Then S, _,0 , = 0. It follows that

14
0= (" MaaTor(y — ¥)) (MpnTen, v°)
k,nezd
— 0 0 0
= > (Mg Tur?®, ¥ — ¥} & MpnTerc®)
k,nezd
by (1.4), i.e.,
0= < > (8 MpnTurSg g8 MpnTai®, v — y°> : (45)
k,nezd

Since Mg TukSgg = Sg.gMpnTak for n, k € Z%, and S | is self-adjoint, (4.5) can be rewritten as

0= < D (Sga® MpnTek8Mpn Ty °, v — V°> = (Sge8 v — ¥ =%y = 7).

k,nezd
Solly 1> =ty —¥®) +¥°lI> = lly — ¥°II*> + ll¥°|I>. The theorem therefore follows. [
Theorem 4.4. Let 4(g, o, B) be a frame for I? (Rd, CLY. Then g has a unique super Gabor dual if and only if 9.(g, o, B) is a Riesz
basis for [*(RY, Ch).

Proof. The sufficiency is trivial. Next we prove the necessity. Suppose g has a unique super Gabor dual. Then we claim that
h = 0is a unique solution to the equation

(G'H)(x, w) =0 forae. (x,w) € Qiﬂ X Q1 (4.6)

with g (h, a, B) being a Bessel sequence in L*(R¢, CL). Indeed, if h is a nonzero solution to (4.6). Then G*(x, w)(I' (x, w) +
H(x, w)) = 8% fora.e. (x, w) € Q% X Qq by Theorem 4.1, where y is the canonical dual of g. This implies that y +h s another
q,

Gabor dual of g by Theorem 4.1, contradicting the fact that g has a unique super Gabor dual. By Lemma 3.4 and Theorem 3.4,
6(g, a, B) is a Riesz basis for L2(R¢, CL) if and only if rank(G(x, w)) = q° for a.e. (x, w) € Q% x Q1, equivalently,
q

rank(G*(x, w)) = ¢¢ forae. (x, w) € Qiﬁ X Q. (4.7)
q,
Therefore, to finish the proof, we only need to prove that h = 0 being a unique solution to (4.6) implies (4.7). We argue by
contradiction. Suppose rank(G*(x, w)) < g% on some measurable subset in Q 3 X Q; with positive measure. Let Q(x, w)
q
be the orthogonal projection of CE onto the kernel ker (G*(x, w)) of G*(x, w) for a.e. (x, w) € Q al X Qi. Then by the
q,

same procedure as in Theorem 3.1, Q(x, w) is measurable, and there exists y, € CF such that Q(x, w)yo # 0 on some
E C Q1 x Qq with |[E| > 0. Take H(x, w) as a q¢ x Lp? matrix-valued function defined on Q 1 x Q; with one column
q,

9B
being xr (x, w)Q(x, w)yo and the others being zero. Then the entries of H(x, w) are in L”(Qiﬁ x Qq), H(x, w) corresponds
q

to a nonzero h e [*(RY, Ch), and thus §(h, a, B) is a Bessel sequence in L?(R?, C') by Remark 3.2. It is obvious that
(G'H)(x, w) = 0 for a.e. (x,w) € Qiﬂ X Q1. So h is a nonzero solution to (4.6), which is a contradiction. The proof is
q

completed. O
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Theorem 4.5. Let §.(g, a, B) be a frame for L>(RY, C"). Then, for an arbitrary h € [*(R?, C"), his a super Gabor dual of g if and

only if there exists a ¢ x q matrix-valued function 4 (x, w) defined on Q% x Qq with entries being in L*° (Q% x Qq) such that
q, q

H(x, w) = G0, w)(G*G)(x, w) ™' (I — B~IG" (X, w) AKX, WG, W)) + AR, W)G(x, w) (48)

forae. (x,w) € Q1 x Q.
aB

Proof. The sufficiency holds by Remark 3.2 and Theorem 4.1. Next we turn to the necessity. Suppose h is a super Gabor
dual of g. By Lemma 4.3, there exists a ¢ x q matrix-valued function € (x, w) defined on Q as X Qq with entries being in
q,

L°°(Qi}3 X Qq) such that H(x, w) = C(x, w)G(x, w) for a.e. (x, w) € Q;ﬂ x Q1. Define a q¢¢ x g matrix-valued function
q q
A, w) = Cx, w) — BG(x, w)((G*G)(x, w)) "2G*(x, w) forae. (x,w) e Qiﬁ x Q.
q,

Then all its entries are in L*°(Q % X Q) by Remark 3.2 and Theorem 3.3, and
q

A, w)G(x, w) = Hx, w) — BIG(x, w)((G*G)(x, w)) !, (4.9)
equivalently,

H(x, w) = A(x, w)G(x, w) + BIG(x, w)((G*G)(x, w))™' forae. (x,w) € Qiﬂ x Q.
q
However, G*(x, w)A(x, w)G(x, w) = 0 by (4.9) and Theorem 4.1. So (4.8) holds. The proof is completed. O

Remark 4.1. Theorem 4.5 provides us with a parametrization of computing all super Gabor duals, which together with
Theorem 4.2 shows that the computation of super Gabor duals can be reduced to the computation of canonical duals.

