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a b s t r a c t

We consider one dimensional parabolic equations with nonlinear boundary conditions:
ut = uxx − qu2q−1 in R+ × (0, T ), ∂νu = uq on {0}× (0, T ), u(x, 0) = u0(x) ≥ 0 in R+. This
equation admits a family of positive stationary solutions {φα(x)}α>0 (φα(0) = α) such that
φα1 (x) < φα2 (x) if α1 < α2. Themain purpose of this paper is to study the stability of these
stationary solutions. Furthermore we discuss the large time behavior of global solutions. In
particular, we prove that every global solution is uniformly bounded and converges to one
of the stationary solutions.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider one dimensional semilinear parabolic equations:ut = uxx − aup, (x, t) ∈ I × (0, T ),
∂νu = uq, (x, t) ∈ ∂ I × (0, T ),
u(x, 0) = u0(x) ≥ 0, x ∈ I,

(1)

where I = (−1, 1) or I = R+ = {x ∈ R; x > 0}, p, q > 1, a > 0 and ∂ν denotes the outward normal derivative on the
boundary. A finite time blow-up and global solvability of (1) for the case I = (−1, 1) are studied in [3,7]. It is known that
the dynamics of (1) is classified into three cases:

(i) p > q̂ or p = q̂, a > q, (ii) p < q̂ or p = q̂, a < q, (iii) p = q̂, a = q,

where q̂ = 2q − 1. For the case I = (−1, 1) (possible for the case I = R+), every solution is globally defined and uniformly
bounded for the case (i), while solutions blow up in a finite time if the initial data is large enough for the case (ii) [3,7]. As
for the critical case (iii), the only case I = (−1, 1) has been studied in [3]. They [3] proved that every positive solution is
globally defined and converges to the unique positive singular solution of

Ψ ′′
= qΨ 2q−1 in (−1, 1),

Ψ (±1) = ∞.
(2)

Therefore every positive solution becomes unbounded at t = ∞. Furthermore for such a case, the following grow-up rate
of positive solutions of (1) is derived in [5]:

∥u(t)∥L∞(−1,1) ∼ t1/2.

In this paper, we study the large time behavior of positive solutions of (1) for the case (iii) with I = R+. In this case, there
appear a family of stationary solutions {φα}α>0 (φα(0) = α) and a positive singular solutionφ∞ (φ∞(0) = ∞). In particular,
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these stationary solutions are completely ordered: φα1(x) < φα2(x) if α1 < α2 (see Section 2). The first purpose of this paper
is to study the stability of these stationary solutions.

Nextwe study a boundedness of global solutions of (1). As for the case (ii) with I = (−1, 1) (possible for the case I = R+),
it is shown in [4] that every global solution is uniformly bounded and satisfies

∥u(t)∥L∞(−1,1) ≤ c(∥u0∥L∞(−1,1)), t > 0.

On the other hand, as is stated above, for the case (iii) with I = (−1, 1), every positive solution is globally defined but
becomes unbounded at t = ∞. However, as for the case (iii) with I = R+, since the stationary solutions exist, the large time
behavior of global solutions for the case I = R+ seems to be different from that for the case I = (−1, 1). Here we discuss
the possibility of global but unbounded solutions for the case (iii) with I = R+. Furthermore we study the ω-limit set of
bounded global solutions. Let u(x, t) be a bounded global solution of (1). Then by the compactness of the orbit {u(·, t); t ≥ 0}
in Cloc(R+), the solution u(x, t) approaches to the ω-limit set:

ω(u) := {ξ ∈ BC(R+); u(·, tk) → ξ in Cloc(R+) for some sequence tk → ∞}.

In general, as for one dimensional (radially symmetric) semilinear parabolic equations on a bounded interval (a ball
with a radius R > 0), from the view point of the intersection comparison argument, the ω-limit set consists of one
of stationary solutions, i.e. ω(u) = {ξ}, where ξ is a stationary solution. This implies that u(·, t) → ξ as t → ∞.
However, for a unbounded domain case, the ω-limit set is not always given by one of stationary solutions in general. In fact,
Poláčik–Yanagida [9] constructed a solution u of ut = ∆u + up on the whole space Rn such that ω(u) = {ϕα;α ∈ [β1, β2]}

for some β1 < β2, where ϕα is a positive radial symmetric stationary solution with ϕα(0) = α. Namely this solution u is
oscillating between two stationary solutions ϕβ1 and ϕβ2 . As for (1), we will see that no oscillating solutions exist, in other
words, the ω-limit set is given by one of stationary solutions.

Finally we study the large time behavior of sign changing solutions of (1) for the case (iii) with I = (−1, 1). We note that
(1.6) has two types of singular solutions. One is positive (negative) singular solutions ±Ψ satisfying (2), the others are sign
changing singular solutions ±Ψs satisfying

Ψ ′′

s = q|Ψs|
2q−2Ψs in (−1, 1),

Ψs(±1) = ±∞.

As is stated above, the positive singular solution is stable in the sense that every positive solution converges to the positive
singular solution Ψ (x) as t → ∞. Then here arises a natural question: ‘‘Are there solutions which converge to the sign
changing singular solutions ±Ψs(x) as t → ∞?’’ To provide a complete description of the large time behavior of sign
changing solutions, this question is crucial. The last purpose of this paper is to answer this question.

The rest of this paper is organized as follows. In Section 2, we recall various type of comparison lemmas and collect some
fundamental properties of zeros of solutions of one dimensional parabolic equations. Furthermore we introduce a family of
positive stationary solutions and a positive singular solution. In Section 3, we study the stability of stationary solutions. A
boundedness of global solutions is discussed in Section 4. Furthermore we study the large time behavior of bounded global
solutions in Section 5. Finally in Section 6, we study the asymptotic behavior of sign changing solutions for the case (iii) with
I = (−1, 1).

Throughout this paper, we fix p = 2q − 1 and a = q. For simplicity, we denote a norm of Lr(R+) by ∥ · ∥r and define
BC(I) = C(I) ∩ L∞(I).

2. Preliminaries

In this section, first we recall various types of comparison lemmas which are often used throughout this paper. Secondly
we collect some fundamental facts concerning zeros of solutions of one dimensional parabolic equations. Finally we
introduce stationary solutions.

2.1. Comparison lemmas

Here we consider a general form of one dimensional nonlinear parabolic equations.
wt = wxx + f (x, t, w), (x, t) ∈ I × (0, T ),
∂νw(0, t) = g0(t, w(0, t)), t ∈ (0, T ),
∂νw(1, t) = g1(t, w(1, t)), t ∈ (0, T ),
w(x, 0) = w0(x), x ∈ I,

(3)

where I = (0, 1) or R+. For the case I = R+, a boundary condition on x = 1 is not imposed. Here f (x, t, w) and
gi(t, w) (i = 0, 1) are assumed to be

f , fw ∈ C(Ī × [0, T )× R), gi, ∂wgi ∈ C([0, T )× R) (i = 0, 1). (4)
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Furthermore a solutionw(x, t) is assumed to be

w ∈ C(Ī × [0, T )) ∩ C2,1(Ī × (0, T )), w ∈ L∞(I × (0, T − ϵ)) for any ϵ > 0. (5)

To define a super(sub)-solution, we put

Lw = wt − wxx − f (x, t, w), B0w = ∂νw − g0(t, w), B1w = ∂νw − g1(t, w).

