J. Math. Anal. Appl. 404 (2013) 11-28

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

journal homepage: www.elsevier.com/locate/jmaa = i

Stability of steady states for one dimensional parabolic @CmsMark
equations with nonlinear boundary conditions

Junichi Harada
Department of Applied Physics, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

ARTICLE INFO ABSTRACT

ATfiCl_e history: We consider one dimensional parabolic equations with nonlinear boundary conditions:
Received 2 May 2012 U = Uy — qu*i~ ' in Ry x (0, T), d,u = u on {0} x (0, T), u(x, 0) = ug(x) > 0inR_. This
Available online 28 February 2013 equation admits a family of positive stationary solutions {¢, (x) }o~0 (¢« (0) = «) such that

Submitted by Yuan Lou Boy (X) < ¢, (%) if oy < 0. The main purpose of this paper is to study the stability of these

stationary solutions. Furthermore we discuss the large time behavior of global solutions. In
particular, we prove that every global solution is uniformly bounded and converges to one
of the stationary solutions.

Keywords:
Stability
Asymptotic behavior

Nonlinear boundary conditions © 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider one dimensional semilinear parabolic equations:

Up = Uy — auP, (x,t) €I x(0,T),
ou=ul, (x,t) € 3] x (0, T), (1)
u(x,0) =up(x) >0, xe€l,

wherel = (—1,1)orl = Ry = {x € R;x > 0},p,q > 1,a > 0 and 9, denotes the outward normal derivative on the
boundary. A finite time blow-up and global solvability of (1) for the case I = (—1, 1) are studied in [3,7]. It is known that
the dynamics of (1) is classified into three cases:

()p>q or p=g, a>gq, (i)p<q or p=g, a<gq, (ii)p=g a=gq,

where ¢ = 2q — 1. For the case I = (—1, 1) (possible for the case I = R ), every solution is globally defined and uniformly
bounded for the case (i), while solutions blow up in a finite time if the initial data is large enough for the case (ii) [3,7]. As
for the critical case (iii), the only case I = (—1, 1) has been studied in [3]. They [3] proved that every positive solution is
globally defined and converges to the unique positive singular solution of

v =qw* in(-1,1), 2)
¥ (+1) = oo.

Therefore every positive solution becomes unbounded at t = oo. Furthermore for such a case, the following grow-up rate
of positive solutions of (1) is derived in [5]:

lu(€) oo (—1,1) ~ /2.

In this paper, we study the large time behavior of positive solutions of (1) for the case (iii) with I = R,. In this case, there
appear a family of stationary solutions {¢, }o~0 (¢ (0) = @) and a positive singular solution ¢, (¢oo (0) = 00). In particular,
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these stationary solutions are completely ordered: ¢, (x) < ¢, (X) if @1 < o (see Section 2). The first purpose of this paper
is to study the stability of these stationary solutions.

Next we study a boundedness of global solutions of (1). As for the case (ii) with I = (—1, 1) (possible for the casel = R ),
it is shown in [4] that every global solution is uniformly bounded and satisfies

lu()lroo—1,1) < c(llugllreo(—1,1), t > 0.

On the other hand, as is stated above, for the case (iii) with I = (—1, 1), every positive solution is globally defined but
becomes unbounded at t = oco. However, as for the case (iii) with I = R, since the stationary solutions exist, the large time
behavior of global solutions for the case I = R, seems to be different from that for the case I = (—1, 1). Here we discuss
the possibility of global but unbounded solutions for the case (iii) with I = R, . Furthermore we study the w-limit set of
bounded global solutions. Let u(x, t) be a bounded global solution of (1). Then by the compactness of the orbit {u(-, t); t > 0}
in Coc(R ), the solution u(x, t) approaches to the w-limit set:

o) = {£ € BCR,); u(-, t) — & in G (R,.) for some sequence t, — o0}.

In general, as for one dimensional (radially symmetric) semilinear parabolic equations on a bounded interval (a ball
with a radius R > 0), from the view point of the intersection comparison argument, the w-limit set consists of one
of stationary solutions, i.e. w(u) = {&}, where £ is a stationary solution. This implies that u(-,t) — & ast — oo.
However, for a unbounded domain case, the w-limit set is not always given by one of stationary solutions in general. In fact,
Polacik-Yanagida [9] constructed a solution u of u; = Au + uP on the whole space R" such that w(u) = {¢,; o € [B1, B21}
for some B8, < B,, where ¢, is a positive radial symmetric stationary solution with ¢, (0) = «. Namely this solution u is
oscillating between two stationary solutions ¢g, and gg,. As for (1), we will see that no oscillating solutions exist, in other
words, the w-limit set is given by one of stationary solutions.

Finally we study the large time behavior of sign changing solutions of (1) for the case (iii) withI = (—1, 1). We note that
(1.6) has two types of singular solutions. One is positive (negative) singular solutions £¥ satisfying (2), the others are sign
changing singular solutions +¥; satisfying

W = q&* % in(—1, 1),
¥ (£1) = £o0.

As is stated above, the positive singular solution is stable in the sense that every positive solution converges to the positive
singular solution ¥ (x) as t — oo. Then here arises a natural question: “Are there solutions which converge to the sign
changing singular solutions +¥;(x) as t — 00?” To provide a complete description of the large time behavior of sign
changing solutions, this question is crucial. The last purpose of this paper is to answer this question.

The rest of this paper is organized as follows. In Section 2, we recall various type of comparison lemmas and collect some
fundamental properties of zeros of solutions of one dimensional parabolic equations. Furthermore we introduce a family of
positive stationary solutions and a positive singular solution. In Section 3, we study the stability of stationary solutions. A
boundedness of global solutions is discussed in Section 4. Furthermore we study the large time behavior of bounded global
solutions in Section 5. Finally in Section 6, we study the asymptotic behavior of sign changing solutions for the case (iii) with
I=(-1,1).

Throughout this paper, we fix p = 2q — 1 and a = q. For simplicity, we denote a norm of L"(R) by | - ||, and define
BC(I) = C() N L*().

2. Preliminaries
In this section, first we recall various types of comparison lemmas which are often used throughout this paper. Secondly

we collect some fundamental facts concerning zeros of solutions of one dimensional parabolic equations. Finally we
introduce stationary solutions.

2.1. Comparison lemmas

Here we consider a general form of one dimensional nonlinear parabolic equations.

wr = Wy +f(x, €, w), (x,t) €I x(0,T),
0,w(0, 1) = go(t, w(0, 1)), € (0,T), )
dw(l,t) =g, w(l,t), te(,7),
w(x, 0) = wo(x), xel,
where I = (0, 1) or R,. For the case I = R,, a boundary condition on x = 1 is not imposed. Here f(x, t, w) and

gi(t,w) (i =0, 1) are assumed to be

f.fy €CA x[0,T) xR), 8i, 0ug& € C([0,T) xR) (i=0,1). (4)
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Furthermore a solution w(x, t) is assumed to be

weCIx[0,T)NC*'Ix(0,T), wel®Ix(O0,T—¢) foranye > 0. (5)
To define a super(sub)-solution, we put

Lw = wr — wy — f(X, £, W), Bow = d,w — go(t, w), Brw = d,w — g1(t, w).
We call w(x, t) a super(sub)-solution of (3) if w(x, t) satisfies (5) and

Lwx, t) >0(<0) inl x (0,7T),
Bow(0,t) >0(<0) fort e (0,7), Biw(l,t) >0(<0) fort e (0,T).

Lemma2.1. | = (0,1) or I = R,. Assume that f(x, t, w) and gi(t, w) (i = 0, 1) satisfy (4). Let wV (x, t) (w® (x, t)) be a
sub-solution (super-solution) of (3) with (5). Then if wél)(x) < w(()z) () for x € I, then it holds that w™V (x, t) < w® (x, t) for
(x,t) €I x (0, T).