Next we conclude this paper with some examples. By Theorems 3.1 and 3.4 and Remark 3.3, we have

Example 4.1. Lletl = 2,«, 8 > Owithag = % and let A(x, w) be a 2 x 2 matrix-valued function defined on Q 2 X Qq with
q
its entries belonging to L? (Q% x Q). Define g € (R, C?) by
q
G(x, w) = Ak, w) forae. (x,w) € Qiﬁ x Q1.
q

Then

(i) (g, «, B) is complete if and only if det(A(x, w)) # 0 for a.e. (x, w) € Q;ﬁ X Q1;

q

(ii) (g, a, B) is a Riesz basis for [*(R, C?) if and only if all entries of (A*A)(x, w) and ((A*A)(x, w))~' belong to

LW(Q# X Qp).

— 2771
Example 4.2. In Example 4.1, take ¢ = % B = 1,and A(x, w) = <62;iw - (211;/23)5 ”w). Then g(x) = (X[OJ)(X),

X1 x)— Q2+ ﬁ)x[_l’_%) (x)), and 4(g, a, B) is a Riesz basis for [?(R, C2). Moreover, the canonical dual y of g is given
by

)(X) - )+ —7=

1 1
yi(x) = mX[,L,% mx[f%,o)

1 1
2 (x) = —WX[_L_%)(X) + m}([_%’o)(x)

Example 4.3. LetL = 1,a = 3, 8 = 1. Define g € L*(R) by g(x) = X-1p® — Q2+ ﬁ)xl_]’_%)(x). Then §(g, 5, 1 isa

frame for L (R) but not a Riesz basis for [?(R), and the canonical dual y of g is given by
I(x, w) = GX w)(G*G)(x, w))™

_ 1 (1 _ (2+ﬁ>82niw>
10 4 44/3 — (1 + +/3) (e~ 27w 4 2miw) 14 27w

for (x, w) € Q% x Q1.
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Proof. Itis obviousthatp = 1,q = 2. Asimple computation shows thatZ;g(x, w) = 1— (2+J§)ez”i"’ and Z:g(x— % w) =
. —2miw . .
1++e~21 for (x, w) € Q) x Q1. Then G(x, w) = (1 @+ e ) ,and (G*G)(x, w) = 10-+4+/3—(1-++/3) (e 27" >

l+eZm’w
for (x, w) € Q% x Q1. Observe that (G*G)(x, w) and ((G*G)(x, w))~! are both continuous and have no zero on [0, 1] x [0, 1].

It follows that (g, % 1) is a frame for L2(R) by Remark 3.3. By Theorem 3.4, §(g, % 1) is not a Riesz basis for L?(R) since
aff # % By Theorem 4.2, we can obtain the canonical dual y. 0O

1 . . . . . . .
Remark 4.2. Observe that 0547511 T3 T erw; 1N Example 4.3 has infinitely many nonzero Fourier coefficients. It

follows that the canonical dual y of g is not compactly supported, although g is compactly supported. Interestingly, such g
is a component of g in Example 4.2, while g and its canonical dual are both compactly supported. This shows that, to some
extent, super Gabor frames enjoy more advantages in the computation of duals than usual Gabor frames.

1 A+

Example 4.4. In Example 4.1, take « = % B = 1,and A(x, w) = (/\X—u 142262 — 2

) ,where A, u are two complex

0) (X)> ;

y(x) = ((xzxz +1- /ﬁ)x[a YO = OX+ X[y ) (0. (Ax+ WX 1)) + Xy o) (x)) .

1 1
2 2

constants. Then

g(x) = (x[o,%)oo + Gx =Dy ) 0. Cx+ [y )0 + (1 + 22 —ﬁ)x[,

~1 1
2 2

=

and 4(g, o, B) is a Riesz basis for L?(R, C?). Moreover, the canonical dual y of g is given by

The following example is an immediate consequence of Remark 3.3, Theorems 3.4 and 4.2.

Example 4.5. GivenL = 2,a = 3,8 =1, let

g= (X[o,l)(x), )»X[o_ )(X) + ] )(X) + 77)([%4,1)00) ,

1 12

3 33
where A, u and 7 are three not all equal complex constants. Then §.(g, % 1) is a frame for L? (R, C?) but not a Riesz basis for
L*(R, C?), and the canonical dual y of g is given by

) = Inl? + |nl* —An — A; 00 + A2+ ul? —nh — i re 100
A=+ = w4 g — wPo3) T =+ = wP I — w273
A2+ n]* — ud — uq
= 0P+ — gl + [ — 233
2h—n—p 20— A —p

2 (X) = X x) + X (%)
=P+ —pP+ =m0 T SR+ = ulP + I — w3
+ 21— h 1 ®)
X).
=0+ — 2+ — p2X[33)
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