We callw(x, t) a super(sub)-solution of (3) ifw(x, t) satisfies (5) and

Lw(x, t) ≥ 0 (≤ 0) in I × (0, T ),
B0w(0, t) ≥ 0 (≤ 0) for t ∈ (0, T ), B1w(1, t) ≥ 0 (≤ 0) for t ∈ (0, T ).

Lemma 2.1. I = (0, 1) or I = R+. Assume that f (x, t, w) and gi(t, w) (i = 0, 1) satisfy (4). Let w(1)(x, t) (w(2)(x, t)) be a
sub-solution (super-solution) of (3) with (5). Then if w(1)0 (x) ≤ w

(2)
0 (x) for x ∈ I , then it holds that w(1)(x, t) ≤ w(2)(x, t) for

(x, t) ∈ I × (0, T ).

Proof. Since this lemma seems not to be standard, for the convenience of reader, we provide the complete proof. First we
consider the case I = (0, 1). We set W (x, t) = (w(1)(x, t) − w(2)(x, t))+, where w+ = max{w, 0}. Then by assumptions,
for any ϵ > 0 there exists ci > 0 (i = 1, 2, 3) such that for x ∈ I and t ∈ (0, T − ϵ)f (x, t, w(1))− f (x, t, w(2))

W ≤ c1W 2,g0(t, w(1))− g0(t, w(2))
W ≤ c2W 2,

g1(t, w(1))− g1(t, w(2))
W ≤ c3W 2.

Therefore by applying a trace inequality: 2(W (0)2 + W (1)2) ≤
 1
0 Wx(x)2dx + c

 1
0 W (x)2dx, we get

1
2

d
dt

 1

0
|W (x, t)|2dx ≤ −

 1

0
|Wx(x, t)|2dx + c1

 1

0
W (x, t)2dx + c2W (0, t)2 + c3W (1, t)2

≤ −
1
2

 1

0
|Wx(x, t)|2dx + c

 1

0
W (x, t)2dx for t ∈ (0, T − ϵ).

For the case I = (0, 1), the regularity assumption (5) implies W ∈ C([0, T ); L2(0, 1)). Therefore since W (x, 0) ≡ 0, by the

Gronwall inequality, we obtain the conclusion. Next we consider the case I = R+. Let u(1)(x, t) = e−

√
1+x2w(1)(x, t) and

u(2)(x, t) = e−

√
1+x2w(1)(x, t). Then we see that for (x, t) ∈ R+ × (0, T )

u(1)t ≤ u(1)xx + a1(x)u(1)x + a2(x)u(1) + e−

√
1+x2 f (x, t, w(1)),

u(2)t ≥ u(2)xx + a1(x)u(2)x + a2(x)u(2) + e−

√
1+x2 f (x, t, w(2)),

where ai(x) ∈ BC(R+) (i = 1, 2, 3). Furthermore boundary conditions are given by

∂νu(1)(0, t) ≤ e−

√
1+x2g0(t, w(1)(0, t)), t > 0,

∂νu(2)(0, t) ≥ e−

√
1+x2g0(t, w(2)(0, t)), t > 0.

By definition of u(i)(x, t) (i = 1, 2), we find that u(i) ∈ C([0, T ); L2(R+)) (i = 1, 2). Furthermore assumptions (4) and (5)
imply |f (x, t, w(1))− f (x, t, w(2))| ≤ cϵ |w(1)−w(2)| for t ∈ (0, T −ϵ)with any ϵ > 0. Therefore the rest of the proof follows
from the case I = (0, 1). �

We recall more standard comparison lemmas than the previous one.

Lemma 2.2. I = (0, 1) or I = R+. Assume (4). Let w(i)(x, t) (i = 1, 2) be two functions satisfying (5) and

Lw(1)(x, t) ≤ 0 in I × (0, T ), Lw(2)(x, t) ≥ 0 in I × (0, T ),

w(1)(0, t) ≤ w(2)(0, t) for t ∈ (0, T ), w(1)(1, t) ≤ w(2)(1, t) for t ∈ (0, T ).
(6)

For the case I = R+, a boundary condition on x = 1 is not imposed. Then if w(1)0 (x) ≤ w
(2)
0 (x) for x ∈ I , then it holds that

w(1)(x, t) ≤ w(2)(x, t) for (x, t) ∈ I × (0, T ).

Proof. Since this is standard, we omit the proof. �
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Next consider the case where f depends onwx.

wt = wxx + f (x, t, w,wx), (x, t) ∈ I × (0, T ).

In this case, f (x, t, w, p) and gi(t, w) (i = 0, 1) are assumed to be

f , fw, fwx ∈ C(Ī × [0, T )× R2), gi, ∂wgi ∈ C([0, T )× R) (i = 0, 1). (7)

Furthermore a solutionw(x, t) is assumed to be

w ∈ C(Ī × [0, T )) ∩ C2,1(Ī × (0, T )), w,wx ∈ L∞(I × (0, T − ϵ)) for any ϵ > 0. (8)

Lemma 2.3. I = (0, 1) or I = R+. We assume (7). Let w(i)(x, t) (i = 1, 2) be two functions satisfying (8) and (6)with replaced
f (x, t, w) by f (x, t, w,wx). Then if w(1)0 (x) ≤ w

(2)
0 (x) for x ∈ I , then it holds that w(1)(x, t) ≤ w(2)(x, t) for (x, t) ∈ I × (0, T ).

Proof. Let W (x, t) be as in Lemma 2.1. Additional assumptions fwx ∈ C(Ī × [0, T ) × R2) and wx ∈ L∞(I × (0, T − ϵ)) are
used to obtainf (x, t, w(1), w(1)x )− f (x, t, w(2), w(2)x )

W ≤ cϵ (W + |Wx|)W , t ∈ (0, T − ϵ).

Therefore the rest of proof follows from the same argument as in that of Lemma 2.1. �

Finally we recall a comparison lemma for a moving domain. Here we consider a moving domain O defined by

O = {(x, t) ∈ R+ × (0, T ); 0 < x < z(t)},

where z(t) is a continuous function on [0, T ] and z(t) > 0 for t ∈ [0, T ).

Lemma 2.4. Assume (4). Let w(i)(x, t) ∈ BC(Ō) ∩ C2,1(O) (i = 1, 2) be two functions satisfying

Lw(1) ≤ 0 in O, Lw(2) ≥ 0 in O,
B0w

(1)(0, t) ≤ 0 for t ∈ (0, T ), B0w
(2)(0, t) ≥ 0 for t ∈ (0, T ),

w(1)(z(t), t) ≤ w(2)(z(t), t) for t ∈ (0, T ).

Then if w(1)0 (x) ≤ w
(2)
0 (x) for x ∈ (0, z(0)), then it holds that w(1)(x, t) ≤ w(2)(x, t) in O.

Proof. This lemma follows from Lemma 6.12 in [6]. �

2.2. Zeros of solutions of one dimensional parabolic equations

Consider the following one dimensional parabolic equations:
ut = uxx + c(x, t)u, (x, t) ∈ (−1, 1)× (0, T ).
ux(±1, t) = c±(t)u(±1, t), t ∈ (0, T ). (9)

Here we assume that c(x, t) ∈ C([−1, 1]×[0, T ]) and c±(t) ∈ C([0, T ]). LetN (t) be the number of zeros of u(·, t) on [0, 1].
The following lemma is one of variants of results in [8].

Lemma 2.5 (Theorem 6.15 in [6]). Let u(x, t) be a classical solution of (9) and 0 ≤ t1 < t2 < T . If N (t1) < ∞, then it holds
that N (t2) ≤ N (t1).