Proof. Since this lemma seems not to be standard, for the convenience of reader, we provide the complete proof. First we
consider the case I = (0, 1). We set W (x, t) = (wV(x, t) — w? (x, t));, where w, = max{w, 0}. Then by assumptions,
for any € > 0 there exists¢; > 0 (i =1, 2, 3) suchthatforx e Iandt € (0, T — €)

[fx. 6, w®) —fx, £, w?)| W < e W?,
|go(t, w ) —go(t, w?H|W < W2, |gi(t,w™) — gi(t, w?)| W < csW>.

Therefore by applying a trace inequality: 2(W (0)? + W (1)?) < fol Wi (x)%dx + ¢ fol W (x)%dx, we get

1d

1 1 1
55/ W (x, 0)]%dx < —/ | W(x, t)|2dx+c1/ W(x, t)%dx + ;W (0, £)* + csW(1, £)?
0 0 0

IA

1 1 1
—5/ |Wx(x,t)|2dx—|—c/ W, t)%dx fort e (0,T — ).
0 0

For the case I = (0, 1), the regularity assumption (5) implies W e C([0, T); L?>(0, 1)). Therefore since W (x, 0) = 0, by the
Gronwall inequality, we obtain the conclusion. Next we consider the case | = R.. Let uV(x, t) = eV (x, t) and
u@(x, t) = e V1 (x, t). Then we see that for (x, t) € R, x (0, T)

uw” <ul) + e u + aeou® + eV r w™),

uEZ) > u)(oz() + a1(x)uf(2) + az(x)u@) + e_“/”"zf(x, t, w(Z)),

where g;(x) € BC(R,) (i = 1, 2, 3). Furthermore boundary conditions are given by

3,uV(0,1) < e V¥ g, w(0,1), t>0,
3,u®(0,1) > eV ¥ gy, w?®(0,1)), t>0.

By definition of u® (x, t) (i = 1, 2), we find that u® e C([0, T); I*(R,)) (i = 1, 2). Furthermore assumptions (4) and (5)
imply [f(x, £, w®) —f(x, t, w?)| < c.|[wP —wP|fort € (0, T—e€) withany e > 0. Therefore the rest of the proof follows
fromthecasel = (0,1). O

We recall more standard comparison lemmas than the previous one.

Lemma2.2. | = (0, 1) or | = R,. Assume (4). Let w® (x, t) (i = 1, 2) be two functions satisfying (5) and

LwP(x,t) <0 inl x (0,T), LwPx, t) >0 inl x (0,T),

(6)
w®,t) <w®(,t) forte (0,T), w1, ) <w®,t) fort e (0,T).

For the case I = R, a boundary condition on x = 1 is not imposed. Then if w(()])(x) < w(()2> (x) for x € I, then it holds that
wD(x, t) < wP(x, t) for (x,t) €I x (0,T).

Proof. Since this is standard, we omit the proof. O



14 J. Harada / J. Math. Anal. Appl. 404 (2013) 11-28

Next consider the case where f depends on wy.
Wr = Wxx +f(X, t,w,wy), x,t)elx(0,T).
In this case, f (x, t, w, p) and g;(t, w) (i = 0, 1) are assumed to be
Fofusfue € CAXT0,T) xR, g, 3,8 € C(0,T) xR) (i=0,1). (7)
Furthermore a solution w(x, t) is assumed to be

weCdx[0,T)NC>(I x (0,T)), w, wy € LU x (0,T —¢)) foranye > 0. (8)

Lemma2.3. | = (0, 1) or = R,. Weassume (7). Let w® (x, t) (i = 1, 2) be two functions satisfying (8) and (6) with replaced
fx, t, w) by f(x, t, w, wy). Then if wi" (x) < w (x) for x € I, then it holds that w™ (x, t) < w® (x, t) for (x, t) € I x (0, T).

Proof. Let W(x, t) be as in Lemma 2.1. Additional assumptions f,,, € C(I x [0,T) x R?) and wy € L x (0, T — €)) are
used to obtain

IFex, 6, w® w) = f&x, 6, w?, wP)|W <cc W+ Wi DW, te0,T—e¢).
Therefore the rest of proof follows from the same argument as in that of Lemma 2.1. O
Finally we recall a comparison lemma for a moving domain. Here we consider a moving domain O defined by
0= {(x,t)eRy x(0,T); 0 <x < z(t)},

where z(t) is a continuous function on [0, T] and z(t) > O fort € [0, T).

Lemma 2.4. Assume (4). Let w®(x, t) € BC(0) N C%1(0) (i = 1, 2) be two functions satisfying

Lw® <0 ino, £Lw®=>0 inoO,
Bow(0,t) <0 fort e (0,T), Bow?(0,t)>0 forte(0,T),
wP ), t) <w® @), t) fort € (0,T).

Then if w" (x) < w{” (x) for x € (0, 2(0)), then it holds that w™ (x, t) < w® (x, t) in O.

Proof. This lemma follows from Lemma 6.12in [6]. O
2.2. Zeros of solutions of one dimensional parabolic equations
Consider the following one dimensional parabolic equations:

Uy = Uy + c(x, D), x,t) € (—1,1) x (0, T). 9
U+, 1) = co(Du(E1,£), te (0.T). (9)

Here we assume thatc(x, t) € C([—1, 1] x [0, T]) and c+(t) € C([0, T]).Let N (t) be the number of zeros of u(-, t) on [0, 1].
The following lemma is one of variants of results in [8].

Lemma 2.5 (Theorem 6.15 in [6]). Let u(x, t) be a classical solution of (9)and0 < t; < t; < T.If N(t;) < o0, then it holds
that N(tz) < N(ﬁ).

As a consequence of Theorems C and D in [1], the following result holds.
Lemma 2.6. Let u(x, t) s 0 be a classical solution of (9). Then it holds that N (t) < oo for t > 0.

Next we consider the same equation defined on R :

(10)

Ur = Uy + C(x, D), (x,t) e Ry x (0, T).
uy(0, t) = co(t)u(0,t), t e (0,T),

where c(x, t) € C(R4 x [0, T]) and ¢y (t) € C([0, T]). We denote by  (t) the number of zeros of u(-, t) on R,.. Then we can
show the following lemma by the same way as in the proof of Theorem 6.15 in [6].

Lemma 2.7. Let u(x, t) be a classical solution of (10)and 0 < t; < t, < T.If N (t;) < 00, then it holds that N (t;) < N (t).
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2.3. Stationary solutions

Consider the stationary problem of (1):

¢” = q¢2q_1 in RJF’
{¢’= —¢1 on {0}. a
To construct solutions of (11), we consider the following ODE problem:
¢N = q¢2q—1 inRy (12)
¢(0) =o > 0, ¢'(0) = —af.

We denote by ¢, (x) the unique solution of (12). Then for any & > 0, ¢, (x) gives a solution of (11) and is explicitly expressed
by

¢0{(X) — ((q _ 1)X+ a—(q—l))-l/(i}—l) )
For the case o« = o0, we define

Do (®) = (q — 1)*1/(11*1))(1/(!1*1).

Then ¢, (x) turns out to be a singular solution of (11) satisfying ¢», (0) = 00 and ¢, (x) = lim,_, o P (x). Moreover by the
explicit formula of ¢, (x), we see that these stationary solutions are completely ordered:

Poy (%) < ¢a, (X) if ey < 3.

3. Instability of stationary solutions
In this section, we consider the case | = R.

U = U — qu2™1, (%, t) € Ry x (0,T),
ou=ul, x=0,t >0, (13)
u(x, 0) = ug(x), xeRy.

Throughout this section we always assume

up € BCRy),  up(x) > 0. (14)
Then (13) admits a unique classical solution u(x, t), that is

ueBC(R;: x[0,T—e)NC> (R, x (0,T)) foranye > 0,

where T € (0, oo] is the maximal existence time.

