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a b s t r a c t

This paper addresses general super Gabor systems with rational time–frequency product
lattices. A Zak transform matrix method is developed for such super Gabor systems. We
characterize complete super Gabor systems and super Gabor frames. Given a super Gabor
frame, we obtain an explicit expression of its canonical dual and a parametrization of all its
super Gabor duals and prove that the canonical dual is the norm-minimal one among all
super Gabor duals. We also prove that a super Gabor frame has a unique super Gabor dual
if and only if it is a Riesz basis.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The notion of frame was introduced by Duffin and Schaeffer in [24]. It is a generalization of basis, and can be viewed as
some kind of ‘‘overcomplete basis’’. A basis in a Hilbert space allows one to represent each element in a unique way. An
overcomplete frame also allows one to represent each element via it, but the representation is not unique. This property
plays a significant role in mathematics (such as nonlinear approximation), signal transmission andmodern time–frequency
analysis. In the past more than twenty years, the theory of frames has been growing rapidly. Gabor frames are a class of
important frames among all kinds of frames. Given η, µ ∈ Rd, define the modulation operator Mη and translation operator
Tµ on L2(Rd) respectively by

Mηf (·) = e2π i⟨η,·⟩f (·) and Tµf (·) = f (· − µ) (1.1)

for f ∈ L2(Rd), where ⟨·, ·⟩ denotes the Euclidean inner product in Rd. For α, β > 0 and g ∈ L2(Rd), we denote by G(g, α, β)
the Gabor system:

G(g, α, β) = {MβnTαkg : n, k ∈ Zd
}, (1.2)

whereZd is the set of d-dimensional integer points inRd.G(g, α, β) is called a (Gabor) frame for L2(Rd) if there exist constants
C1, C2 > 0 such that

C1∥f ∥2
≤


n,k∈Zd

|⟨f ,MβnTαkg⟩|2 ≤ C2∥f ∥2 (1.3)
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for f ∈ L2(Rd), where C1 and C2 are called frame bounds. In particular, the frame is called a tight (Gabor) frame for L2(Rd) if
C1 = C2; called a Parseval (Gabor) frame for L2(Rd) if C1 = C2 = 1; called a (Gabor) Riesz basis for L2(Rd) if it ceases to be a
frame for L2(Rd) whenever any one of its elements is removed. G(g, α, β) is called a (Gabor) Bessel sequence in L2(Rd) if the
right-hand side inequality in (1.3) holds, where C2 is called Bessel bound. The fundamentals of frames can be found in [6,7,
11,12,16,24].

In this paper, we focus on super Gabor frames. Given a positive integer L, the direct sum Hilbert space
L

l=1 L
2(Rd) is

exactly the vector-valued Hilbert space L2(Rd, CL) endowed with the inner product defined by

⟨f, g⟩ =

L
l=1


Rd

fl(x)gl(x)dx for f = (f1, f2, . . . , fL) , g = (g1, g2, . . . , gL) ∈ L2(Rd, CL).

In what follows, for f ∈ L2(Rd, CL) and 1 ≤ l ≤ L, we always denote by fl the l-th component of f. Similarly to (1.1), for η,
µ ∈ Rd, we define themodulation operator Mη and translation operator Tµ on L2(Rd, CL) respectively by

Mηf(·) :=

Mηf1(·),Mηf2(·), . . . ,MηfL(·)


,

Tµf(·) :=

Tµf1(·), Tµf2(·), . . . , TµfL(·)


for f ∈ L2(Rd, CL). Obviously, they are both unitary operators on L2(Rd, CL), and it is easy to check that

MηTµf(·) = e2π i⟨η,µ⟩TµMηf(·) for f ∈ L2(Rd, CL). (1.4)

For α, β > 0 and g ∈ L2(Rd, CL), define the Gabor system G(g, α, β) generated by g as

G(g, α, β) = {MβnTαkg : n, k ∈ Zd
}. (1.5)

G(g, α, β) is called a super (Gabor) frame for L2(Rd, CL) if it is a frame for L2(Rd, CL), i.e., there exist constants C1, C2 > 0
such that

C1∥f∥2
≤


n,k∈Zd

|⟨f,MβnTαkg⟩|2 ≤ C2∥f∥2 (1.6)

for f ∈ L2(Rd, CL), where C1 and C2 are called frame bounds, L is called the length of super (Gabor) frame. Tight (Parseval)
super Gabor frame, super Gabor Riesz basis and super Gabor Bessel sequence are defined similarly. We always denote by I the
identity operator, regardless of its acting space. Let G(g, α, β) and G(h, α, β) be both Bessel sequences in L2(Rd, CL). We
define Sh,g : L2(Rd, CL) → L2(Rd, CL) by

Sh,gf =


n,k∈Zd

⟨f,MβnTαkh⟩MβnTαkg for f ∈ L2(Rd, CL). (1.7)

It is well-known that, if Sh,g = I , then G(g, α, β) and G(h, α, β) are both frames for L2(Rd, CL) by the theory of frames. In
this case, we say h is a super Gabor dual of g. In particular, γ = S−1

g,gg is a super Gabor dual of g when G(g, α, β) is a frame
for L2(Rd, CL), which is so-called the canonical dual of g. It is noteworthy that there exist dual frames not having the Gabor
structure for an overcomplete frame (not a Riesz basis) G(g, α, β), which can be proved by Lemma 5.6.1 in [6].

The notion of superframe in general Hilbert spaces was introduced by Balan [1] in the context of ‘‘multiplexing’’, which
has been widely used in mobile communication network, satellite communication network and computer area network.
The idea of ‘‘multiplexing’’ is to encode L independent signals fl, l = 1, 2, . . . , L, as a single sequence that captures the
time–frequency information of each fl. Given a Gabor system G(g, α, β) of the form (1.5), for f ∈ L2(Rd, CL), one then
considers the sequence of numbers ⟨f,MβnTαkg⟩ =

L
l=1⟨fl,MβnTαkgl⟩ for n, k ∈ Zd. One requires that f is completely

determined by this sequence, and that there exists a stable reconstruction. This requirement leads to the definition of super
Gabor frame. In recent years, super wavelet and Gabor frames in L2(Rd, CL) have interested some mathematicians and
engineering specialists. The details can be found in [2–4,9,10,13,17–19,22] and references therein, where super wavelet and
Gabor frames were sometimes called vector-valued wavelet and Gabor frames. In 2008, Führ in [13] derived frame bound
estimates for super Gabor system in L2(R, CL) with window functions belonging to Schwartz space, and obtained estimates
for the window h =


h0, h1, . . . , hL


∈ L2(R, CL+1)composed of the first L+1 Hermite functions, where super Gabor

systems were called vector-valued Gabor systems. The proof is based on a sampling estimate for the Paley–Wiener space
established by Führ and Gröchenig in [14]. In 2009, using growth estimates for theWeierstrass σ -function and a new type of
interpolation problem for entire functions on the Bargmann–Fock space, Gröchenig and Lyubarskii in [17] characterized all
lattices Λ ⊂ R2 such that the Gabor system {Mλ2Tλ1h : λ = (λ1, λ2) ∈ Λ} is a frame for L2(R, CL). However, less is known
about a general super Gabor system. Necessary density conditions were studied in [2] by Balan. A sufficient and necessary
density condition was obtained in [22] by Li and Han for the rational time–frequency lattice case. Motivated by the above
works, we in this paper investigate general Gabor systems G(g, α, β) of the form (1.5) under the following assumptions:

Assumption 1. L is a positive integer.
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Assumption 2. α, β > 0, and αβ =
p
q with p and q being relatively prime positive integers.