As a consequence of Theorems C and D in [1], the following result holds.

Lemma 2.6. Let u(x, t) ≢ 0 be a classical solution of (9). Then it holds that N (t) < ∞ for t > 0.

Next we consider the same equation defined on R+:
ut = uxx + c(x, t)u, (x, t) ∈ R+ × (0, T ).
ux(0, t) = c0(t)u(0, t), t ∈ (0, T ), (10)

where c(x, t) ∈ C(R+ ×[0, T ]) and c0(t) ∈ C([0, T ]). We denote by N (t) the number of zeros of u(·, t) on R+. Then we can
show the following lemma by the same way as in the proof of Theorem 6.15 in [6].

Lemma 2.7. Let u(x, t) be a classical solution of (10) and 0 ≤ t1 < t2 < T . If N (t1) < ∞, then it holds that N (t2) ≤ N (t1).
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2.3. Stationary solutions

Consider the stationary problem of (1):
φ′′

= qφ2q−1 in R+,
φ′

= −φq on {0}. (11)

To construct solutions of (11), we consider the following ODE problem:
φ′′

= qφ2q−1 in R+

φ(0) = α > 0, φ′(0) = −αq.
(12)

We denote by φα(x) the unique solution of (12). Then for any α > 0, φα(x) gives a solution of (11) and is explicitly expressed
by

φα(x) =

(q − 1)x + α−(q−1)−1/(q−1)

.

For the case α = ∞, we define

φ∞(x) = (q − 1)−1/(q−1)x−1/(q−1).

Then φ∞(x) turns out to be a singular solution of (11) satisfying φ∞(0) = ∞ and φ∞(x) = limα→∞ φα(x). Moreover by the
explicit formula of φα(x), we see that these stationary solutions are completely ordered:

φα1(x) < φα2(x) if α1 < α2.

3. Instability of stationary solutions

In this section, we consider the case I = R+.ut = uxx − qu2q−1, (x, t) ∈ R+ × (0, T ),
∂νu = uq, x = 0, t > 0,
u(x, 0) = u0(x), x ∈ R+.

(13)

Throughout this section we always assume

u0 ∈ BC(R+), u0(x) ≥ 0. (14)

Then (13) admits a unique classical solution u(x, t), that is

u ∈ BC(R+ × [0, T − ϵ)) ∩ C2,1(R+ × (0, T )) for any ϵ > 0,

where T ∈ (0,∞] is the maximal existence time.

3.1. Instability from below

Theorem 3.1. Fix α ∈ (0,∞). Let u0(x) ∈ BC(R+) satisfy u0(x) ≤ φα(x) (u0(x) ≢ φα(x)), and u(x, t) be a classical solution
of (13). Then there exists δ > 0 such that for any R > 0 there exist t0 > 0 such that

u(x, t) ≤

φα(x)−(q−1)

+ δ
−1/(q−1)

, (x, t) ∈ (0, R)× (t0,∞).

We introduce a new unknown function v(x, t) = u(x, t)−(q−1). Then v(x, t) satisfies
vt = vxx +

q
(q − 1)v


(q − 1)2 − v2x


, (x, t) ∈ R+ × (0,∞),

vx(0, t) = (q − 1), t ∈ (0,∞),

v(x, 0) = v0(x) := u0(x)−(q−1), x ∈ R+.

(15)

We set

ψα(x) = φα(x)−(q−1)
= (q − 1)x + α−(q−1) (α > 0).

It is clear that ψα(x) gives a stationary solution of (15). First we assume that the initial data v0(x) satisfies the following
conditions.

(A1) v0(x) is smooth enough and satisfies v0(0) > 0 and v′

0(0) = (q − 1),
(A2) there exists β > 0 such that 0 ≤ v0(x) ≤ ψβ(x) for x ∈ R+,
(A3) 0 ≤ v′

0(x) ≤ (q − 1) for x ∈ R+,
(A4) there exists R0 > 0 such that v′

0(x) = (q − 1) for x ∈ (R0,∞).
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Lemma 3.1. Let u(x, t) be a classical solution of (13) and set v(x, t) = u(x, t)−(q−1). If v0(x) satisfies (A1) and (A3)–(A4), then
v(x, t) satisfies 0 ≤ vx(x, t) ≤ (q − 1).

Proof. Let R > R0. Consider the following approximate equations:ut = uxx − qu2q−1, (x, t) ∈ (0, R)× (0, T ),
ux = −uq, (x, t) ∈ {0, R} × (0, T ),
u(x, 0) = u0(x) := v0(x)−1/(q−1), x ∈ (0, R).

(16)

By (A1) and (A3), it is clear that v0(x) is strictly positive in (0, R). Hence u0(x) is strictly positive and smooth. Furthermore
since R > R0, by (A1) and (A4), u0(x) satisfies the compatibility conditions u′

0 = −uq
0 on x ∈ {0, R}. Therefore there exists a

unique solution uR(x, t) ∈ C2,1([0, R] × [0, T )) ∩ C∞([0, R] × (0, T )) of (16), where T ∈ (0,∞] is the maximal existence
time. First we claim that u(x, t) is strictly positive in (0, R) × (0, T ). Since u0(x) is strictly positive in (0, R), there exists
α1 > 0 such that u0(x) > φα1(x) for x ∈ (0, R). Therefore since φα1(x) is a stationary solution of (16), by Lemma 2.1, we find
that uR(x, t) ≥ φα1(x) for (x, t) ∈ (0, R) × (0, T ), which assures the claim. We put vR(x, t) = uR(x, t)−(q−1). Then by the
positivity of uR(x, t), we see that vR(x, t) ∈ C2,1([0, R] × [0, T )) ∩ C∞([0, R] × (0, T )) and it satisfies

vt = vxx +
q

(q − 1)v


(q − 1)2 − v2x


, (x, t) ∈ (0, R)× (0, T ),

vx(0, t) = vx(R, t) = (q − 1), t ∈ (0, T ),
v(x, 0) = v0(x), x ∈ (0, R).

Now we claim that

0 ≤ ∂xvR(x, t) ≤ (q − 1), (x, t) ∈ (0, R)× (0, T ). (17)

SetwR(x, t) = ∂xvR(x, t). ThenwR(x, t) satisfies
wt = wxx −

2q
(q − 1)vR

wwx −
qw

(q − 1)v2R


(q − 1)2 − w2 , (x, t) ∈ (0, R)× (0, T ),

w(0, t) = w(R, t) = (q − 1), t ∈ (0, T ),
w(x, 0) = w0(x) := ∂xv0(x), x ∈ (0, R).

Since vR(x, t) ∈ C2,1([0, R]×[0, T ))∩C∞([0, R]×(0, T )), it is clear thatwR(x, t) ∈ C1,0([0, R]×[0, T ))∩C∞([0, R]×(0, T )).
Therefore by Lemma 2.3 with (A3), we obtain

0 ≤ wR(x, t) ≤ (q − 1), (x, t) ∈ (0, R)× (0, T ),

which assures the claim. To derive a priori estimates for uR(x, t), we construct a suitable super-solution.We choose a smooth
function U0(x) satisfying U0(x) ≥ u0(x) in [0, 1], U ′

0(0) = −U0(0)q and U ′

0(1) = 0. Let U(x, t) be a unique solution ofUt = Uxx − qU2q−1, (x, t) ∈ (0, 1)× (0,∞),
Ux(0, t) = U(0, t)q,Ux(1, t) = 0, t ∈ (0,∞),
U(x, 0) = U0(x), x ∈ (0, 1).