3.1. Instability from below

Theorem 3.1. Fixa € (0, 00). Let ug(x) € BC(R.) satisfy ug(x) < ¢ (X) (Uo(X) Z ¢o(x)), and u(x, t) be a classical solution
of (13). Then there exists § > 0 such that for any R > 0 there exist ty > 0 such that

U, 0 < (@ @V +8) 7"V (%, 0) € (0,R) x (to, 00).

We introduce a new unknown function v(x, t) = u(x, t)~@~D, Then v(x, t) satisfies
q

=ttt ——— ((@q— D> —1), (1) eRy x (0,00),
UX(O7 t) = (q - 1)7 te (Os 00)7
v(x, 0) = vo(x) == up(x)~7 Y, x € R,.

We set
Vo) =) TV =@q—Dx+a @V (a>0).

It is clear that v, (x) gives a stationary solution of (15). First we assume that the initial data vy (x) satisfies the following
conditions.

(A1) vg(x) is smooth enough and satisfies vy(0) > 0and vy(0) = (q — 1),

(A2) there exists 8 > 0 such that 0 < vo(x) < ¥g(x) forx € Ry,

(A3)0 < yy(x) < (q—1)forx € Ry,

(A4) there exists Ry > 0 such that vy(x) = (g — 1) forx € (Ry, 00).
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Lemma 3.1. Let u(x, t) be a classical solution of (13) and set v(x, t) = u(x, t)~“~V.If vy (x) satisfies (A1) and (A3)-(A4), then
v(x, t) satisfies 0 < vy(x, t) < (q — 1).

Proof. Let R > Ry. Consider the following approximate equations:

Up = Uy — qu2i7T, (x,t) € (0O,R) x (0, T),
Uy = —uf, (x,t) € {0,R} x (0, T), (16)
u(x, 0) = up(x) == vo )"V xe(0,R).

By (A1) and (A3), it is clear that vy (x) is strictly positive in (0, R). Hence ug(x) is strictly positive and smooth. Furthermore
since R > Ry, by (A1) and (A4), uo(x) satisfies the compatibility conditions uy = —ug on x € {0, R}. Therefore there exists a
unique solution ug(x, t) € C>'([0,R] x [0, T)) N C*®([0, R] x (0, T)) of (16), where T € (0, oc] is the maximal existence
time. First we claim that u(x, t) is strictly positive in (0, R) x (0, T). Since ug(x) is strictly positive in (0, R), there exists
oy > 0such thatug(x) > ¢y, (x) forx € (0, R). Therefore since ¢, (x) is a stationary solution of (16), by Lemma 2.1, we find
that ug(x, t) > ¢, (%) for (x,t) € (0,R) x (0, T), which assures the claim. We put vg(x, t) = ug(x, t)~@=D_ Then by the
positivity of ug(x, t), we see that vg(x, t) € C>1([0, R] x [0, T)) N C*>°([0, R] x (0, T)) and it satisfies

q

b= vk o ((@—1D*—vf), (1) €(0,R) x(0,T),

vx(Ov t) - UX(R5 t) = (q - 1)9 te (Oa T);

v(x, 0) = vo(x), x e (0,R).
Now we claim that

0 < dyvp(x,t) <(q—1), (x,t) € (0,R) x (0, T). (17)
Set wg(x, t) = dxvg(x, t). Then wg(x, t) satisfies
_ __ 2 __ qw 2,2

W = Wiy e 1)uwa" rEnT ((@—1*=w?), (xt)€ R x0,7),

w(0,t) =wR, t) =(q—1), te(0,7),

w(x, 0) = wo(x) := dyvo(x), x € (0,R).

Since vg(x, t) € C>1([0, R] x [0, T))NC>®([0, R] x (0, T)), itis clear that wg(x, t) € C1O([0, R]1x [0, T))NC>®([0, R] x (0, T)).
Therefore by Lemma 2.3 with (A3), we obtain

0 =< U)R(X, t) = (q - 1)7 (X7 t) € (O’R) X (07 T)v

which assures the claim. To derive a priori estimates for uz(x, t), we construct a suitable super-solution. We choose a smooth
function Uy (x) satisfying Uy (x) > ug(x) in [0, 1], Uy(0) = —Up(0)? and Uy(1) = 0. Let U(x, t) be a unique solution of

Uy = Uy — qU2T, (x, t) € (0, 1) x (0, 00),
Uy(0,t) = U0, )%, Uy(1,t) =0, t € (0,00), (18)
U(x, 0) = Up(x), x € (0, 1).

Then by Theorem 4.7 in [3], U(x, t) is globally defined. From (17), we note that
0 < —dxug(x, t) < ug(x,0)?,  (x,t) € (0,R) x (0, T).

Hence it follows that ug(0, t) = ||ug(t)|l1>,r) for t € (0, T). Therefore by d,ug(1, t) < 0, applying Lemma 2.1, we see that
ug(x, t) is globally defined and ug(x, t) < U(x, t) for (x,t) € (0, 1) x (0, co). Furthermore it holds that dyug(x, t) < 0 for
(x,t) € Ry x (0, 00). Therefore we get ||ug(t)|[r0.r = ur(0,t) < U(0, t). By a parabolic regularity theory, there exist a
sequence {R;}?°, and a limiting function u(x, t) such that R; — oo and

lim ug (x, t) = U(x, t) in Goc (R4 x [0, 00)).
1— 00

Then u(x, t) is a classical solution of (13) satisfying u(x, t) < U(x,t) in (0,1) x (0,00) and 0 < —o,u(x,t) < u(x,t)4.
Therefore by a unique solvability of (13), it holds that u(x, t) = u(x, t). Thus the proof is completed. O

Here we assume that vo(x) satisfies vy > ¥y (vo Z Vo) and (A1)-(A4). Put ug(x) = vo(x)~/@=D. Then it is verified
that ug(x) is smooth and ¢g(x) < up(Xx) < ¢,(x). Therefore by Lemma 2.1, there exists a unique solution u(x, t) €

C21(R4 x [0, 00)) of (13) satisfying ¢ (x) < u(x, t) < ¢y (x) for (x,t) € Ry x (0, 00). Let v(x, t) = u(x, t)~9~V. Then by
the positivity of u(x, t), we find that v(x, t) € C>'(R,. x [0, 00)) and it satisfies

Yo (X) < v(x, 1) < Yp(x), (X t) € Ry x (0, 00). (19)
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To discuss the stability of the stationary solution v, (x) of (15), we set
w(x, t) = vx, t) — Y (x).
Since vy (X, t) = wy(x, t) + (@ — 1), we see that

e 2@=1) b e R, x (0, 00),
(q— Do

wy (0, t) = 0, t € (0, 00),
w(x, 0) = wo(x) = vo(x) — Yo (X), x€R,.

Wt = Wxx —

Since ¥, (x) = (@ — )x + =@, from vy > ¥, and (A2)-(A4), we see that
wo > 0, wo, Wy, Wy € BC(Ry).
Furthermore by Lemma 3.1, it follows that
—(@—1D <wx ) <0, (1) €R;x(0,00).
Therefore from (19) and (22), we obtain
a4 _awt+20@-1) _ 29
Vs (@—Dv " Ve

To construct a sub-solution of (20), we consider the following problem:

q
Wy =Wy — ——W,, &, t)eR 0, ,
t XX Wﬁ(x) x ( ) + X ( OO)
Wi (0, 1) =0, t € (0, 00),
W(x, 0) = wo(x), x € R;.

Lemma 3.2. Let W (x, t) be a bounded classical solution of (24). If vy(x) satisfies (A1)-(A4), then it holds that
U)(X, t) > W(X, t)v (Xa t) € R+ X (07 OO)

Proof. From (22) and (23), we see that
qwy+2(g— 1) 2q
s ——— wx 2 —_
(@—Dv Vg

Therefore we get

X

(W= W) > (W — Wy — ——(w—W),, (1) €R; x (0,00,
Y (x)

(w_W)X(O5 t):05 te (05 OO),

(w—W)(x,0)=0, xeR,.