Throughout this paper, we denote by N the set of positive integers, by A∗ its conjugate transpose for a complex matrix
A, by Qη the set [0, η)d for η > 0, by Et the set {0, 1, . . . , t − 1}d for t ∈ N, by CEt the complex Euclidean space consisting

of complex vectors indexed by Et , by CLEt the complex Euclidean space consisting of the vector X =


x(1)

x(2)

.

.

.

x(L)

with x(m)
∈ CEt ,

1 ≤ m ≤ L, and by ∥X∥CLEt the Euclidean norm of X . The relation such as inclusion or equality between two (Lebesgue)
measurable sets in Rd means that it holds up to a set of measure zero.

From (1.7), we have

f =


n,k∈Zd

⟨f,MβnTαkh⟩MβnTαkg for f ∈ L2(Rd, CL)

if h is a super Gabor dual of g. In particular, we have much freedom to represent f when g admits many Gabor duals. Such
freedom is exactly why frames attract many researchers, and has important applications in signal transmission. A detailed
argument can be found in [8]. Our main goal in this paper is to establish a general theory of super Gabor dual frames. We
first obtain a characterization of super Gabor frameswhich allows us to easily design super Gabor frames, and then derive an
explicit expression of super Gabor duals (see Theorems 4.2–4.5 below). Ourmain novelty is to introduce a newZak transform
matrix, and to establish all theorems in terms of such matrix. This matrix method allows us to easily obtain super Gabor
dual frames. Our Zak transform matrix here is related to but different from the Zibulski–Zeevi matrix in [25]. It is more
convenient for our purposes.

The rest of this paper is organized as follows. Section 2 is an auxiliary one. In this section, we associate a Gabor system
G(g, α, β) with a qd × Lpd matrix-valued function G(x, w) via a Zak transform which was first introduced in [15]. Some
properties of G are presented. In Section 3, we obtain necessary and sufficient conditions for G(g, α, β) to be complete, a
Bessel sequence, a frame for L2(Rd, CL), and prove that a super Gabor frame is a Riesz basis for L2(Rd, CL) if and only if
(αβ)d =

1
L . This allows us to easily construct super Gabor frames and Riesz bases by designing corresponding Zak transform

matrices. In Section 4, for an arbitrary Gabor frame G(g, α, β), we derive an explicit expression of the canonical dual and a
parametrization of all super Gabor duals of g, and prove that the canonical dual is the norm-minimal one among all super
Gabor duals. We also prove that a super Gabor frame has a unique super Gabor dual if and only if it is a Riesz basis for
L2(Rd, CL).

2. Zak transformmatrix

This section is an auxiliary one to following sections. To begin with we introduce some notions. Given a measurable set
S in Rd, a collection {Sk : k ∈ Zd

} of measurable sets in Rd is called a partition of S if
k∈Zd

Sk = S and Sk ∩ Sk′ = ∅ for k ≠ k′ in Zd.

For λ > 0 and measurable sets S, S ′
⊂ Rd, we say S is λZd-congruent to S ′ if there exists a partition {Sk : k ∈ Zd

} of S such
that {Sk + λk : k ∈ Zd

} is a partition of S ′. In particular, only finitely many Sk among Sk, k ∈ Zd, are nonempty if both S and
S ′ are bounded in addition. Obviously, S ′ is also λZd-congruent to S if S is λZd-congruent to S ′. So we usually say S and S ′ are
λZd-congruent in this case. Similarly, for a set S in Zd, a collection {Sk : k ∈ Zd

} of subsets of Zd is called a partition of S if
k∈Zd

Sk = S and Sk ∩ Sk′ = ∅ for k ≠ k′ in Zd.

For λ ∈ N and S, S ′
⊂ Zd, we say S is λZd-congruent to S ′ if there exists a partition {Sk : k ∈ Zd

} of S such that
{Sk + λk : k ∈ Zd

} is a partition of S ′. It has properties similar to the above sets in Rd. The Zak transform Zqα f of f ∈ L2(Rd)
is defined by

Zqα f (x, w) =


k∈Zd

f (x − qαk)e2π i⟨k,w⟩

for a.e. (x, w) ∈ R2d. It is easy to check that Zqα has quasi-periodicity:

Zqα f (x + qαm, w + n) = e2π i⟨m,w⟩Zqα f (x, w) (2.1)

for f ∈ L2(Rd), m, n ∈ Zd and a.e. (x, w) ∈ R2d. Let Hp be the Hilbert space Hp = L2(Q 1
β

× Q1, CEp). It consists of all

column vector-valued functions s(x, w) =

sj(x, w)


j∈Ep

indexed by Ep with the components sj ∈ L2(Q 1
β

× Q1) and with
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the norm ∥s∥Hp =


j∈Ep


Q 1

β

×Q1
|sj(x, w)|2dxdw

 1
2

. We define the vector-valued Zak transform Zqα f of f ∈ L2(Rd) by

Zqα f (x, w) =


Zqα f (x +

j
β
, w)


j∈Ep

for a.e. (x, w) ∈ R2d.

By simple arguments, we have the following two lemmas:

Lemma 2.1. (i) For (µ, η) ∈ R2d, we have

Zqα(MηTµf )(x, w) = e2π i⟨η,x⟩Zqα f (x − µ, w − qαη)

for f ∈ L2(Rd) and a.e. (x, w) ∈ R2d;
(ii) Zqα is a unitary operator from L2(Rd) onto L2(Qqα × Q1);
(iii) Zqα is a unitary operator from L2(Rd) onto Hp.

Lemma 2.2. The set K =


j∈Ep,l∈Eq


Q 1

qβ
+

j
β

− αl

is qαZd-congruent to Qqα .

Remark 2.1. By (ii) in Lemma 2.1 and (2.1), for f ∈ L2(Rd), Zqα f ∈ L2((Qqα + qαk) × Q1) for k ∈ Zd. So Zqα f ∈ L2(E × Q1)

for an arbitrary bounded and measurable set E in Rd since E can be covered by finitely many such Qqα + qαk. This fact will
be used frequently in the context, and we will not specify it.

Given g ∈ L2(Rd), we denote by G the qd × pd matrix-valued function:

G(x, w) =


Zqαg


x +

j
β

− αl, w


l∈Eq,j∈Ep

for a.e. (x, w) ∈ R2d. (2.2)

For g ∈ L2(Rd, CL), define qd × Lpd matrix-valued function G by

G(x, w) =

G1(x, w),G2(x, w), . . . ,GL(x, w)


for a.e. (x, w) ∈ R2d, (2.3)

where Gm, 1 ≤ m ≤ L, are defined as in (2.2), i.e., Gm(x, w) =


Zqαgm(x +

j
β

− αl, w)

l∈Eq,j∈Ep

. Similarly, we associate f , h

and γ ∈ L2(Rd) with F(x, w), H(x, w) and Γ (x, w), and associate f, h and γ ∈ L2(Rd, CL) with F(x, w), H(x, w) and Γ (x, w)
respectively. By (ii) in Lemmas 2.1 and 2.2 and (2.1), g is uniquely determined by the values of G(x, w) on Q 1

qβ
× Q1. So an

arbitrary qd × Lpd matrix-valued function G(x, w) defined on Q 1
qβ

×Q1 with entries belonging to L2(Q 1
qβ

×Q1) determines a

unique g ∈ L2(Rd, CL) such that g is related to G by (2.3). For f ∈ L2(Rd, CL), we always denote byF (x, w) the vector-valued
function

F (x, w) =


Zqα f1(x, w)
Zqα f2(x, w)

...
Zqα fL(x, w)

 for a.e. (x, w) ∈ R2d. (2.4)

Then we have the following lemma and theorem by Lemma 2.1 and (2.1):

Lemma 2.3. Let f ∈ L2(Rd, CL). Then ∥f∥2
=

Q 1

β

×Q1
∥F (x, w)∥2

CLEp dxdw.