(18)

Then by Theorem 4.7 in [3], U(x, t) is globally defined. From (17), we note that

0 ≤ −∂xuR(x, t) ≤ uR(x, t)q, (x, t) ∈ (0, R)× (0, T ).

Hence it follows that uR(0, t) = ∥uR(t)∥L∞(0,R) for t ∈ (0, T ). Therefore by ∂xuR(1, t) ≤ 0, applying Lemma 2.1, we see that
uR(x, t) is globally defined and uR(x, t) ≤ U(x, t) for (x, t) ∈ (0, 1) × (0,∞). Furthermore it holds that ∂xuR(x, t) ≤ 0 for
(x, t) ∈ R+ × (0,∞). Therefore we get ∥uR(t)∥L∞(0,R) = uR(0, t) ≤ U(0, t). By a parabolic regularity theory, there exist a
sequence {Ri}

∞

i=1 and a limiting function ū(x, t) such that Ri → ∞ and

lim
i→∞

uRi(x, t) = ū(x, t) in Cloc(R+ × [0,∞)).

Then ū(x, t) is a classical solution of (13) satisfying ū(x, t) ≤ U(x, t) in (0, 1) × (0,∞) and 0 ≤ −∂xū(x, t) ≤ ū(x, t)q.
Therefore by a unique solvability of (13), it holds that ū(x, t) ≡ u(x, t). Thus the proof is completed. �

Here we assume that v0(x) satisfies v0 ≥ ψα (v0 ≢ ψα) and (A1)–(A4). Put u0(x) = v0(x)−1/(q−1). Then it is verified
that u0(x) is smooth and φβ(x) ≤ u0(x) ≤ φα(x). Therefore by Lemma 2.1, there exists a unique solution u(x, t) ∈

C2,1(R+ × [0,∞)) of (13) satisfying φβ(x) ≤ u(x, t) ≤ φα(x) for (x, t) ∈ R+ × (0,∞). Let v(x, t) = u(x, t)−(q−1). Then by
the positivity of u(x, t), we find that v(x, t) ∈ C2,1(R+ × [0,∞)) and it satisfies

ψα(x) ≤ v(x, t) ≤ ψβ(x), (x, t) ∈ R+ × (0,∞). (19)
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To discuss the stability of the stationary solution ψα(x) of (15), we set

w(x, t) = v(x, t)− ψα(x).

Since vx(x, t) = wx(x, t)+ (q − 1), we see that
wt = wxx −

q (wx + 2(q − 1))
(q − 1)v

wx, (x, t) ∈ R+ × (0,∞),

wx(0, t) = 0, t ∈ (0,∞),
w(x, 0) = w0(x) := v0(x)− ψα(x), x ∈ R+.

(20)

Since ψα(x) = (q − 1)x + α−(q−1), from v0 ≥ ψα and (A2)–(A4), we see that

w0 ≥ 0, w0, w
′

0, w
′′

0 ∈ BC(R+). (21)

Furthermore by Lemma 3.1, it follows that

− (q − 1) ≤ wx(x, t) ≤ 0, (x, t) ∈ R+ × (0,∞). (22)

Therefore from (19) and (22), we obtain

q
ψβ

≤
q(wx + 2(q − 1))

(q − 1)v
≤

2q
ψα
. (23)

To construct a sub-solution of (20), we consider the following problem:
Wt = Wxx −

q
ψβ(x)

Wx, (x, t) ∈ R+ × (0,∞),

Wx(0, t) = 0, t ∈ (0,∞),
W (x, 0) = w0(x), x ∈ R+.

(24)

Lemma 3.2. Let W (x, t) be a bounded classical solution of (24). If v0(x) satisfies (A1)–(A4), then it holds that

w(x, t) ≥ W (x, t), (x, t) ∈ R+ × (0,∞).

Proof. From (22) and (23), we see that

−
q(wx + 2(q − 1))

(q − 1)v
wx ≥ −

2q
ψβ
wx.

Therefore we get
(w − W )t ≥ (w − W )xx −

q
ψβ(x)

(w − W )x, (x, t) ∈ R+ × (0,∞),

(w − W )x(0, t) = 0, t ∈ (0,∞),
(w − W )(x, 0) ≡ 0, x ∈ R+.

By ψα(x) = (q − 1)x + α−(q−1) and (19), we find that w(x, t) ∈ L∞(R+ × (0,∞)). Therefore since ψβ(x)−1
∈ L∞(R+), a

comparison lemma impliesw(x, t) ≥ W (x, t) for (x, t) ∈ R+ × (0,∞), which completes the proof. �

Lemma 3.3. Let W (x, t) be as in Lemma 3.2. Then if v0 satisfies (A1)–(A4), there exists κ ∈ R such that W (·, t) → κ in
Cloc(R+) as t → ∞. Moreover κ is characterized by

κ =


∞

0
θβ(x)dx

−1 
∞

0
w0(x)θβ(x)dx


, (25)

where θβ(x) = (x + b)−q/(q−1), b = β−(q−1)/(q − 1).

Proof. By (21) and w′

0(0) = 0, we see that W (x, t) ∈ C2,1(R+ × [0,∞)). First we derive a priori estimates for
W (x, t),Wt(x, t), Wx(x, t). A comparison argument implies

sup
t≥0

∥W (t)∥∞ ≤ ∥W (0)∥∞ = ∥w0∥∞.

Hence by the assumption w0 ∈ BC2(R+), W (x, t) is uniformly bounded on R+ × (0,∞). To derive a estimate for Wt(x, t),
differentiating (24) with respect to t and applying a comparison lemma, we obtain

sup
t≥0

∥Wt(t)∥∞ ≤ ∥Wt(0)∥∞ ≤ ∥w′′

0∥∞ + qβq−1
∥w′

0∥∞.
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Therefore by the assumption w0 ∈ BC2(R+), a boundedness of Wt(x, t) is derived. For simplicity, we put Iz = (z, z + 1).
Then sincew(x, t) satisfies (24), we see that

∥Wxx(t)∥L2(Iz ) ≤ ∥Wt(t)∥L2(Iz ) + qβq−1
∥Wx(t)∥L2(Iz ), t > 0.

Hence by interpolation inequalities, there exists c > 0 independent of z > 0 such that

∥Wxx(t)∥L2(Iz ) ≤ c

∥Wt(t)∥L2(Iz ) + ∥W (t)∥L2(Iz )


, t > 0.

As a consequence, by using the Sobolev inequality with n = 1, we get

∥Wx(t)∥L∞(Iz ) ≤ c

∥Wxx(t)∥L2(Iz ) + ∥W (t)∥L2(Iz )


≤ c


∥Wt(t)∥L2(Iz ) + ∥W (t)∥L2(Iz )


, t > 0.

Therefore since W (x, t) and Wt(x, t) are uniformly bounded on R+ × (0,∞), a boundedness of Wx(x, t) is derived. By the
explicit expression of ψβ(x), the right-hand side of (24) is rewritten by

Wxx −
q

ψβ(x)
Wx = Wxx −

γ

x + b
Wx =

1
θβ(x)


θβ(x)Wx


x ,

where b = β−(q−1)/(q − 1), γ = q/(q − 1) and θβ(x) = (x + b)−γ . Since W (x, t),Wx(x, t) ∈ L∞(R+ × (0,∞)) and
θβ(x) ∈ L1(R+), we see that

∂t


∞

0
W (x, t)θβ(x)dx =


∞

0


θβ(x)Wx(x, t)


x dx = 0,

which implies
∞

0
W (x, t)θβ(x)dx =


∞

0
w0(x)θβ(x)dx. (26)

Furthermore by a standard way, we get

d
dt


∞

0
|Wx(x, t)|2θβ(x)dx = −2


∞

0
|Wt(x, t)|2θβ(x)dx. (27)

Integrating over (0,∞), we obtain
∞

0
dt


∞

0
|Wt(x, t)|2θβ(x)dx ≤

1
2


∞

0
|∂xw0(x)|2θβ(x)dx.