17

(21)

(22)

(23)

(24)

By ¥ () = (¢ — Dx + =~V and (19), we find that w(x, t) € (R x (0, 00)). Therefore since ¥5(x)~! € L®(R;), a

comparison lemma implies w(x, t) > W(x, t) for (x, t) € Ry x (0, 00), which completes the proof. O

Lemma 3.3. Let W (x, t) be as in Lemma 3.2. Then if v, satisfies (A1)-(A4), there exists k € R such that W(-,t) — « in

Coc(Ry) as t — oo. Moreover « is characterized by

0 -1 0
K= ( f eﬂ(x)dx) ( / wo(x)Qﬂ(x)dx) : (25)
0 0
where 05(x) = (x + b)~ 9@V, p = g~V /(g — 1).
Proof. By (21) and wy(0) = 0, we see that W(x,t) € C>1(R, x [0, 00)). First we derive a priori estimates for

W(x, t), Wi(x, t), W, (x, t). A comparison argument implies
sup W lloo < IW(0) oo = llwolloo-
>

Hence by the assumption wy € BC?(R,), W (x, t) is uniformly bounded on R, x (0, 00). To derive a estimate for W, (x, t),

differentiating (24) with respect to t and applying a comparison lemma, we obtain

sup [We()lloo < IWe(0)lloo < llwglloo + B 1wl co-
t>0
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Therefore by the assumption wy € BC?(R..), a boundedness of W, (x, t) is derived. For simplicity, we putl, = (z,z + 1).
Then since w(x, t) satisfies (24), we see that

||Wxx(t)||1_2(12) = ||Wt(t)||1_2(11) + qIBq71||Wx(t)||L2(lz)7 t>0.

Hence by interpolation inequalities, there exists ¢ > 0 independent of z > 0 such that
Wi (Ol 121, < € (IWe(O)lli2,y + ”W(t)”LZ(IZ)) , t>0.

As a consequence, by using the Sobolev inequality with n = 1, we get
Wy () llrooq,y < ¢ (||Wxx(t)||Lz(,Z) + ||W(t)||l_2(lz))

¢ (IWeOlli2y + WO lli2g,y) » > 0.

Therefore since W (x, t) and W, (x, t) are uniformly bounded on R, x (0, 00), a boundedness of W,(x, t) is derived. By the
explicit expression of ¥4 (x), the right-hand side of (24) is rewritten by

IA

XX

q 4 1
= S Wy = Wiy — —Wx = —— 0 x),
oo =W — W= g GrOWa),

where b = =@V /(q—1),y = q/(q— 1) and 0p(x) = (x 4+ b)77. Since W(x, t), Wy(x,t) € L(R4+ x (0, 00)) and
0p(x) € L'(Ry), we see that

0; / - W(x, 1)0s(x)dx = / b (Op (Wi (x, 1)), dx = 0,
0 0

which implies

f W(x, £)0g(x)dx = / wo (x)0g (x)dx. (26)
0 0
Furthermore by a standard way, we get
d (o] (o]
i Wi (x, 1) [0 (x)dx = —2/ |We (x, £)|*0p (x)dx. (27)
0 0

Integrating over (0, co0), we obtain
(o] o0 1 o
/ dt f |We (%, 0|20 (x)dx < 2 / |3xwo (x) |65 (X)dx.
0 0 0
Hence since d,wy € BC(R,) and 0p € L'(R.), there exists a sequence {tx}e2, such that tp — oo and
o0
/ |We (%, t)]*05 (x)dx — 0.
0

By a parabolic regularity theory, there exist a limiting function W, (x) € BC?(R,) and a subsequence {te}2,, which is
denoted by the same symbol such that

lim W(, t,) =W, inCA.(R,).

k— o0

Then W, (x) is a bounded stationary solution of (24). Hence W, (x) must be a constant, which is denoted by «. Applying
Lebesgue’s dominant convergence lemma to (26), we obtain

[oe] [o.¢]
K f Op(X)dx = / wo (X)0p (x)dx.
0 0
Furthermore since W, € L*°(R,. x (0, 00)), by Lebesgue’s dominant convergence lemma, we obtain
o0
/ |Wy(x, t) |05 (x)dx — 0.
0
Since fooo Wi (x, t)zeﬁ (x)dx is decreasing with respect to t by (27), we conclude that
o0
/ [Wi(x, £)*05 (x)dx — 0.
0

Therefore we obtain W,(-, t) — 0in Goc(R4) ast — oo. Now we claim that W (-, t) — & in Coc(Ry) ast — o0. Let {ti}ren
be any sequence such that ty — oo as k — oo. Then from W € L*°(R, x (0, co)) and Wy(-, t) — 0in Cjoc(Ry) ast — oo,
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there exist ¥’ € R and a subsequence {7} }xen, Which is denoted by the same symbol such that W (-, 7)) — «’ in Coc(R,.) as
k — oo. We again apply Lebesgue’s dominant convergence lemma in (26) to obtain

K’ /oo Op(x)dx = foo wo (X)0p (x)dx.
0 0

Hence it follows that " = «. Therefore we obtain W (-, 7y) — & in G (R,) ask — oo.Since a sequence {ty}ey is arbitrary,
we conclude that W (-, t) — k in Goc(Ry) ast — oo, which shows the claim. Thus the proof is completed. O

Combining Lemmas 3.2 and 3.3, we can show the instabilities of stationary solutions of (15), which is stated as follows.

Proposition 3.1. Let « € (0, 0o) and u(x, t), v(x, t) be as in Lemma 3.1. If vo(x) satisfies vo(x) > Py (x) (Vo(X) F Py (X)),
then there exists § > 0 such that for any R > 0 there exists ty > 0 such that v(x, t) — ¥, (x) > & for (x,t) € (0, R) x (to, 00).

Proof. For any initial data vo(x) satisfying vo(x) > ¥, (x) (vo(x) # V¥,(x)), we can choose a function £y(x) satisfying
(A1)-(A4), Yo (x) < &(x) < vo(x) and &p(x) # Y4 (x). Let £(x, t) be a unique solution of (15) with the initial data &y(x).
Then by Lemma 2.1, it holds that v(x, t) > £(x, t). Furthermore let W (x, t) be a bounded classical solution of (24) with
wo(x) = & (x) — V¥ (x). Then by Lemmas 3.2 and 3.3, we verify that £ (x, t) — ¥, (x) > W(x, t) and

lim W(-, t) — k inGec(Ry),

t—o00
where k is characterized by (25). It is clear that x > 0. Therefore for any R > 0 there exists t > 0 such that
v(x,t) > Yy (x) +«/2forx € (0,R) and t > to, which completes the proof. O

Theorem 3.1 follows from Proposition 3.1.

3.2. Instability from above

Theorem 3.2. Fixa € (0, 00). Let ug(x) € BC(R,) satisfy up(x) > ¢a (%) (Ug(X) # ¢o (X)), and u(x, t) be a classical solution
of (13). Then there exists § > 0 such that for any R > 0 there exist ty > 0 such that

u(x, £) > ()"0 = 8) "V (1) € (0, R) x (b, 00).

The proof of Theorem 3.2 is almost same as in the proof of Theorem 3.1. So we omit the proof of all lemmas and a
proposition stated below. We assume the following conditions instead of (A1)-(A4):

(a1) vo(x) is smooth enough and satisfies vy(0) = (q — 1),

(a2) vy(x) = (@ — 1) forx € Ry,

(a3) There exists Ry > 0 such that vy(x) = (g — 1) forx € (Ro, 00).

Lemma 3.4. Let u(x, t) be a classical solution of (13) and set v(x, t) = u(x, t)~9=V_If vo(x) satisfies (a1)-(a3), then v(x, t)
satisfies vy (x, t) > (@ — 1).