Theorem 2.1. For f, g ∈ L2(Rd, CL), we have

⟨f,MβnTα(qk+l)g⟩ =


Q 1

β

×Q1

(G(x, w)F (x, w))l e
−2π iβ⟨n,x⟩e2π i⟨k,w⟩dxdw

for (n, k, l) ∈ Zd
× Zd

× Eq, where (G(x, w)F (x, w))l is the l-th component of G(x, w)F (x, w):

(G(x, w)F (x, w))l =

L
m=1


j∈Ep

Zqαgm


x +

j
β

− αl, w

Zqα fm


x +

j
β

, w


.

Let g, h ∈ L2(Rd, CL). Next we show how the values of (G∗H)(x, w) on Q 1
qβ

×Q1 determine its behavior on R2d. Similarly
to Lemma 2.3 in [23], we have the following lemma:



Y.-Z. Li, F.-Y. Zhou / J. Math. Anal. Appl. 403 (2013) 619–632 623

Lemma 2.4. For every j ∈ Zd, there exists a unique (kj, lj,mj) ∈ Ep × Eq × Zd such that

j = qkj + plj + pqmj.

Lemma 2.5. For every j ∈ Zd, there exists a Zd-periodic pd × pd unitary matrix-valued function Uj(w) such that

(G∗H)


x +

j
qβ

, w


= U∗

j (w)(G∗H)(x, w)Uj(w) (2.5)

for g, h ∈ L2(Rd) and a.e. (x, w) ∈ R2d.

Proof. For an arbitrary j ∈ Zd, there exists a unique (kj, lj,mj) ∈ Ep × Eq × Zd such that j
qβ =

kj
β

+αlj + qαmj by Lemma 2.4
and the fact that αβ =

p
q . It follows that

(G∗H)


x +

j
qβ

, w


j1,j2

=


l∈Eq

Zqαg

x +

j1 + kj
β

− α(l − lj), w

Zqαh


x +

j2 + kj
β

− α(l − lj), w


(2.6)

for (j1, j2) ∈ Ep × Ep and a.e. (x, w) ∈ R2d by (2.1). Again by qZd-congruence between Eq and Eq − lj and (2.1), (2.6) can be
rewritten as

(G∗H)


x +

j
qβ

, w


j1,j2

=


l∈Eq

Zqαg

x +

j1 + kj
β

− αl, w

Zqαh


x +

j2 + kj
β

− αl, w


.

Observe that to everym ∈ {ξ : ξ = x+ y, x, y ∈ Ep} there corresponds a unique λm ∈ {0, 1}d such thatm−pλm ∈ Ep. There
exist unique λ

(j)
j1
, λ(j)

j2
∈ {0, 1}d such that j1 + kj − pλ(j)

j1
, j2 + kj − pλ(j)

j2
∈ Ep. So

(G∗H)


x +

j
qβ

, w


j1,j2

= e2π i⟨λ(j)
j1

−λ
(j)
j2

,w⟩ 
(G∗H)(x, w)


j1+kj−pλ(j)

j1
,j2+kj−pλ(j)

j2
(2.7)

for a.e. (x, w) ∈ R2d by (2.1). For w ∈ Rd, define Uj(w) : CEp → CEp by
Uj(w)ξ


n = e−2π i⟨λ̃(j)

n ,w⟩ξn−kj+pλ̃(j)
n

for ξ ∈ CEp and n ∈ Ep, where λ̃
(j)
n ∈ {0, 1}d is such that n− kj + pλ̃(j)

n ∈ Ep. Then it is easy to check that Uj(w) is Zd-periodic
and unitary for w ∈ Rd. Also observe that

{j1 + kj − pλ(j)
j1

: j1 ∈ Ep} = {j2 + kj − pλ(j)
j2

: j2 ∈ Ep} = Ep.

We have ⟨(G∗H)(x +
j
qβ , w)ξ, ζ ⟩ = ⟨U∗

j (w)(G∗H)(x, w)Uj(w)ξ, ζ ⟩ for ξ , ζ ∈ CEp and a.e. (x, w) ∈ R2d by (2.7). This leads
to (2.5). The proof is completed. �

Theorem 2.2. For every j ∈ Zd, there exists a Zd-periodic Lpd × Lpd unitary matrix-valued function Uj(w) such that

(G∗H)


x +

j
qβ

, w


= U∗

j (w)(G∗H)(x, w)Uj(w) for g,h ∈ L2(Rd, CL) and a.e. (x, w) ∈ R2d.

Proof. By Lemma 2.5, to each j ∈ Zd there corresponds a Zd-periodic pd × pd unitary matrix-valued function Uj(w) such
that

(G∗

mHm′)


x +

j
qβ

, w


= U∗

j (w)(G∗

mHm′)(x, w)Uj(w) for 1 ≤ m,m′
≤ L and a.e. (x, w) ∈ R2d.

Define

Uj(w) =


Uj(w)

Uj(w)

. . .

Uj(w)

 .

Then it is as desired. The proof is completed. �
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3. Super Gabor frame characterization

This section focuses on the characterization of g ∈ L2(Rd, CL)with G(g, α, β) being complete, a Bessel sequence, a frame
for L2(Rd, CL). For the situation L = 1, a similar characterization was obtained in [5,20,25] using Zibulski–Zeevi matrices.
We also prove that a frame G(g, α, β) is a Riesz basis for L2(Rd, CL) if and only if (αβ)d =

1
L , which is well-known when

L = 1.

Lemma 3.1. For s ∈ L1(Q 1
β

× Q1), we have


n,k∈Zd



Q 1

β

×Q1

s(x, w)e−2π iβ⟨n,x⟩e2π i⟨k,w⟩dxdw


2

= β−d

Q 1

β

×Q1

|s(x, w)|2dxdw. (3.1)