Hence since ∂xw0 ∈ BC(R+) and θβ ∈ L1(R+), there exists a sequence {tk}∞k=1 such that tk → ∞ and
∞

0
|Wt(x, tk)|2θβ(x)dx → 0.

By a parabolic regularity theory, there exist a limiting function W∗(x) ∈ BC2(R+) and a subsequence {tk}∞k=1, which is
denoted by the same symbol such that

lim
k→∞

W (·, tk) = W∗ in C2
loc(R+).

Then W∗(x) is a bounded stationary solution of (24). Hence W∗(x) must be a constant, which is denoted by κ . Applying
Lebesgue’s dominant convergence lemma to (26), we obtain

κ


∞

0
θβ(x)dx =


∞

0
w0(x)θβ(x)dx.

Furthermore sinceWx ∈ L∞(R+ × (0,∞)), by Lebesgue’s dominant convergence lemma, we obtain
∞

0
|Wx(x, tk)|2θβ(x)dx → 0.

Since


∞

0 Wx(x, t)2θβ(x)dx is decreasing with respect to t by (27), we conclude that
∞

0
|Wx(x, t)|2θβ(x)dx → 0.

Therefore we obtainWx(·, t) → 0 in Cloc(R+) as t → ∞. Nowwe claim thatW (·, t) → κ in Cloc(R+) as t → ∞. Let {τk}k∈N
be any sequence such that τk → ∞ as k → ∞. Then fromW ∈ L∞(R+ × (0,∞)) andWx(·, t) → 0 in Cloc(R+) as t → ∞,
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there exist κ ′
∈ R and a subsequence {τk}k∈N, which is denoted by the same symbol such thatW (·, τk) → κ ′ in Cloc(R+) as

k → ∞. We again apply Lebesgue’s dominant convergence lemma in (26) to obtain

κ ′


∞

0
θβ(x)dx =


∞

0
w0(x)θβ(x)dx.

Hence it follows that κ ′
= κ . Therefore we obtainW (·, τk) → κ in Cloc(R+) as k → ∞. Since a sequence {τk}k∈N is arbitrary,

we conclude thatW (·, t) → κ in Cloc(R+) as t → ∞, which shows the claim. Thus the proof is completed. �

Combining Lemmas 3.2 and 3.3, we can show the instabilities of stationary solutions of (15), which is stated as follows.

Proposition 3.1. Let α ∈ (0,∞) and u(x, t), v(x, t) be as in Lemma 3.1. If v0(x) satisfies v0(x) ≥ ψα(x) (v0(x) ≢ ψα(x)),
then there exists δ > 0 such that for any R > 0 there exists t0 > 0 such that v(x, t)− ψα(x) ≥ δ for (x, t) ∈ (0, R)× (t0,∞).

Proof. For any initial data v0(x) satisfying v0(x) ≥ ψα(x) (v0(x) ≢ ψα(x)), we can choose a function ξ0(x) satisfying
(A1)–(A4), ψα(x) ≤ ξ0(x) ≤ v0(x) and ξ0(x) ≢ ψα(x). Let ξ(x, t) be a unique solution of (15) with the initial data ξ0(x).
Then by Lemma 2.1, it holds that v(x, t) ≥ ξ(x, t). Furthermore let W (x, t) be a bounded classical solution of (24) with
w0(x) = ξ0(x)− ψα(x). Then by Lemmas 3.2 and 3.3, we verify that ξ(x, t)− ψα(x) ≥ W (x, t) and

lim
t→∞

W (·, t) → κ in Cloc(R+),

where κ is characterized by (25). It is clear that κ > 0. Therefore for any R > 0 there exists t0 > 0 such that
v(x, t) ≥ ψα(x)+ κ/2 for x ∈ (0, R) and t > t0, which completes the proof. �

Theorem 3.1 follows from Proposition 3.1.

3.2. Instability from above

Theorem 3.2. Fix α ∈ (0,∞). Let u0(x) ∈ BC(R+) satisfy u0(x) ≥ φα(x)(u0(x) ≢ φα(x)), and u(x, t) be a classical solution
of (13). Then there exists δ > 0 such that for any R > 0 there exist t0 > 0 such that

u(x, t) ≥

φα(x)−(q−1)

− δ
−1/(q−1)

, (x, t) ∈ (0, R)× (t0,∞).

The proof of Theorem 3.2 is almost same as in the proof of Theorem 3.1. So we omit the proof of all lemmas and a
proposition stated below. We assume the following conditions instead of (A1)–(A4):

(a1) v0(x) is smooth enough and satisfies v′

0(0) = (q − 1),
(a2) v′

0(x) ≥ (q − 1) for x ∈ R+,
(a3) There exists R0 > 0 such that v′

0(x) = (q − 1) for x ∈ (R0,∞).

Lemma 3.4. Let u(x, t) be a classical solution of (13) and set v(x, t) = u(x, t)−(q−1). If v0(x) satisfies (a1)–(a3), then v(x, t)
satisfies vx(x, t) ≥ (q − 1).

Let v0(x) satisfy 0 ≤ v0(x) ≤ ψα(x) and (a1)–(a3). Set w(x, t) = v(x, t) − ψα(x). From Lemma 3.4, it follows that
wx(x, t) ≥ 0. Hence the second term on the right-hand side of (20) is estimated by

q(wx + 2(q − 1))
(q − 1)v

≥
2q
ψα
.

Thereforew(x, t) satisfies
wt ≤ wxx −

2q
ψα
wx, (x, t) ∈ R+ × (0,∞),

wx(0, t) = 0, t ∈ (0,∞),
w(x, 0) = w0(x) := v0(x)− ψα(x), x ∈ R+.

Here we note that

w0 ≤ 0, w0, w
′

0, w
′′

0 ∈ BC(R+).

By the same manner, we consider the following problem:
Wt = Wxx −

2q
ψα

Wx, (x, t) ∈ R+ × (0,∞),

Wx(0, t) = 0, t ∈ (0,∞),
W (x, 0) = w0(x), x ∈ R+.

(28)
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Lemma 3.5. Let W (x, t) be a bounded classical solution of (28). If v0(x) satisfies 0 ≤ v0(x) ≤ ψα(x) and (a1)–(a3), then it
holds that

w(x, t) ≤ W (x, t), (x, t) ∈ R+ × (0,∞).

Lemma 3.6. Let W (x, t) be as in Lemma 3.5. Then if v0 satisfies (a1)–(a3), there exists κ ∈ R such that W (·, t) → κ in Cloc(R+)
as t → ∞. Moreover κ is characterized by

κ =


∞

0
θ̂α(x)dx

−1 
∞

0
w0(x)θ̂α(x)dx


,

where θ̂α(x) = (x + b)−2q/(q−1), b = α−(q−1)/(q − 1).