Let vp(x) satisfy 0 < wvp(x) < ¥,(x) and (al)-(a3). Set w(x,t) = v(x,t) — Y, (x). From Lemma 3.4, it follows that
wy(x, t) > 0. Hence the second term on the right-hand side of (20) is estimated by

q(wx +2(q — 1)) - 2q

@-Dv T Y
Therefore w(x, t) satisfies
Wy < Wxx — ﬁwm (x,t) € Ry x (0, 00),
we(0,6) =0, t € (0, 00),

w(x, 0) = wo(X) == vo(X) — Yu(x), x€R,.
Here we note that
wo <0, wp, wy, wy € BC(Ry).
By the same manner, we consider the following problem:

2
Wi = Wy — W, (1) €Rs x (0,00),

W,(0,t) =0, t € (0, 00),
W(x, 0) = wo(x), x e Ry
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Lemma 3.5. Let W (x, t) be a bounded classical solution of (28). If vo(x) satisfies 0 < vo(x) < V¥, (x) and (al)-(a3), then it
holds that

wx, t) < W(x,t), (x,t)eRy x(0,00).

Lemma 3.6. Let W (x, t) be as in Lemma 3.5. Then if vg satisfies (a1)-(a3), there exists k € Rsuch that W (-, t) — « in Goc(R4)
ast — oo. Moreover k is characterized by

0o -1 00
K= < / éa(x)dx) ( f wo (x)0, (x)dx> ,
0 0

where 0, (x) = (x + b)~29/@ D p = o=@V /(g — 1),
Proposition 3.2. Let o« € (0, 00) and u(x, t), v(x, t) be as in Lemma 3.4. If vo(x) satisfies vo(x) > Yy (x) (Vo(X) Z Ve (X)),
then there exists § > 0 such that for any R > 0 there exists to > 0 such that v(x, t) — ¥, (x) < —§ for (x,t) € (0, R) x (tg, 00).

Theorem 3.2 follows from Proposition 3.2.

4. Boundedness of global solutions

Throughout this section, we always assume that ug(x) satisfies (14). Furthermore for simplicity of notations, we define
Vool =(@=Dx,  Yoa=(@—-Dx—2a"9" (4>0
andr, = A=WV /(q — 1). Then it is verified that /_, (x) > 0 forx > r,.

Theorem 4.1. Assume uy € BC(R,). Let u(x, t) be a classical solution of (13), and set v(x,t) = u(x, t)"4™D and vo(x) =
uo(x) =D If there exists A > 0 such that vy(x) > ¥_(x) for x > r4, then u(x, t) is uniformly bounded on R, x (0, 00).

First we rewrite a comparison lemma discussed in Section 2 in terms of v(x, t). Put
q

oC]U:U[_UXX_(q_i_l)U((q_l)z_Uﬁ).

Lemma4.1. Let v@(x, t) € C(R; x [0, T)) N C>'(R, x (0, T)) (i = 1, 2) be two positive functions satisfying

inf v, t) >0 foranye > 0(i=1,2).
(x,t)eRy x(0,T—¢)

Then if v®(x, t) (i = 1, 2) satisfies
L1vP >0 inRy x (0,T), £v? <0 inRy x (0,7),
v, ) =v?(0,t) = (q—1) fort € (0,T),
v((,l)(x) > v(()z) (x) forx e Ry,

then it holds that vV (x, t) > v (x, t) for (x,t) € Ry x (0, T).

Proof. Let u®(x, t) = v®(x, t)~@=D (i = 1, 2). Then by the assumption, we find that u®” (x, t) € BC(R; x [0,T)) N
C>'R, x (0,T)) (i = 1,2) and u(()l)(x) < ugz) (x) for x € R,. Furthermore we see that u” (x, t) is a sub-solution of (13)
and u® (x, t) is a super-solution of (13). Therefore Lemma 2.1 implies u'V (x, t) < u®(x, t) for (x, t) € Ry x (0, T), which
completes the proof. O

A global solvability of a solution of (13) is a consequence of Theorem 4.7 in [3].

Lemma 4.2. Every positive classical solution of (13) is globally defined. Moreover for any xo > 0 there exists M > 0 such that
u(x, t) < M for (x, t) € (xo, 00) x (0, 00).

Proof. Let ii5(x) be a nonincreasing smooth function satisfying u;(0) = 1(0)? and to(x) > ug(x). We denote by u(x, t) a
unique classical solution of (13) with the initial data i (x) and denote by T its maximal existence time. Then by Lemma 2.1,
it follows that u(x, t) < u(x, t) for (x, t) € Ry x (0, T). Furthermore by the same argument as in the proof of Lemma 3.1,
we see that u,(x,t) < 0for (x,t) € Ry x (0, T). We take a smooth function Uy(x) satisfying Up(x) > uo(x) on (0, 1),
Uy(0) = —Up(0)? and Uy(1) = 0. Let U(x, t) be a unique classical solution of (18). Then we see that u(x, t) < U(x, t) in
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(0, 1) x (0, T) (see proof of Lemma 3.1). From Theorem 4.7 in [3], we note that U(x, t) is globally defined and converges to
the unique positive solution of

g =qw? ! in(0, 1),
w(0) =00, W¥'(1)=0.

Hence for any xy € (0, 1) there exists M > Osuchthat0 < U(x,t) < M for (x, t) € (X9, 1) x (0, 00).Since u(x, t) < U(x, t)
in(0,1) x (0, T) and uy(x, t) < 0inR, x (0, T), u(x, t) is global defined and satisfies

supu(x,t) < sup u(x,t) <M, t=>0.

x>1 xp<x<1
Therefore from u(x, t) < u(x, t), we obtain the conclusion. O
Set
u, t) = Pary(®) +d(x, t), a(t) =u(0,t), ag = «(0). (29)
Then d(x, t) satisfies
di + 0ay = du + A — Ay + D' (x.1) € Ry x (0, 00),

d(0,t) = dy(0,t) =0, t € (0, 00),
d(x,0) = do(%) := Ug(X) — gy (%), X € R;.

Here we assume the following conditions on the initial data.
(D) ug(x) > ¢y (x) for @ < g and ug intersects with ¢, exactly one time for o > «y,
where oy > 0 is a constant given in (29).

Lemma 4.3. Assume the condition (D). Then «a(t) defined in (29) is monotone increasing for t > 0 and d(x,t) > 0 for
(*,t) € Ry x (0, 00).
Proof. Set w, (x, t) = u(x, t) — ¢, (x). Then w, (x, t) satisfies

wr = Wy + c(x, Hw, (x,t) € Ry x (0, 00),
wy = co(Hw, (x,t) € {0} x (0, 00),

where c(x, t) = —q(2q — 1) fol Ou(x, t) + (1 — 0)pe (x))?972d6 and ¢y (t) = qfo1 Ou(0, t) + (1 —0), (0)7-1d6. Let N, (t)
be the number of zeros of w, (-, t) on R,.. Here from Lemma 2.7, we note that ., (t) is nonincreasing. Hence by the condition
(D), it holds that N, (t) < 1fort > Oif o > ap. We define a* = sup;¢(g o) @ (t) € (0, 00] and 7, = inf{t > 0; u(0, t) = a}
for ¢y < @ < o*. By definition of t, it follows that N, (7,) = 1 and w, (0, 7,) = 0. Since N, (t) is nonincreasing, it follows
that M, (t) = 1fort € [0, t,]. We denote by z, (t) a zero of w, (x, t) fort € [0, 7, ]. Then it is known that z, (t) is continuous
on [0, ) and lim;_, ., z,(t) = z; € [0, oo] (e.g. Lemma 2.7 in [2]). Here we claim that z; = 0. Suppose z; € (0, co].
Then since lim;_,, z,(t) = z; € (0, oo], there exists § > 0 such that w, (x, t) < 0 for (x, t) € [0, 8] x [0, 7). Therefore
by a strong maximum principle and Hopf's boundary lemma, we see that w, (0, t,) < 0. However this contradicts the
assumption, which assures the claim. Therefore since w, (x,t) < 0forx € (0, z,(t)) and wy (X, t) > 0 for x € (z4(t), 00),
we obtain wy (X, 7,) > 0 for x € R, which implies

ux, %) = ¢a(x), X €Ry. (30)
Therefore by Lemma 2.1, a strong maximum principle and Hopf's boundary lemma, we obtain

U(X, t) > ¢Dl(x)s (Xa t) € ]R+ X (Iaa OO),
u(0,t) > a, te (ty,00).