Proof. Write cn,k =

Q 1

β

×Q1
s(x, w)e−2π iβ⟨n,x⟩e2π i⟨k,w⟩dxdw for (n, k) ∈ Zd

× Zd. If s ∈ L2(Q 1
β

× Q1), (3.1) holds since

{β
d
2 e2π iβ⟨n,x⟩e−2π i⟨k,w⟩

: n, k ∈ Zd
} is an orthonormal basis for L2(Q 1

β
× Q1). If s ∉ L2(Q 1

β
× Q1), then β−d


Q 1

β

×Q1

|s(x, w)|2dxdw = ∞, we only need to prove


n,k∈Zd |cn,k|2 = ∞ to finish the proof. We argue by contradiction. Suppose
n,k∈Zd |cn,k|2 < ∞. Then

t(x, w) =


n,k∈Zd

cn,kβ
d
2 e2π iβ⟨n,x⟩e−2π i⟨k,w⟩

∈ L2

Q 1

β
× Q1


due to {β

d
2 e2π iβ⟨n,x⟩e−2π i⟨k,w⟩

: n, k ∈ Zd
} being an orthonormal basis for L2(Q 1

β
×Q1). Observe that two functionsβ−

d
2 s(x, w)

and t(x, w) in L1(Q 1
β

×Q1) have the same Fourier coefficients cn,k, (n, k) ∈ Zd
×Zd. It follows that β−

d
2 s(x, w) = t(x, w) for

a.e. (x, w) ∈ Q 1
β

×Q1, and thus s ∈ L2(Q 1
β

×Q1) due to t ∈ L2(Q 1
β

×Q1). This is a contradiction. The proof is completed. �

By Theorem 2.1 and Lemma 3.1, we have the following lemma:

Lemma 3.2. For f ∈ L2(Rd, CL), we have
n,k∈Zd

|⟨f,MβnTαkg⟩|2 = β−d

Q 1

β

×Q1

⟨(G∗G)(x, w)F (x, w), F (x, w)⟩CLEp dxdw.

By Theorem 2.2 and Zd-periodicity of G(x, w) with respect to w, we have the following lemma:

Lemma 3.3. For g ∈ L2(Rd, CL) and constants C1, C2, C3, we have
(i) rank(G(x, w)) = C1 for a.e. (x, w) ∈ Q 1

qβ
× Q1 if and only if rank(G(x, w)) = C1 for a.e. (x, w) ∈ R2d;

(ii) (G∗G)(x, w) ≥ C2I (≤ C3I) for a.e. (x, w) ∈ Q 1
qβ

× Q1 if and only if (G∗G)(x, w) ≥ C2I (≤ C3I) for a.e. (x, w) ∈ R2d.

Theorem 3.1. G(g, α, β) is complete in L2(Rd, CL) if and only if rank(G(x, w)) = Lpd for a.e. (x, w) ∈ Q 1
qβ

× Q1.

Proof. By Lemma 3.3, we only need to prove that G(g, α, β) is complete in L2(Rd, CL) if and only if

rank(G(x, w)) = Lpd for a.e. (x, w) ∈ Q 1
β

× Q1. (3.2)

And by Lemma3.2, the completeness ofG(g, α, β) in L2(Rd, CL) is equivalent to f = 0 being a unique solution to the equation
Q 1

β

×Q1

⟨(G∗G)(x, w)F (x, w), F (x, w)⟩CLEp dxdw = 0 (3.3)

in L2(Rd, CL). Since the integrand ⟨(G∗G)(x, w)F (x, w), F (x, w)⟩CLEp in (3.3) is nonnegative, (3.3) holds if and only if

⟨(G∗G)(x, w)F (x, w), F (x, w)⟩CLEp = 0 for a.e. (x, w) ∈ Q 1
β

× Q1. (3.4)

Therefore, to finish the proof, we only need to prove that f = 0 is a unique solution to the Eq. (3.4) if and only if (3.2) holds.
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Suppose (3.2) holds, and f ∈ L2(Rd, CL) satisfies (3.4). By (3.4), we have G(x, w)F (x, w) = 0 for a.e. (x, w) ∈ Q 1
β

× Q1.

This together with (3.2) implies that F (x, w) = 0 for a.e. (x, w) ∈ Q 1
β

× Q1. It follows that f = 0 by (iii) in Lemma 2.1.

Now suppose f = 0 is a unique solution to the Eq. (3.4) in L2(Rd, CL). Next we prove (3.2) by contradiction. Sup-
pose rank(G(·, ·)) < Lpd on some measurable subset of Q 1

β
× Q1 with positive measure. Let P(x, w) be the orthog-

onal projection operator of CLEp onto the kernel ker(G(x, w)) of G(x, w) for a.e. (x, w) ∈ Q 1
β

× Q1. Then P(x, w) =

limn→∞ exp(−n(G∗G)(x, w)) for a.e. (x, w) ∈ Q 1
β

× Q1 by an easy application of the spectral theorem of self-adjoint ma-

trices (see also [8, p. 978]). So P(·, ·) is measurable by the measurability of G(·, ·). Now we claim that there exists x0 ∈ CLEp

such that P(x, w)x0 ≠ 0 on some E ⊂ Q 1
β

× Q1 with |E| > 0. Indeed, if for an arbitrary x ∈ CLEp , P(x, w)x = 0 for a.e.

(x, w) ∈ Q 1
β

× Q1, then ker(G(·, ·)) = {0} a.e. on Q 1
β

× Q1. This implies that rank(G(·, ·)) = Lpd a.e. on Q 1
β

× Q1, which is a

contradiction. Define f ∈ L2(Rd, CL) by

F (x, w) =


P(x, w)x0, if (x, w) ∈ E;

0, if (x, w) ∈ Q 1
β

× Q1 \ E

for a.e. (x, w) ∈ Q 1
β

× Q1. Then F (x, w) is measurable since P(x, w) does, and ∥F (x, w)∥CLEp ≤ ∥x0∥CLEp for a.e.

(x, w) ∈ Q 1
β
×Q1, which implies that f is well-defined and f ≠ 0 by (iii) in Lemma 2.1. It is obvious that G(x, w)F (x, w) = 0

for a.e. (x, w) ∈ Q 1
β

× Q1. So f is a nonzero solution to the Eq. (3.4) in L2(Rd, CL), which contradicts the assumption that

f = 0 is a unique solution to (3.4) in L2(Rd, CL). The proof is completed. �

Remark 3.1. Observe that G is a qd × Lpd matrix-valued function. By Theorem 3.1, Lpd ≤ qd if G(g, α, β) is complete in
L2(Rd, CL), which implies that (αβ)d ≤

1
L . So (αβ)d ≤

1
L is necessary for the existence of complete super Gabor systems

in L2(Rd, CL). In fact, it is sufficient for the existence of complete super Gabor systems (super Gabor frames) in L2(Rd, CL),
which was proved in [22, Theorem 1.1].

Theorem 3.2. G(g, α, β) is a Bessel sequence in L2(Rd, CL) with Bessel bound B if and only if

(G∗G)(x, w) ≤ βdBI for a.e. (x, w) ∈ Q 1
qβ

× Q1.

Proof. By Lemma 3.3, we only need to prove that G(g, α, β) is a Bessel sequence in L2(Rd, CL) with Bessel bound B if and
only if

(G∗G)(x, w) ≤ βdBI for a.e. (x, w) ∈ Q 1
β

× Q1. (3.5)

By Lemmas 2.3 and 3.2, G(g, α, β) is a Bessel sequence in L2(Rd, CL) with Bessel bound B if and only if
Q 1

β

×Q1

⟨(G∗G)(x, w)F (x, w), F (x, w)⟩CLEp dxdw ≤ βdB

Q 1

β

×Q1

∥F (x, w)∥2
CLEp dxdw (3.6)

for f ∈ L2(Rd, CL). It is obvious (3.5) implies (3.6). To finish the proof, we only need to prove (3.6) implies (3.5). We argue
by contradiction. Suppose (3.6) holds, while (3.5) fails to hold. Then there exists E ⊂ Q 1

β
× Q1 with |E| > 0 such that

(G∗G)(x, w) > βdBI for (x, w) ∈ E. Define f ∈ L2(Rd, CL) by f2 = f3 = · · · = fL = 0 and Zqα f1(x, w) =


χE (x, w)

0
.
.
.
0

 for a.e.