Proposition 3.2. Let α ∈ (0,∞) and u(x, t), v(x, t) be as in Lemma 3.4. If v0(x) satisfies v0(x) ≥ ψα(x) (v0(x) ≢ ψα(x)),
then there exists δ > 0 such that for any R > 0 there exists t0 > 0 such that v(x, t)−ψα(x) ≤ −δ for (x, t) ∈ (0, R)× (t0,∞).

Theorem 3.2 follows from Proposition 3.2.

4. Boundedness of global solutions

Throughout this section, we always assume that u0(x) satisfies (14). Furthermore for simplicity of notations, we define

ψ∞(x) = (q − 1)x, ψ−Λ(x) = (q − 1)x −Λ−(q−1) (Λ > 0)

and rΛ = Λ−(q−1)/(q − 1). Then it is verified that ψ−Λ(x) > 0 for x > rΛ.

Theorem 4.1. Assume u0 ∈ BC(R+). Let u(x, t) be a classical solution of (13), and set v(x, t) = u(x, t)−(q−1) and v0(x) =

u0(x)−(q−1). If there existsΛ > 0 such that v0(x) ≥ ψ−Λ(x) for x > rΛ, then u(x, t) is uniformly bounded on R+ × (0,∞).

First we rewrite a comparison lemma discussed in Section 2 in terms of v(x, t). Put

L1v = vt − vxx −
q

(q − 1)v


(q − 1)2 − v2x


.

Lemma 4.1. Let v(i)(x, t) ∈ C(R+ × [0, T )) ∩ C2,1(R+ × (0, T )) (i = 1, 2) be two positive functions satisfying

inf
(x,t)∈R+×(0,T−ϵ)

v(i)(x, t) > 0 for any ϵ > 0 (i = 1, 2).

Then if v(i)(x, t) (i = 1, 2) satisfies

L1v
(1)

≥ 0 in R+ × (0, T ), L1v
(2)

≤ 0 in R+ × (0, T ),

v(1)x (0, t) = v(2)x (0, t) = (q − 1) for t ∈ (0, T ),

v
(1)
0 (x) ≥ v

(2)
0 (x) for x ∈ R+,

then it holds that v(1)(x, t) ≥ v(2)(x, t) for (x, t) ∈ R+ × (0, T ).

Proof. Let u(i)(x, t) = v(i)(x, t)−1/(q−1) (i = 1, 2). Then by the assumption, we find that u(i)(x, t) ∈ BC(R+ × [0, T )) ∩

C2,1(R+ × (0, T )) (i = 1, 2) and u(1)0 (x) ≤ u(2)0 (x) for x ∈ R+. Furthermore we see that u(1)(x, t) is a sub-solution of (13)
and u(2)(x, t) is a super-solution of (13). Therefore Lemma 2.1 implies u(1)(x, t) ≤ u(2)(x, t) for (x, t) ∈ R+ × (0, T ), which
completes the proof. �

A global solvability of a solution of (13) is a consequence of Theorem 4.7 in [3].

Lemma 4.2. Every positive classical solution of (13) is globally defined. Moreover for any x0 > 0 there exists M > 0 such that
u(x, t) ≤ M for (x, t) ∈ (x0,∞)× (0,∞).

Proof. Let ū0(x) be a nonincreasing smooth function satisfying ū′

0(0) = ū0(0)q and ū0(x) ≥ u0(x). We denote by ū(x, t) a
unique classical solution of (13) with the initial data ū0(x) and denote by T its maximal existence time. Then by Lemma 2.1,
it follows that u(x, t) ≤ ū(x, t) for (x, t) ∈ R+ × (0, T ). Furthermore by the same argument as in the proof of Lemma 3.1,
we see that ūx(x, t) ≤ 0 for (x, t) ∈ R+ × (0, T ). We take a smooth function U0(x) satisfying U0(x) ≥ ū0(x) on (0, 1),
U ′

0(0) = −U0(0)q and U ′

0(1) = 0. Let U(x, t) be a unique classical solution of (18). Then we see that ū(x, t) ≤ U(x, t) in
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(0, 1)× (0, T ) (see proof of Lemma 3.1). From Theorem 4.7 in [3], we note that U(x, t) is globally defined and converges to
the unique positive solution of

Ψ ′′
= qΨ 2q−1 in (0, 1),

Ψ (0) = ∞, Ψ ′(1) = 0.

Hence for any x0 ∈ (0, 1) there existsM > 0 such that 0 ≤ U(x, t) ≤ M for (x, t) ∈ (x0, 1)× (0,∞). Since ū(x, t) ≤ U(x, t)
in (0, 1)× (0, T ) and ūx(x, t) ≤ 0 in R+ × (0, T ), ū(x, t) is global defined and satisfies

sup
x>1

ū(x, t) ≤ sup
x0<x<1

ū(x, t) ≤ M, t > 0.

Therefore from u(x, t) ≤ ū(x, t), we obtain the conclusion. �

Set

u(x, t) = φα(t)(x)+ d(x, t), α(t) = u(0, t), α0 = α(0). (29)

Then d(x, t) satisfiesdt + ∂tφα(t) = dxx + qφ2q−1
α(t) − q(φα(t) + d)2q−1, (x, t) ∈ R+ × (0,∞),

d(0, t) = dx(0, t) = 0, t ∈ (0,∞),
d(x, 0) = d0(x) := u0(x)− φα0(x), x ∈ R+.

Here we assume the following conditions on the initial data.
(D) u0(x) > φα(x) for α < α0 and u0 intersects with φα exactly one time for α > α0,
where α0 > 0 is a constant given in (29).

Lemma 4.3. Assume the condition (D). Then α(t) defined in (29) is monotone increasing for t > 0 and d(x, t) ≥ 0 for
(x, t) ∈ R+ × (0,∞).

Proof. Setwα(x, t) = u(x, t)− φα(x). Thenwα(x, t) satisfies
wt = wxx + c(x, t)w, (x, t) ∈ R+ × (0,∞),
wx = c0(t)w, (x, t) ∈ {0} × (0,∞),

where c(x, t) = −q(2q− 1)
 1
0 (θu(x, t)+ (1− θ)φα(x))2q−2dθ and c0(t) = q

 1
0 (θu(0, t)+ (1− θ)φα(0))q−1dθ . Let Nα(t)

be the number of zeros ofwα(·, t) onR+. Here from Lemma 2.7, we note thatNα(t) is nonincreasing. Hence by the condition
(D), it holds that Nα(t) ≤ 1 for t ≥ 0 if α > α0. We define α∗

= supt∈(0,∞) α(t) ∈ (0,∞] and τα = inf{t > 0; u(0, t) = α}

for α0 < α < α∗. By definition of τα , it follows that Nα(τα) = 1 andwα(0, τα) = 0. Since Nα(t) is nonincreasing, it follows
that Nα(t) = 1 for t ∈ [0, τα]. We denote by zα(t) a zero ofwα(x, t) for t ∈ [0, τα]. Then it is known that zα(t) is continuous
on [0, τα) and limt→τα zα(t) = z∗

α ∈ [0,∞] (e.g. Lemma 2.7 in [2]). Here we claim that z∗
α = 0. Suppose z∗

α ∈ (0,∞].
Then since limt→τα zα(t) = z∗

α ∈ (0,∞], there exists δ > 0 such that wα(x, t) < 0 for (x, t) ∈ [0, δ] × [0, τα). Therefore
by a strong maximum principle and Hopf’s boundary lemma, we see that wα(0, τα) < 0. However this contradicts the
assumption, which assures the claim. Therefore since wα(x, t) < 0 for x ∈ (0, zα(t)) and wα(x, t) > 0 for x ∈ (zα(t),∞),
we obtainwα(x, τα) ≥ 0 for x ∈ R+, which implies

u(x, τα) ≥ φα(x), x ∈ R+. (30)

Therefore by Lemma 2.1, a strong maximum principle and Hopf’s boundary lemma, we obtain

u(x, t) > φα(x), (x, t) ∈ R+ × (τα,∞),

u(0, t) > α, t ∈ (τα,∞).