Since u(0, 7o) = @ and u(0,t) > « fort > 7,, (t) is monotone increasing. Furthermore the map « +— 7, is monotone
increasing and continuous. Therefore it holds that 7, |y=«() = t. By using this relation in (30), we obtain for t > 0

ux, t) > ory(x), x €Ry,
which implies thatd(x,t) > Ofort > 0. O
Lemma 4.4. Assume the condition (D). If do(x) € L1(R.), then d(x, t) satisfies
0 < d(x,t) < (4mt)""*||doll- (31)
Proof. By Lemma 4.3, we note that,(t) > 0.Hence it follows that d;¢) > 0.As a consequence, we obtain fromd(x, t) > 0
di <dgy, (x,t)€Ry x(0,00).

Since d(0, t) = 0 for t > 0, applying a comparison lemma and heat semigroup estimates, we conclude (31). O
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We set

v(X, t) = Yo (x) — n(x, ).

Let ug satisfy the condition (D). Then by Lemma 4.3, we note that d(x, t) > 0 and «;(t) > 0. Hence we see that n(x,t) > 0
and

v, ) = u, )" = (fain () + d(x, t))_(q_l)

> Yoy — (@ — Doy () d(x, 1)
> Ya) — (G — Dy () d(x, 1).
Therefore we get

0 < nx, t) < (q— Dpgy(x)d(x, £). (32)
Here we additionally assume that there exists A > 0 such that vy(x) > ¥_ 4 (x) for x > r,. Then we see that for x > r,

do(%) = ug(X) — gy (X)

oAV — (@ = Dt g

IA

)—1/(4—1)

“1/(a- ~1/@-1
= ((g—x— A=)~V _ ((q — x +ao_(q_l)>

1 - /(g
< (71> (A,(q,]) + a (q 1)) ((q —x— Aq—]) q/(q—1) .
q J—
Hence from do(x) > 0 and dy € C(R,.), it follows that dy € LI(R,.). Therefore from (32) and Lemma 4.4, there exists ¢y > 0
such that
—a—1\ 9/ @D
0=nx0) =co(@=Dx+eg ") dollyt ™. (33)

The following lemma plays a essential role in our argument, which is proved in the end of this section.

Lemma 4.5. Let u(x, t) be a classical solution of (13). Then for any € > 0 there exists c. > 0 such that

lu®llo <cet®, t=>1.

Hence from this lemma, there exists v > 0 such that

a®)d < ptV4 >,

Then by (33), it holds that
1\ 4/(@—1)

1, 6) < cov (@ = Dx+ag ") dollga (0D 1,
We choose z(t) as follows:
q/(q—1) t1/4a

 2covlidoll

Then by the choice of z(t), it is verified that

(@= D20+,

1 -@D
nx, t) < 2Ot(t) , x€(0,z(1),t > 1.
Hence since v(x, t) = ¥q) (x) — n(x, t), we get

v, ) = Yar () — %oe(r)*“’*” >(q—Dx+ %a(r)*(q*”

1
= Yoo (¥) + Ea(t)’("’”, x€ (0,z(t),t = 1. (34)
Moreover since vg(x) > ¥_(x) forx > r, and ¥_,(r,) = oo, applying Lemma 4.1, we get
v(x, ) = Y_a(x), (%, 1) € (ra, 00) x (0, 00). (35)
Now we define

Yoo (X) + 27 T (t)~@ D ifx < z(t)/2,
Ve (%, 0) = § Yoo (z(D)/2) + 27 () 9TV ifz(1)/2 < x < y(0),
Y_a(x) ifx > y(t),
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where y(t) is given by oo (z(t)/2) + 27 'a(t) =4~V = _ ,(y(t)), which is equivalent to
z(t) 1

H="4+— 2 la@) TV 4 A7),
YO =—"+ - (A10) + )
Since z(t) = oo ast — oo, there exists tyg > 1 such that y(t) < z(t) for t > to. Hence by (34) and (35), we verify that
VX, t) < v(x,t), x€e€Ry, t >t (36)

Lemma 4.6. For any v > O, there exists t; > to such that

/ (Vx(X, 1) — Yoo (x))0 (X)dx > 0,
0

where 6, (x) = (x + b)YV b= =@V /(g — 1).

Proof. By definition of z(t), there exist Dy > 0 and 79 > 1 such that

2(t) > Dot VA > g, (37)

Hence there exists ¢, > 0 such that fort > 7

z(t)/2 a(t)f(qﬁ) z(t)/2 L
/ (Vi (X, £) — Yoo (%))0,, (X)dx = —5 / 0, (x)dx > c,a(t)~@ .
0 0

By construction of v, (x, t), we note that ¥_ ,(X) < v.(x,t) < Weo(¥) + 27 a(t)~“~V. Therefore since a;(t) > 0, we see
that

/ Vs (%, 1) = Yoo ()10, (X)dx = (A +2—1a(t)—<q—1>)/ 6, (x)dx
z(t)/2 2(t)/2

¢}
< (A*<q*‘)+2*1ag("‘”)/ 0, (X)dx.
z(t)/2

Here we note that

o) o8] z(t -1/(g—1)
/ 6, (x)dx < / x 9@ Vax = (g — 1) (—( )) .
z(t)/2 2(t)/2 2

Hence from (37), there exists D; > 0 such that for t > 1

oo
/ V4 (% ) — Yoo (%[0, (X)dx < Dyt~ /4",
2(t)/2

Thus we obtain for t > g

/ (03 (%, 1) — Yoo (X),udx > cuax ()~ — D¢~ 1/4%°,
0

By Lemma 4.5, we obtain the desired conclusion. O

Proof of Theorem 4.1. First we assume the condition (D). Applying Lemma 4.1 with the condition (D), we see that v(x, t) <
Yoo () for (x, £) € R4 x (0, 00). From Lemma 4.6 and (36), there exists t; > 0 such that v,(x, t;) < v(x, t;) forx € R} and

f " (0% 1) — Voo () (5)dlx > 0. (38)
0

Therefore by (38), we can choose a smooth function & (x) satisfying (A1)-(A4) with 8 = ap in (A2), £ (x) < v.(x, t;) and

/ (E(®) = Yoo (x))b, ()dx > 0. (39)
0

We denote by & (x, t) the solution of (15) with the initial data & (x). Since £ (x) < v(x, t;) for x € R,, by Lemma 4.1, we see
that £ (x, t) < v(x, t + t;). By Lemmas 3.2 and 3.3, there exists a function W (x, t) satisfying & (x, t) — Voo (X) > W(x, t) and
W(, t) — kin G (R;) ast — oo. Since « is characterized by (25) and (39) implies k > 0. Hence there exists t; > 0
such that £(0, t) > «/2 fort > t,. Since &(x, t) > 0, we obtain £ (x, t) > «/2 for (x,t) € R4 X (tp, 00). Therefore from
v(x, t + t1) > &E(x, t), we conclude that

v(x,t) > k/2, (x,t) € Ry X (to + ty, 00),
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which implies a boundedness of u(x, t). Next we consider a general initial data ug(x) satisfying vg(x) > 1 _,(x) for some
A > 0.Here we choose a function tip(x) satisfying (D) and

Up(x) > up(x), Uo(x)~ TV > Y, (x).