(x, w) ∈ Q 1
β

× Q1. Then f is well-defined and f ≠ 0 by (iii) in Lemma 2.1, and
Q 1

β

×Q1

⟨(G∗G)(x, w)F (x, w), F (x, w)⟩CLEp dxdw > βdB

Q 1

β

×Q1

⟨F (x, w), F (x, w)⟩CLEp dxdw,

which is a contradiction to (3.6). The proof is completed. �

Remark 3.2. Wedenote by ∥G(x, w)∥CLEp→CEq the norm ofG(x, w) as an operator fromCLEp toCEq for a.e. (x, w) ∈ Q 1
qβ

×Q1.

Theorem 3.2 implies the equivalence between G(g, α, β) being a Bessel sequence in L2(Rd, CL) and ∥G(x, w)∥CLEp→CEq ∈

L∞(Q 1
qβ

× Q1). Observe that, for the linear space consisting of all complex qd × Lpd matrices, the maximum of moduli of all



626 Y.-Z. Li, F.-Y. Zhou / J. Math. Anal. Appl. 403 (2013) 619–632

entries of amatrix also define a norm,which is of course equivalent to the normwhen amatrix is viewed as an operator from
CLEp toCEq . Therefore,G(g, α, β) is a Bessel sequence in L2(Rd, CL) if and only if all entries ofG(x, w) belong to L∞(Q 1

qβ
×Q1).

Theorem 3.3. G(g, α, β) is a frame for L2(Rd, CL) with frame bounds A and B if and only if

βdAI ≤ (G∗G)(x, w) ≤ βdBI for a.e. (x, w) ∈ Q 1
qβ

× Q1.

Proof. By Theorem 3.2, we may as well assume that G(g, α, β) is a Bessel sequence in L2(Rd, CL) with Bessel bound B.
Similarly to the beginning proof of Theorem 3.2, to finish the proof, we only need to prove the equivalence between

βdAI ≤ (G∗G)(x, w) for a.e. (x, w) ∈ Q 1
β

× Q1 (3.7)

and

βdA

Q 1

β

×Q1

∥F (x, w)∥2
CLEp dxdw ≤


Q 1

β

×Q1

⟨(G∗G)(x, w)F (x, w), F (x, w)⟩CLEp dxdw (3.8)

for f ∈ L2(Rd, CL). It is obvious that (3.7) implies (3.8). Next we prove the converse implication by contradiction. Suppose
(3.8) holds, and there exists E ⊂ Q 1

β
× Q1 with |E| > 0 such that (G∗G)(x, w) < βdAI for (x, w) ∈ E. Define f ∈ L2(Rd, CL)

by f2 = f3 = · · · = fL = 0 and Zqα f1(x, w) =


χE (x, w)

0
.
.
.
0

 for a.e. (x, w) ∈ Q 1
β

× Q1. Similarly to Theorem 3.2, we can prove

that (3.8) fails to hold for such f. The proof is completed. �

Remark 3.3. Note that βdAI ≤ (G∗G)(x, w) ≤ βdBI for a.e. (x, w) ∈ Q 1
qβ

× Q1 if and only if

(G∗G(x, w))−1
≤ β−dA−1I and (G∗G)(x, w) ≤ βdBI for a.e. (x, w) ∈ Q 1

qβ
× Q1.

By an argument similar to Remark 3.2, G(g, α, β) is a frame for L2(Rd, CL) if and only if all entries of (G∗G(x, w))−1 and
(G∗G)(x, w) (or G(x, w)) belong to L∞(Q 1

qβ
× Q1).

Next we turn to the characterization of super Gabor frames being Riesz bases for L2(Rd, CL). For this purpose, we
introduce two lemmas:

Lemma 3.4. Let G(g, α, β) be complete in L2(Rd, CL). Then rank(G(x, w)) = qd for a.e. (x, w) ∈ Q 1
qβ

× Q1 if and only if

(αβ)d =
1
L .

Proof. Since G(g, α, β) is complete in L2(Rd, CL), we have rank(G(x, w)) = Lpd for a.e. (x, w) ∈ Q 1
qβ

× Q1 by Theorem 3.1.

So, if rank(G(x, w)) = qd for a.e. (x, w) ∈ Q 1
qβ

× Q1, we have Lpd = qd, which implies that (αβ)d =
1
L due to the fact that

αβ =
p
q ; and if (αβ)d =

1
L , then rank(G(x, w)) =

pd

(αβ)d
= qd for a.e. (x, w) ∈ Q 1

qβ
× Q1. The proof is completed. �

Lemma 3.5. Let G(g, α, β) be a Bessel sequence in L2(Rd, CL). Define T : l2(Zd
× Zd) → L2(Rd, CL) by T ({ck,n}k,n∈Zd) =

n,k∈Zd ck,nMβnTαkg for {ck,n}k,n∈Zd ∈ l2(Zd
× Zd), and denote by ker(T ) the kernel of T . Then

ker(T ) = {{ck,n}k,n∈Zd ∈ l2(Zd
× Zd) : G∗(x, w)Vc(x, w) = 0 for a.e. (x, w) ∈ Q 1

β
× Q1},

where Vc(x, w) =


n,k∈Zd cqk+l,ne2π iβ⟨n,x⟩e−2π i⟨k,w⟩

l∈Eq

.

Proof. Since {ck,n}k,n∈Zd ∈ ker(T ) if and only if


l∈Eq


k,n∈Zd cqk+l,n⟨f,MβnTα(qk+l)g⟩ = 0 for f ∈ L2(Rd, CL), which is

equivalent to
l∈Eq


k,n∈Zd

cqk+l,n


Q 1

β

×Q1

(G(x, w)F (x, w))l e
−2π iβ⟨n,x⟩e2π i⟨k,w⟩dxdw = 0 (3.9)

for f ∈ L2(Rd, CL) by Theorem 2.1. Suppose G(g, α, β) is a Bessel sequence in L2(Rd, CL) with Bessel bound B. Then

∥G(x, w)F (x, w)∥2
CEq = ⟨(G∗G)(x, w)F (x, w), F (x, w)⟩CLEp ≤ βdB∥F (x, w)∥2

CLEp
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for f ∈ L2(Rd, CL) and a.e. (x, w) ∈ Q 1
β

× Q1 by Theorem 3.2 and Lemma 3.3, which implies that (G(x, w)F (x, w))l ∈

L2(Q 1
β

× Q1) for f ∈ L2(Rd, CL) and each l ∈ Eq. It follows that
k,n∈Zd

cqk+l,n


Q 1

β

×Q1

(G(x, w)F (x, w))l e
−2π iβ⟨n,x⟩e2π i⟨k,w⟩dxdw

=


Q 1

β

×Q1

(G(x, w)F (x, w))l


k,n∈Zd

cqk+l,ne−2π iβ⟨n,x⟩e2π i⟨k,w⟩dxdw

for each l ∈ Eq. So (3.9) can be rewritten as

Q 1

β

×Q1
⟨G(x, w)F (x, w), Vc(x, w)⟩CEq dxdw = 0, equivalently,


Q 1

β

×Q1

⟨F (x, w),G∗(x, w)Vc(x, w)⟩CLEp dxdw = 0 (3.10)

for f ∈ L2(Rd, CL). By (iii) in Lemma 2.1, when f runs over L2(Rd, CL), F (x, w) runs over the orthogonal direct sum
Hp


Hp


· · ·


Hp with multiplicity L. So (3.10) is equivalent to

G∗(x, w)Vc(x, w) = 0 for a.e. (x, w) ∈ Q 1
β

× Q1.