Since u(0, τα) = α and u(0, t) > α for t > τα , α(t) is monotone increasing. Furthermore the map α → τα is monotone
increasing and continuous. Therefore it holds that τα|α=α(t) = t . By using this relation in (30), we obtain for t > 0

u(x, t) > φα(t)(x), x ∈ R+,

which implies that d(x, t) > 0 for t > 0. �

Lemma 4.4. Assume the condition (D). If d0(x) ∈ Lq(R+), then d(x, t) satisfies

0 ≤ d(x, t) ≤ (4π t)−1/2q
∥d0∥q. (31)

Proof. By Lemma4.3,wenote thatαt(t) ≥ 0. Hence it follows that ∂tφα(t) ≥ 0. As a consequence,we obtain from d(x, t) ≥ 0

dt ≤ dxx, (x, t) ∈ R+ × (0,∞).

Since d(0, t) = 0 for t > 0, applying a comparison lemma and heat semigroup estimates, we conclude (31). �
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We set

v(x, t) = ψα(t)(x)− η(x, t).

Let u0 satisfy the condition (D). Then by Lemma 4.3, we note that d(x, t) ≥ 0 and αt(t) ≥ 0. Hence we see that η(x, t) ≥ 0
and

v(x, t) = u(x, t)−(q−1)
=


φα(t)(x)+ d(x, t)

−(q−1)

≥ ψα(t) − (q − 1)φα(t)(x)−qd(x, t)
≥ ψα(t) − (q − 1)φα0(x)

−qd(x, t).

Therefore we get

0 ≤ η(x, t) ≤ (q − 1)φα0(x)
−qd(x, t). (32)

Here we additionally assume that there existsΛ > 0 such that v0(x) ≥ ψ−Λ(x) for x > rΛ. Then we see that for x > rΛ
d0(x) = u0(x)− φα0(x)

≤ ψ−Λ(x)−1/(q−1)
−


(q − 1)x + α

−(q−1)
0

−1/(q−1)

=

(q − 1)x −Λ−(q−1)−1/(q−1)

−


(q − 1)x + α

−(q−1)
0

−1/(q−1)

≤


1

q − 1

 
Λ−(q−1)

+ α
−(q−1)
0

 
(q − 1)x −Λq−1−q/(q−1)

.

Hence from d0(x) ≥ 0 and d0 ∈ C(R+), it follows that d0 ∈ Lq(R+). Therefore from (32) and Lemma 4.4, there exists c0 > 0
such that

0 ≤ η(x, t) ≤ c0

(q − 1)x + α

−(q−1)
0

q/(q−1)
∥d0∥qt−1/2q. (33)

The following lemma plays a essential role in our argument, which is proved in the end of this section.

Lemma 4.5. Let u(x, t) be a classical solution of (13). Then for any ϵ > 0 there exists cϵ > 0 such that

∥u(t)∥∞ ≤ cϵtϵ, t ≥ 1.

Hence from this lemma, there exists ν > 0 such that

α(t)q−1
≤ νt1/4q, t ≥ 1.

Then by (33), it holds that

η(x, t) ≤ c0ν

(q − 1)x + α

−(q−1)
0

q/(q−1)
∥d0∥qα(t)−(q−1)t−1/4q, t ≥ 1.

We choose z(t) as follows:
(q − 1)z(t)+ α

−(q−1)
0

q/(q−1)
=

t1/4q

2c0ν∥d0∥q
.

Then by the choice of z(t), it is verified that

η(x, t) ≤
1
2
α(t)−(q−1), x ∈ (0, z(t)), t ≥ 1.

Hence since v(x, t) = ψα(t)(x)− η(x, t), we get

v(x, t) ≥ ψα(t)(x)−
1
2
α(t)−(q−1)

≥ (q − 1)x +
1
2
α(t)−(q−1)

= ψ∞(x)+
1
2
α(t)−(q−1), x ∈ (0, z(t)), t ≥ 1. (34)

Moreover since v0(x) ≥ ψ−Λ(x) for x > rΛ and ψ−Λ(rΛ) = ∞, applying Lemma 4.1, we get

v(x, t) ≥ ψ−Λ(x), (x, t) ∈ (rΛ,∞)× (0,∞). (35)

Now we define

v∗(x, t) =

ψ∞(x)+ 2−1α(t)−(q−1) if x ≤ z(t)/2,
ψ∞(z(t)/2)+ 2−1α(t)−(q−1) if z(t)/2 ≤ x ≤ y(t),
ψ−Λ(x) if x ≥ y(t),
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where y(t) is given by ψ∞(z(t)/2)+ 2−1α(t)−(q−1)
= ψ−Λ(y(t)), which is equivalent to

y(t) =
z(t)
2

+
1

q − 1


2−1α(t)−(q−1)

+Λ−(q−1) .
Since z(t) = ∞ as t → ∞, there exists t0 ≥ 1 such that y(t) < z(t) for t ≥ t0. Hence by (34) and (35), we verify that

v∗(x, t) < v(x, t), x ∈ R+, t ≥ t0. (36)

Lemma 4.6. For any µ > 0, there exists t1 ≥ t0 such that
∞

0
(v∗(x, t1)− ψ∞(x))θµ(x)dx > 0,

where θµ(x) = (x + b)−q/(q−1), b = µ−(q−1)/(q − 1).

Proof. By definition of z(t), there exist D0 > 0 and τ0 ≥ 1 such that

z(t) ≥ D0t(q−1)/4q2 , t ≥ τ0. (37)

Hence there exists cµ > 0 such that for t ≥ τ0 z(t)/2

0
(v∗(x, t)− ψ∞(x))θµ(x)dx =

α(t)−(q−1)

2

 z(t)/2

0
θµ(x)dx ≥ cµα(t)−(q−1).

By construction of v∗(x, t), we note that ψ−Λ(x) ≤ v∗(x, t) ≤ ψ∞(x) + 2−1α(t)−(q−1). Therefore since αt(t) ≥ 0, we see
that 

∞

z(t)/2
|v∗(x, t)− ψ∞(x)|θµ(x)dx =


Λ−(q−1)

+ 2−1α(t)−(q−1) 
∞

z(t)/2
θµ(x)dx

≤


Λ−(q−1)

+ 2−1α
−(q−1)
0

 
∞

z(t)/2
θµ(x)dx.

Here we note that
∞

z(t)/2
θµ(x)dx ≤


∞

z(t)/2
x−q/(q−1)dx = (q − 1)


z(t)
2

−1/(q−1)

.

Hence from (37), there exists D1 > 0 such that for t ≥ τ0
∞

z(t)/2
|v∗(x, t)− ψ∞(x)|θµ(x)dx ≤ D1t−1/4q2 .

Thus we obtain for t ≥ τ0
∞

0
(v∗(x, t)− ψ∞(x))θµdx ≥ cµα(t)−(q−1)

− D1t−1/4q2 .