We denote by u(x, t) the solution of (13) with a initial data ug(x). Then by the above arguments, u(x, t) is uniformly
bounded on (x,t) € Ry x (0, c0). Therefore from Lemma 2.1, we conclude that u(x, t) is also uniformly bounded on
(x,t) € Ry x (0, 00). Thus the proof is completed. 0O

Proof of Lemma 4.5. The proof of Lemma 4.5 is almost same as in the proof of Theorem 1.1 in [5]. For the convenience of
the reader, we give the brief proof of this lemma. First we consider the case u,(x, t) < 0for (x, t) € R4 x (0, 0o). Therefore
it is clear that

u(0,t) = |ju(t)||eo, t > 0. (40)
We define
1
Uy, ) = ex(O) T Tu(e (Dy, £), ) =121+ (y > 0).
Then U, (y, t) satisfies

1
80U = - (02U, — qUI* 1)+—<yayux+q_1ux), ¥, £) € Ry x (0,00),

9,U,.(0, t) = —U,(0, 1)1, t € (0, 00),
U0, 0) = Uso ) = 20 Vo), y € R,
For a comparison argument, we define
1 o1 € 1
ockuzut—e—z(uyy—quq ) — yuy+—1u
r

Now we look for a super-solution U, (y, t) which has the following form:

_ 1 .
UG, D=9 — Eéx(t)éx(t)g(y),
where ¢(y) = ¢ (¥) withe = (g — 1)7E@D and g(y) is a unique solution of
g" —q2q— 19 ?g =¢? in(0,00),
§(0) =g'(0)=0.
Then g(y) is given by
g(y) = A (1 +y)(2q,1)/(q,1) +A(1 +y),q/(q,1) —As5(1 +y)(q,2)/(q,1),
where
(q — 1)@/ (q—1)~V@D (q—1)~V@"
1= = 5. I A= —F—, A= ———
@+ 1DBg—-1) 23q—-1) 2@+ 1
By definition of g(y), it is easily verified that
g8, &) =0, yeR,.
First we claim that there exists Ay > 0 such that for A € (0, Aq)
L0, >0, (,t) €Ry x (0, 00).
By the same calculations as in [5], for the case ¢ > 3/2, we see that

L£,U; > —*(EA +6.6) + *Mff’q e > g%,

where ¢; = q(q — 1)(2q — 1)/4. Here we note that €, (t) = Yy~ 1A 4+ 0)]& ()] and &,(t) = (y + 1)(1 +t)71|é,(t)|. Hence
we obtain for the case g > 3/2

LUy > (—(2 Ty g+ 21+ 0P gl 4 26q¢2q_3g2)

[\
N ‘»mni: N ‘»mni;

(—@+y Hg+y A9 +2c09%7 g% .
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Since g(y) ~ y@9~D/@=D and ¢(y)23g(y)? ~ y@atD/@=D for large y > 0, there exists Ao > O such that .£;,U; > 0 for
y,t) € Ry x (0,00) and A € (0, Ag). Therefore the claim is proved for the case ¢ > 3/2. For the case 1 < q < 3/2, by the
same way as in [5], there exists dy > 0 such that

. —%(ek—kelq)ﬁ-fﬂq&q—l—d 22132 if (v, 1) € Qq,
LUy >
‘%(ex+exex)+fﬂ¢ud &GP i D € Q

where Q; = {(y, t) € Ry x (0, 00); g€ (D) [€x(0)] < 2¢(y)} and Q2 = {(y, t) € Ry x (0, 00); g€ (D) [€x(0)] > 2 (1)}
Hence the estimate for (y, t) € Q; are reduced to the case ¢ > 3/2. Consequently there exists A > 0 such that £, U, > 0
for (y, t) € Q; and A € (0, Ay). While, by the same way as before, we get

22

€
£ = Z (=@ 4+y g +y 7270+ 2d0€l"

&P, (.0 € Q.

For the case 1 < q < 3/2, from €, (t) = A(1 4 t)~7, we see that €.97%|¢; [24-3 > 24-3)224-3) Hence we obtain
22
é?
L0z 5 (=@ +y” NE+yTIAT2 P+ 2doy P AR VM) L (10) € Qu

Therefor there exists A; > 0 such that £5.U; > 0 for (v, t) € Qy and A € (0, Ag). Thus the claim is proved. Next we claim
that there exists A; > O such that for A € (0, A1)

UA(.V, O) = U(}’, O)’ y€R+'

This claim follows from p. 145 in [5] without any modifications. Finally, we claim that forany y > 0 there exists a continuous
function 0 < Z(t) < oo such that U, (Z(t),t) > U(Z(t), t) fort € (0, 00). From Lemma 4.2, we note that u(x, t) < M for
(x,t) € (1, 00) x (0, c0). Hence it holds that

U, o) <AVM, y =607 (41)
By the explicit expression of g(y), there exists y; > 0 such that

gy) > — (Zq /(- 1)’ y >y
Hence by definition of U, (y, t), we obtain
O, (y, t) > AiTV)\z(l 1)~ @D/ g sy
Here we set Z(t) = K(1 4+ t)"@ Y where v > 0 and K > y; are constants chosen later. Then it is clear that Z(t) > y; for

t > 0. Hence it holds that

U, (Z(t), t) > ;”xzk T (14 )~ @041

Therefore for any X, y > 0 there exist Ky > y; and vy > O such thatfort > 0
Z(t) =Ko(1+ 0"V > 271+ 0 = ()7,
A])/ 1
4

2
l_])L(Z(t), t) > )}K T (] +6)° (y+1D+vp(2g—1) > AV@Dpr

Then from (41), it follows that
U,Z(@®), 1) = U, (Z(@®), 1), t=0,

which assures the claim. Therefore since 9,U; (0, t) = U, (0, t)3 fort > 0 and 8,0, (0, t) = U, (0, t) for t > 0, applying
Lemma24in Q := {(y,t) € Ry x (0,00); 0 <y < Z(t)}, we conclude that

Upy, ) U (y, 1), (r,t) € Q.
Here we take y = 0, then we get from g(0) =0

u(0,t) < e(t)"/4Vg(0)
— )L—l/(lZ—l)(q _ ])—1/(11—1)(] + t))//(tl—l)7 t>0.

Thus by using (40), we obtain
[u(®)]leo < c(1+)Y@D ¢ 0.
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Next we consider a general case, namely we do not assume (40). For any initial data uy € BC(R,.), we can choose a function
iy € BC'(R,) satisfying d,iig(x) < 0 for x € R, and 1ip(x) > ug(x) for x € R,. Let ui(x, t) be a classical solution of (1).
Then Lemma 2.1 implies u(x, t) < u(x, t) for (x,t) € Ry x (0, 0co). Furthermore by the same argument as in the proof of
Lemma 3.1, we verify that u,(x, t) < 0 for (x, t) € Ry x (0, 00). Therefore by the previous argument, ui(x, t) satisfies

la®ll <c,A+06)", t>0

for any y > 0. Thus the proof of Lemma 4.5 is completed. O

5. Large time behavior of global solutions

In this section, we study the large time behavior of positive bounded global solutions. Let u(x, t) be a solution of (1) and
define the w-limit set of u by

o) = {£ € BCR,); u(-, ty) — & in Goc(R4.) for some sequence t, — oo}.
The purpose of this section is to investigate the w-limit set of positive bounded global solutions. To state our result, we set
X ={uelPRy); uy € P(Ry)}.

Throughout this section, we assume (14) and use the same notations as in Section 4. Then our result is stated as follows.

Theorem 5.1. Assume that uy € X N BC(R,) and there exists A > 0 such that vo(x) > ¥_4(x) for x > 1. Then it holds that
w(u) = {0} or w(u) = {¢,} for some o > 0.