Therefore, {ck,n}k,n∈Zd ∈ ker(T ) if and only if G∗(x, w)Vc(x, w) = 0 for a.e. (x, w) ∈ Q 1
β

× Q1. The proof is completed. �

Theorem 3.4. Let G(g, α, β) be a frame for L2(Rd, CL). Then G(g, α, β) is a Riesz basis for L2(Rd, CL) if and only if (αβ)d =
1
L .

Proof. Since G(g, α, β) is a frame for L2(Rd, CL), it is a complete Bessel sequence in L2(Rd, CL). So Lemmas 3.4 and 3.5 both
work for G(g, α, β). Also observe that the frame G(g, α, β) is a Riesz basis if and only if ker(T ) = {0}. So, by Lemmas 3.4
and 3.5, to prove the theorem, we only need to prove that {ck,n}k,n∈Zd = 0 is a unique solution to the equation

G∗(x, w)Vc(x, w) = 0 for a.e. (x, w) ∈ Q 1
β

× Q1 (3.11)

in l2(Zd
× Zd) if and only if rank(G(x, w)) = qd for a.e. (x, w) ∈ Q 1

qβ
× Q1, equivalently,

rank(G∗(x, w)) = qd for a.e. (x, w) ∈ Q 1
β

× Q1 (3.12)

by Lemma 3.3 and the fact that rank(G∗(x, w)) = rank(G(x, w)). It is obvious that (3.12) implies that {ck,n}k,n∈Zd = 0 is a
unique solution to (3.11) in l2(Zd

× Zd). Next we prove the converse implication by contradiction. Suppose {ck,n}k,n∈Zd = 0
is a unique solution to (3.11) in l2(Zd

× Zd), and rank(G∗(x, w)) < qd (equivalent to rank(G(x, w)) < qd) on some
measurable subset of Q 1

β
× Q1 with positive measure. Let Q(x, w) be the orthogonal projection operator of CEq onto the

kernel ker(G∗(x, w)) of G∗(x, w) for a.e. (x, w) ∈ Q 1
β

× Q1. Then, by the same procedure as in Theorem 3.1, there exists

y0 ∈ CEq such that Q(x, w)y0 ≠ 0 on some E0 ⊂ Q 1
β

× Q1 with |E0| > 0, and that {ck,n}k,n∈Zd ∈ l2(Zd
× Zd) defined by

Vc(x, w) =


Q(x, w)y0, if (x, w) ∈ E0;
0, if (x, w) ∈ Q 1

β
× Q1 \ E0 for (x, w) ∈ Q 1

β
× Q1

is a nonzero solution to (3.11) in l2(Zd
× Zd). This is a contradiction. The proof is completed. �

4. Super Gabor dual

Let G(g, α, β) be a frame for L2(Rd, CL). In this section, we investigate the super Gabor duals of g. For the situation L = 1,
a Zibulski–Zeevi matrix characterization of them can be found in [5,21,20,26,25]. By Theorems 2.1 and 3.2 and Lemmas 2.1,
2.3 and 3.3, we can easily obtain the following lemma:

Lemma 4.1. Let G(g, α, β) and G(h, α, β) be both Bessel sequences in L2(Rd, CL). Then
Zqα(Sh,gf)1(x, w)
Zqα(Sh,gf)2(x, w)

...
Zqα(Sh,gf)L(x, w)

 = β−d(G∗H)(x, w)F (x, w) for f ∈ L2(Rd, CL) and a.e. (x, w) ∈ R2d.
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Theorem 4.1. Let G(g, α, β) and G(h, α, β) be both Bessel sequences in L2(Rd, CL). Then Sh,g = I if and only if (G∗H)(x, w) =

βdI a.e. on Q 1
qβ

× Q1.

Proof. By Theorem 2.2, (G∗H)(x, w) = βdI for a.e. (x, w) ∈ Q 1
qβ

× Q1 if and only if

(G∗H)(x, w) = βdI for a.e. (x, w) ∈ Q 1
β

× Q1. (4.1)

By Lemma 4.1 and (iii) in Lemma 2.1, Sh,gf = f for f ∈ L2(Rd, CL) if and only if

(G∗H)(x, w)F (x, w) = βdF (x, w) for f ∈ L2(Rd, CL) and a.e. (x, w) ∈ Q 1
β

× Q1. (4.2)

So, to finish the proof, we only need to prove the equivalence between (4.1) and (4.2). It is obvious that (4.1) implies (4.2).
Next we prove the converse implication. Suppose (4.2) holds, and e is an arbitrary vector in CLEp with only one component
being 1 and the others being 0. Define f ∈ L2(Rd, CL) by F (x, w) = e for (x, w) ∈ Q 1

β
× Q1. Then f is well-defined by (iii) in

Lemma 2.1. Applying (4.2) to all such f, we obtain (4.1). The proof is completed. �

Lemma 4.2. Let G(g, α, β) and G(h, α, β) be both Bessel sequences in L2(Rd, CL), and γ ∈ L2(Rd, CL). Then there exists f ∈

L2(Rd, CL) such that γ = Sh,gf if and only if

Γ (x, w) = β−dF(x, w)H∗(x, w)G(x, w) for a.e. (x, w) ∈ Q 1
qβ

× Q1.

Proof. By Lemmas 2.2 and 4.1 and (iii) in Lemma 2.1, γ = Sh,gf if and only if
Zqαγ1(x − αl, w)
Zqαγ2(x − αl, w)

...
ZqαγL(x − αl, w)

 = β−d(G∗H)(x − αl, w)F (x − αl, w) (4.3)

for l ∈ Eq and a.e. (x, w) ∈ Q 1
qβ

× Q1. Observe that

−pl = q


0
0
...
0

+ p

q


1
1
...
1

− l

+ pq


−1
−1
...

−1


for each l ∈ Eq, which is the unique decomposition as in Lemma 2.4. By an argument similar to the proof of (2.7), we have
(G∗

mHm′)(x − αl, w) = (G∗
mHm′)(x −

pl
qβ , w) = (G∗

mHm′)(x, w) for 1 ≤ m,m′
≤ L, l ∈ Eq and a.e. (x, w) ∈ R2d. So (4.3) can be

rewritten as
Zqαγ1(x − αl, w)
Zqαγ2(x − αl, w)

...
ZqαγL(x − αl, w)

 = β−d(G∗H)(x, w)F (x − αl, w) for l ∈ Eq and a.e. (x, w) ∈ Q 1
qβ

× Q1.

This is equivalent to Γ ∗(x, w) = β−d(G∗H)(x, w)F∗(x, w) for a.e. (x, w) ∈ Q 1
qβ

× Q1 by the definition of Γ and F, and thus

γ = Sh,gf if and only if Γ (x, w) = β−dF(x, w)H∗(x, w)G(x, w) for a.e. (x, w) ∈ Q 1
qβ

× Q1. The proof is completed. �

Lemma 4.3. Let G(g, α, β) be a frame for L2(Rd, CL). Then, for an arbitrary h ∈ L2(Rd, CL), G(h, α, β) is a Bessel sequence in
L2(Rd, CL) if and only if there exists a qd × qd matrix-valued function A(x, w) defined on Q 1

qβ
× Q1 with each entry being in

L∞(Q 1
qβ

× Q1) such that

H(x, w) = A(x, w)G(x, w) for a.e. (x, w) ∈ Q 1
qβ

× Q1.

Proof. The sufficiency holds by Remark 3.2. Next we turn to the necessity. Define f = S−1
g,gh. Then h = Sg,gf, and thus

H(x, w) = A(x, w)G(x, w) for a.e. (x, w) ∈ Q 1
qβ

×Q1 by Lemma 4.2, whereA(x, w) = β−dF(x, w)G∗(x, w). SinceG(g, α, β)

is a frame for L2(Rd, CL), Sg,g is a bounded and invertible operator. This implies that G(f, α, β) = S−1
g,gG(h, α, β) is a Bessel

sequence in L2(Rd, CL) since G(h, α, β) is. By Remark 3.2, all entries of F(x, w) and G(x, w) belong to L∞(Q 1
qβ

× Q1). So all

entries of A(x, w) do. The proof is completed. �
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Theorem 4.2. Let G(g, α, β) be a frame for L2(Rd, CL). Define γ ∈ L2(Rd, CL) by

Γ (x, w) = βdG(x, w)((G∗G)(x, w))−1

for a.e. (x, w) ∈ Q 1
qβ

× Q1. Then γ is the canonical dual of g.

Proof. For an arbitrary h ∈ L2(Rd, CL), h is the canonical dual of g if and only if g = Sg,gh, which is equivalent to

G(x, w) = β−dH(x, w)(G∗G)(x, w) for a.e. (x, w) ∈ Q 1
qβ

× Q1 (4.4)

by Lemma 4.2. Since G(g, α, β) is a frame for L2(Rd, CL), (G∗G)(x, w) is bounded and invertible by Theorem 3.3. So (4.4) can
be rewritten as H(x, w) = βdG(x, w)((G∗G)(x, w))−1

= Γ (x, w) for a.e. (x, w) ∈ Q 1
qβ

× Q1, which is equivalent to h = γ .
So γ is the canonical dual of g. The proof is completed. �

Theorem 4.3. Let G(g, α, β) be a frame for L2(Rd, CL), and let γ 0 be the canonical dual of g. Then ∥γ 0
∥ ≤ ∥γ ∥ for an arbitrary

Gabor dual γ of g, with equality if and only if γ = γ 0.

Proof. Suppose γ is a Gabor dual of g. Then Sγ−γ 0,g = 0. It follows that

0 =


k,n∈Zd

⟨γ 0,MβnTαk(γ − γ 0)⟩⟨MβnTαkg, γ 0
⟩

=


k,n∈Zd

⟨MβnTαkγ
0, γ − γ 0

⟩⟨g,MβnTαkγ
0
⟩

by (1.4), i.e.,

0 =

 
k,n∈Zd

⟨g,MβnTαkS−1
g,gg⟩MβnTαkγ

0, γ − γ 0


. (4.5)

SinceMβnTαkS−1
g,g = S−1

g,gMβnTαk for n, k ∈ Zd, and S−1
g,g is self-adjoint, (4.5) can be rewritten as

0 =

 
k,n∈Zd

⟨S−1
g,gg,MβnTαkg⟩MβnTαkγ

0, γ − γ 0


= ⟨S−1

g,gg, γ − γ 0
⟩ = ⟨γ 0, γ − γ 0

⟩.

So ∥γ ∥
2

= ∥(γ − γ 0) + γ 0
∥
2

= ∥γ − γ 0
∥
2
+ ∥γ 0

∥
2. The theorem therefore follows. �

Theorem 4.4. Let G(g, α, β) be a frame for L2(Rd, CL). Then g has a unique super Gabor dual if and only if G(g, α, β) is a Riesz
basis for L2(Rd, CL).

Proof. The sufficiency is trivial. Next we prove the necessity. Suppose g has a unique super Gabor dual. Then we claim that
h = 0 is a unique solution to the equation

(G∗H)(x, w) = 0 for a.e. (x, w) ∈ Q 1
qβ

× Q1 (4.6)

with G(h, α, β) being a Bessel sequence in L2(Rd, CL). Indeed, if h is a nonzero solution to (4.6). Then G∗(x, w)(Γ (x, w) +

H(x, w)) = βdI for a.e. (x, w) ∈ Q 1
qβ

×Q1 by Theorem4.1,where γ is the canonical dual of g. This implies thatγ +h is another
Gabor dual of g by Theorem 4.1, contradicting the fact that g has a unique super Gabor dual. By Lemma 3.4 and Theorem 3.4,
G(g, α, β) is a Riesz basis for L2(Rd, CL) if and only if rank(G(x, w)) = qd for a.e. (x, w) ∈ Q 1

qβ
× Q1, equivalently,

rank(G∗(x, w)) = qd for a.e. (x, w) ∈ Q 1
qβ

× Q1. (4.7)

Therefore, to finish the proof, we only need to prove that h = 0 being a unique solution to (4.6) implies (4.7). We argue by
contradiction. Suppose rank(G∗(x, w)) < qd on some measurable subset in Q 1

qβ
× Q1 with positive measure. Let Q(x, w)

be the orthogonal projection of CEq onto the kernel ker(G∗(x, w)) of G∗(x, w) for a.e. (x, w) ∈ Q 1
qβ

× Q1. Then by the

same procedure as in Theorem 3.1, Q(x, w) is measurable, and there exists y0 ∈ CEq such that Q(x, w)y0 ≠ 0 on some
E ⊂ Q 1

qβ
× Q1 with |E| > 0. Take H(x, w) as a qd × Lpd matrix-valued function defined on Q 1

qβ
× Q1 with one column

being χE(x, w)Q(x, w)y0 and the others being zero. Then the entries of H(x, w) are in L∞(Q 1
qβ

× Q1), H(x, w) corresponds

to a nonzero h ∈ L2(Rd, CL), and thus G(h, α, β) is a Bessel sequence in L2(Rd, CL) by Remark 3.2. It is obvious that
(G∗H)(x, w) = 0 for a.e. (x, w) ∈ Q 1

qβ
× Q1. So h is a nonzero solution to (4.6), which is a contradiction. The proof is

completed. �



630 Y.-Z. Li, F.-Y. Zhou / J. Math. Anal. Appl. 403 (2013) 619–632

Theorem 4.5. Let G(g, α, β) be a frame for L2(Rd, CL). Then, for an arbitrary h ∈ L2(Rd, CL), h is a super Gabor dual of g if and
only if there exists a qd × qd matrix-valued function A(x, w) defined on Q 1

qβ
× Q1 with entries being in L∞(Q 1

qβ
× Q1) such that

H(x, w) = βdG(x, w)((G∗G)(x, w))−1(I − β−dG∗(x, w)A(x, w)G(x, w)) + A(x, w)G(x, w) (4.8)

for a.e. (x, w) ∈ Q 1
qβ

× Q1.