Proof. Define the energy functional E (u) by
R 2 1 +1
Ew) = u: +ut)dx — ——u(0)1, ueX.
W= [+ de— 0
Since ug € X, by a standard argument, there exists a unique solution u € C([0, co); X) of (1) such that
ty o]
B ~ Ewe) == [ [ wioldd, <
tq 0

From Theorem 4.1, u(x, t) is uniformly bounded on R x (0, co). Hence since E (u(t)) is nonincreasing, Es, = lim;_, o0 E(u(t))
exists. Therefore we get

/ f up(x, £)2dxdt = —Es + E(up) < 00.
o Jo

This implies

o0 o0
lim dr / U (x, 7)%dx = 0. (42)
t—00 t 0

To obtain the regularity of u;(x, t), we differentiate (13) with respect to t. Then we see that z(x, t) = u,(x, t) satisfies
Ze = zw — q(2q — Du*2z for (x, t) € Ry x (0, 00) and 3,z(0, t) = qu(0, t)97'z(0, t) for t > 0. Therefore since u(x, t) is
uniformly bounded on Ry x (0, 00), by a parabolic regularity theory with (42), we get

lin}) uy(x, t) — 0 inlocally uniformly on R,.. (43)
t—
Set
o = liminfu(0, t), o = limsupu(0, t).
t—00 t—00

By virtue of (43), if ¢; = a3 := «, we find that
o) ={¢,} ifa >0, w(u) ={0} ifa =0,

which completes the proof. Therefore it is sufficient to show «; = «,. To derive a contradiction, we suppose that a; < o».
We putas = (a@1+a3) > 0.Then by definition of oy and a, there exists a sequence {ty}xew (& — 00) such thatu(0, ty) = a3
for k € N. Therefore by (43), we see that u(x, ty) = @q, () in Goc(R4) as k — oo, which implies

klim [v(x, ty) — Yo (X)| = 0 inlocally uniformly on Ry. (44)
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Wesety = (w3 + «3)/2 and

¥, (%) ifx <R,
vr(X) = [%(R) if R < x < pg,
Yoa(x)  ifx > pg,

where pr is a unique root of ¥, (R) = v¥_,(pg), which is given by pr = R + (@D 4+ A~@D)/(g — 1). Since
vo(X) > Y_,(x) for x > r,, by Lemma 4.1, we see that v(x,t) > V_,(x) for (x,t) € (rs, 00) x (0, 00). Therefore by
(44) and Yo, (X) — ¥, () = a3 97" — =@~V > 0, for any R > 0 there exists ky € N such that for k > ko

v(x, t) > vr(x), xeR,. (45)

By the same way as in the proof of Lemma 4.6, we can show that there exists Ry > 0 such that
o0
f (VRy (%) — VY, (%))0,, (x)dx > 0,
0

where 6, (x) = (x+ b)~9@D, b = =@V /(g — 1). Then by (45), there exists k; € N such that
v(X, te,) = vgy (), X € R,

Furthermore there exists a smooth function & (x) satisfying (A1)-(A4) with 8 = y in (A2), § (x) < vg,(x) and

/ (E®) — Yo, (%)), ()dx > 0. (46)
0

Let & (x, t) be a solution of (15) with the initial data & (x). Since £ (x) < v(x, ty,), Lemma 4.1 shows that & (x, t) < v(x, t+t;,)
for (x, t) € Ry x (0, co). Then by the same way as in the proof of Theorem 4.1, we see that there exists a function W (x, t)
satisfying & (x, t) — Yo, (X) > W(x,t) and W(x, t) — « in Cioc(Ry) as t — o0. Since k is characterized by (25), it follows
from (46) that « > 0. Therefore there exists to > 0 such that £(0, t) > v, (0) + /2 for t > t,. Since v(0, t) > £(0, t) for
t > 0, we deduce that

o ~1/@-1)
u(0, t) = v(0, £)" /@D < <a2 @ +/</2) . t> .

However this contradicts the definition of «;, which completes the proof. O

6. Sign changing solutions in a bounded interval

In this section, we study the large time behavior of sign changing solutions of (1) with I = (—1, 1).

U = Uy — qu*%u, (x,0) € (—1,1) x (0, T),
aou = |ul" 1y, *, t) € {—1,1} x (0, T), (47)
u(x, 0) = ug(x), xe(—1,1).

As is stated in Introduction, the large time behavior of positive solutions of (47) is completely understood. Every positive
solution converges to the positive singular solutions ¥ (x) as t — oo. Here we provide a complete classification of the large
time behavior of sign changing solutions of (47), which is stated as follows.

Theorem 6.1. Let ug € C([—1, 1]) and u(x, t) be a classical solution of (47). Then u(x, t) converges to either =W (x) uniformly
on any compact set in (—1, 1) or zero uniformly on[—1, 1] as t — oo.

Remark 6.1. Theorem 6.1 gives a negative answer to the question given in Introduction: “Are there solutions which
converge to the sign changing singular solutions £¥;(x) ast — 00"?

Proof. We denote by N (t) the number of zeros of u(-, t). By Lemmas 2.5 and 2.6, we see that & (t) < oo fort > 0 and
M (t) is a nonincreasing function. Therefore there exist ty > 0 and N, € N U {0} such that

Neo = N(E), t>to.

Let —1 < z1(t) < -+ <z, (t) < 1Dbe zeros of u(-, t) for t > to. Then the large time behavior of solutions are classified in
terms of Noo.

(I) No = 0, (I Neo > 1.

For the case (I), since the solution u(x, t) is positive or negative, Theorem 4.7 in [3] implies that the solution u(x, t) converges
to the positive singular solution ¥ (x) or the negative singular solution —¥ (x) as t — oo. Next we consider the case (II). Set
0={(x,t) € (—1,1) x (tp, 00); —1 < x < z1(t)}. Here we recall that z;(t) is continuous on [ty, c0) (e.g. Lemma 2.7 in [2]).



28 J. Harada / J. Math. Anal. Appl. 404 (2013) 11-28

Now we fix a nonnegative function Up(x) € C°(R;) satisfying Up(x + 1) > [u(x, to)| for x € (—1,1). Let U(x, t) be
a solution of (1) (I = R, ) with the initial data Uy(x). Since Uy(x) has compact support, there exists A > 0 such that
Ug(x) < ¥_,(x)~"@D for x > r,. Therefore by Theorem 4.1, U(x, t) is uniformly bounded on R, x (0, co). Here we put
U, t) = Ux + 1,t — to) and Ug(x) = Ug(x + 1). Then it is easily verified that U(x, t) satisfies U, = Uy — qU%~1 for
(x,t) € (—1,00) x (ty, o0) and 8,,0(—1, t) = 0(—1, t)? for t > to. Furthermore by definition of O, we see that

uz@t),t) =0 fort>ty, U@z(t),t)>0 fort > t,.
Therefore since |u(x, tg)| < Uo(x) forx € (0, z(tp)) and
u(—1,t) =u(—=1,0)7 fort >to, U(=1,0) =U(=1,t)? fort > to,

applying Lemma 2.4 in O, we obtain |u(x, t)| < U(x, t) in 0. Hence |u(—1, t)| is uniformly bounded for ¢ € (0, co). By the
same way, we obtain a boundedness of |u(1, t)|. We set

mo = sup ([u(1, )+ [u(=1,0))) + sup [u(x, o),

te(tp,00) xe(—1,1)

then U(x) = mg becomes a super-solution. Hence Lemma 2.2 implies |u(x, t)] < U(x) for (x,t) € (=1, 1) x (t, 00).
Therefore u(x, t) is uniformly bounded on R, x (0, 00). Since there are no nontrivial bounded stationary solutions of (47),
the solution u(x, t) converges to zero uniformly on x € [0, 1] as t — oo, which completes the proof. O
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