Proof. The sufficiency holds by Remark 3.2 and Theorem 4.1. Next we turn to the necessity. Suppose h is a super Gabor
dual of g. By Lemma 4.3, there exists a qd × qd matrix-valued function C(x, w) defined on Q 1

qβ
× Q1 with entries being in

L∞(Q 1
qβ

× Q1) such that H(x, w) = C(x, w)G(x, w) for a.e. (x, w) ∈ Q 1
qβ

× Q1. Define a qd × qd matrix-valued function

A(x, w) := C(x, w) − βdG(x, w)((G∗G)(x, w))−2G∗(x, w) for a.e. (x, w) ∈ Q 1
qβ

× Q1.

Then all its entries are in L∞(Q 1
qβ

× Q1) by Remark 3.2 and Theorem 3.3, and

A(x, w)G(x, w) = H(x, w) − βdG(x, w)((G∗G)(x, w))−1, (4.9)

equivalently,

H(x, w) = A(x, w)G(x, w) + βdG(x, w)((G∗G)(x, w))−1 for a.e. (x, w) ∈ Q 1
qβ

× Q1.

However, G∗(x, w)A(x, w)G(x, w) = 0 by (4.9) and Theorem 4.1. So (4.8) holds. The proof is completed. �

Remark 4.1. Theorem 4.5 provides us with a parametrization of computing all super Gabor duals, which together with
Theorem 4.2 shows that the computation of super Gabor duals can be reduced to the computation of canonical duals.

Next we conclude this paper with some examples. By Theorems 3.1 and 3.4 and Remark 3.3, we have

Example 4.1. Let L = 2, α, β > 0 with αβ =
1
2 , and let A(x, w) be a 2×2matrix-valued function defined on Q 1

qβ
×Q1 with

its entries belonging to L2(Q 1
qβ

× Q1). Define g ∈ L2(R, C2) by

G(x, w) = A(x, w) for a.e. (x, w) ∈ Q 1
qβ

× Q1.

Then
(i) G(g, α, β) is complete if and only if det(A(x, w)) ≠ 0 for a.e. (x, w) ∈ Q 1

qβ
× Q1;

(ii) G(g, α, β) is a Riesz basis for L2(R, C2) if and only if all entries of (A∗A)(x, w) and ((A∗A)(x, w))−1 belong to
L∞(Q 1

qβ
× Q1).

Example 4.2. In Example 4.1, take α =
1
2 , β = 1, and A(x, w) =


1 1 − (2 +

√
3)e−2π iw

e2π iw 1 + e2π iw


. Then g(x) =


χ[0,1)(x),

χ
[−

1
2 ,1)(x)− (2+

√
3)χ

[−1,− 1
2 )

(x)

, and G(g, α, β) is a Riesz basis for L2(R, C2). Moreover, the canonical dual γ of g is given

by

γ1(x) =
1

3 +
√
3
χ

−1,− 1
2

(x) −
1

3 +
√
3
χ

−
1
2 ,0

(x) +
1

3 +
√
3
χ

0, 12

(x) +
9 + 5

√
3

(3 +
√
3)2

χ 1
2 ,1

(x),
γ2(x) = −

1

3 +
√
3
χ

−1,− 1
2

(x) +
1

3 +
√
3
χ

−
1
2 ,0

(x).

Example 4.3. Let L = 1, α =
1
2 , β = 1. Define g ∈ L2(R) by g(x) = χ

[−
1
2 ,1)(x) − (2 +

√
3)χ

[−1,− 1
2 )

(x). Then G(g, 1
2 , 1) is a

frame for L2(R) but not a Riesz basis for L2(R), and the canonical dual γ of g is given by

Γ (x, w) = G(x, w)((G∗G)(x, w))−1

=
1

10 + 4
√
3 − (1 +

√
3)(e−2π iw + e2π iw)


1 − (2 +

√
3)e−2π iw

1 + e2π iw


for (x, w) ∈ Q 1

2
× Q1.
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Proof. It is obvious that p = 1, q = 2. A simple computation shows that Z1g(x, w) = 1−(2+
√
3)e2π iw and Z1g(x− 1

2 , w) =

1+e−2π iw for (x, w) ∈ Q 1
2
×Q1. ThenG(x, w) =


1 − (2 +

√
3)e−2π iw

1 + e2π iw


,and (G∗G)(x, w) = 10+4

√
3−(1+

√
3)(e−2π iw

+e2π iw)

for (x, w) ∈ Q 1
2
×Q1. Observe that (G∗G)(x, w) and ((G∗G)(x, w))−1 are both continuous and have no zero on [0, 1

2 ] × [0, 1].

It follows that G(g, 1
2 , 1) is a frame for L2(R) by Remark 3.3. By Theorem 3.4, G(g, 1

2 , 1) is not a Riesz basis for L2(R) since
αβ ≠

1
L . By Theorem 4.2, we can obtain the canonical dual γ . �

Remark 4.2. Observe that 1
10+4

√
3−(1+

√
3)(e−2π iw+e2π iw)

in Example 4.3 has infinitely many nonzero Fourier coefficients. It
follows that the canonical dual γ of g is not compactly supported, although g is compactly supported. Interestingly, such g
is a component of g in Example 4.2, while g and its canonical dual are both compactly supported. This shows that, to some
extent, super Gabor frames enjoy more advantages in the computation of duals than usual Gabor frames.

Example 4.4. In Example 4.1, take α =
1
2 , β = 1, and A(x, w) =


1 λx + µ

λx − µ 1 + λ2x2 − µ2


,where λ, µ are two complex

constants. Then

g(x) =


χ

0, 12

(x) + (λx − µ)χ
−

1
2 ,0

(x), (λx + µ)χ
0, 12

(x) + (1 + λ2x2 − µ2)χ
−

1
2 ,0

(x)


,

and G(g, α, β) is a Riesz basis for L2(R, C2). Moreover, the canonical dual γ of g is given by

γ (x) =


(λ2x2 + 1 − µ2)χ

0, 12

(x) − (λx + µ)χ
−

1
2 ,0

(x), (−λx + µ)χ
0, 12

(x) + χ
−

1
2 ,0

(x) .

The following example is an immediate consequence of Remark 3.3, Theorems 3.4 and 4.2.

Example 4.5. Given L = 2, α =
1
3 , β = 1, let

g =


χ[0,1)(x), λχ

0, 13

(x) + µχ 1
3 , 23

(x) + ηχ 2
3 ,1

(x)


,

where λ, µ and η are three not all equal complex constants. Then G(g, 1
3 , 1) is a frame for L2(R, C2) but not a Riesz basis for

L2(R, C2), and the canonical dual γ of g is given by

γ1(x) =
|η|

2
+ |µ|

2
− λη − λµ

|λ − η|2 + |λ − µ|2 + |η − µ|2
χ

0, 13

(x) +
|λ|

2
+ |µ|

2
− ηλ − ηµ

|λ − η|2 + |λ − µ|2 + |η − µ|2
χ 2

3 ,1
(x)

+
|λ|

2
+ |η|

2
− µλ − µη

|λ − η|2 + |λ − µ|2 + |η − µ|2
χ 1

3 , 23

(x),
γ2(x) =

2λ − η − µ

|λ − η|2 + |λ − µ|2 + |η − µ|2
χ

0, 13

(x) +
2η − λ − µ

|λ − η|2 + |λ − µ|2 + |η − µ|2
χ 2

3 ,1
(x)

+
2µ − λ − η

|λ − η|2 + |λ − µ|2 + |η − µ|2
χ 1

3 , 23

(x).
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