By Lemma 4.5, we obtain the desired conclusion. �

Proof of Theorem 4.1. First we assume the condition (D). Applying Lemma 4.1with the condition (D), we see that v(x, t) <
ψα0(x) for (x, t) ∈ R+ × (0,∞). From Lemma 4.6 and (36), there exists t1 > 0 such that v∗(x, t1) < v(x, t1) for x ∈ R+ and

∞

0
(v∗(x, t1)− ψ∞(x))θα0(s)dx > 0. (38)

Therefore by (38), we can choose a smooth function ξ(x) satisfying (A1)–(A4) with β = α0 in (A2), ξ(x) ≤ v∗(x, t1) and
∞

0
(ξ(x)− ψ∞(x))θα0(x)dx > 0. (39)

We denote by ξ(x, t) the solution of (15) with the initial data ξ(x). Since ξ(x) < v(x, t1) for x ∈ R+, by Lemma 4.1, we see
that ξ(x, t) ≤ v(x, t + t1). By Lemmas 3.2 and 3.3, there exists a functionW (x, t) satisfying ξ(x, t)−ψ∞(x) ≥ W (x, t) and
W (·, t) → κ in Cloc(R+) as t → ∞. Since κ is characterized by (25) and (39) implies κ > 0. Hence there exists t0 > 0
such that ξ(0, t) ≥ κ/2 for t ≥ t0. Since ξx(x, t) ≥ 0, we obtain ξ(x, t) ≥ κ/2 for (x, t) ∈ R+ × (t0,∞). Therefore from
v(x, t + t1) ≥ ξ(x, t), we conclude that

v(x, t) ≥ κ/2, (x, t) ∈ R+ × (t0 + t1,∞),
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which implies a boundedness of u(x, t). Next we consider a general initial data u0(x) satisfying v0(x) ≥ ψ−Λ(x) for some
Λ > 0. Here we choose a function ū0(x) satisfying (D) and

ū0(x) ≥ u0(x), ū0(x)−(q−1)
≥ ψ−Λ(x).

We denote by ū(x, t) the solution of (13) with a initial data ū0(x). Then by the above arguments, ū(x, t) is uniformly
bounded on (x, t) ∈ R+ × (0,∞). Therefore from Lemma 2.1, we conclude that u(x, t) is also uniformly bounded on
(x, t) ∈ R+ × (0,∞). Thus the proof is completed. �

Proof of Lemma 4.5. The proof of Lemma 4.5 is almost same as in the proof of Theorem 1.1 in [5]. For the convenience of
the reader, we give the brief proof of this lemma. First we consider the case ux(x, t) ≤ 0 for (x, t) ∈ R+ × (0,∞). Therefore
it is clear that

u(0, t) = ∥u(t)∥∞, t > 0. (40)

We define

Uλ(y, t) = ϵλ(t)
1

q−1 u(ϵλ(t)y, t), ϵλ(t) = λ(1 + t)−γ (γ > 0).

Then Uλ(y, t) satisfies
∂tUλ =

1
ϵ2λ
(∂2yUλ − qU2q−1

λ )+
ϵ̇λ

ϵλ


y∂yUλ +

1
q − 1

Uλ


, (y, t) ∈ R+ × (0,∞),

∂yUλ(0, t) = −Uλ(0, t)q, t ∈ (0,∞),

Uλ(y, 0) = Uλ0(y) := λ1/(q−1)u0(λy), y ∈ R+.

For a comparison argument, we define

LλU = Ut −
1
ϵ2λ
(Uyy − qU2q−1)−

ϵ̇λ

ϵλ


yUy +

1
q − 1

U

.

Now we look for a super-solution Ūλ(y, t)which has the following form:

Ūλ(y, t) = φ(y)−
1
2
ϵλ(t)ϵ̇λ(t)g(y),

where φ(y) = φα(y)with α = (q − 1)−1/(q−1) and g(y) is a unique solution of
g ′′

− q(2q − 1)φ2q−2g = φq in (0,∞),
g(0) = g ′(0) = 0.

Then g(y) is given by

g(y) = A1(1 + y)(2q−1)/(q−1)
+ A2(1 + y)−q/(q−1)

− A3(1 + y)(q−2)/(q−1),

where

A1 =
(q − 1)(q−2)/(q−1)

(q + 1)(3q − 1)
, A2 =

(q − 1)−1/(q−1)

2(3q − 1)
, A3 =

(q − 1)−1/(q−1)

2(q + 1)
.

By definition of g(y), it is easily verified that

g(y), gy(y) ≥ 0, y ∈ R+.

First we claim that there exists λ0 > 0 such that for λ ∈ (0, λ0)

LλŪλ ≥ 0, (y, t) ∈ R+ × (0,∞).

By the same calculations as in [5], for the case q ≥ 3/2, we see that

LλŪλ ≥ −
g
2
(ϵ̇2λ + ϵλϵ̈λ)+

1
2

|ϵ̇λ|

ϵλ
φq

+ cqϵ̇2λφ
2q−3g2,

where cq = q(q − 1)(2q − 1)/4. Here we note that ϵλ(t) = γ−1(1 + t)|ϵ̇λ(t)| and ϵ̈λ(t) = (γ + 1)(1 + t)−1
|ϵ̇λ(t)|. Hence

we obtain for the case q ≥ 3/2

LλŪλ ≥
ϵ̇2λ

2


−(2 + γ−1)g + γ−1λ−2(1 + t)2γ+1φq

+ 2cqφ2q−3g2
≥
ϵ̇2λ

2


−(2 + γ−1)g + γ−1λ−2φq

+ 2cqφ2q−3g2 .



J. Harada / J. Math. Anal. Appl. 404 (2013) 11–28 25

Since g(y) ∼ y(2q−1)/(q−1) and φ(y)2q−3g(y)2 ∼ y(2q+1)/(q−1) for large y > 0, there exists λ0 > 0 such that LλŪλ ≥ 0 for
(y, t) ∈ R+ × (0,∞) and λ ∈ (0, λ0). Therefore the claim is proved for the case q ≥ 3/2. For the case 1 < q < 3/2, by the
same way as in [5], there exists d0 > 0 such that

LλŪλ ≥


−

g
2


ϵ̇2λ + ϵλϵ̈λ


+

1
2

|ϵ̇λ|

ϵλ
φq

+ d0ϵ̇2λφ
2q−3g2 if (y, t) ∈ Q1,

−
g
2


ϵ̇2λ + ϵλϵ̈λ


+

1
2

|ϵ̇λ|

ϵλ
φq

+ d0ϵ
2q−3
λ |ϵ̇λ|

2q−1g2q−1 if (y, t) ∈ Q2,

where Q1 = {(y, t) ∈ R+ × (0,∞); g(y)ϵλ(t)|ϵ̇λ(t)| ≤ 2φ(y)} and Q2 = {(y, t) ∈ R+ × (0,∞); g(y)ϵλ(t)|ϵ̇λ(t)| > 2φ(y)}.
Hence the estimate for (y, t) ∈ Q1 are reduced to the case q ≥ 3/2. Consequently there exists λ′

0 > 0 such that LλŪλ ≥ 0
for (y, t) ∈ Q1 and λ ∈ (0, λ′

0). While, by the same way as before, we get

LλŪλ ≥
ϵ̇2λ

2


−(2 + γ−1)g + γ−1λ−2φq

+ 2d0ϵ
2q−3
λ |ϵ̇λ|

2q−3g2q−1

, (y, t) ∈ Q2.

For the case 1 < q < 3/2, from ϵλ(t) = λ(1 + t)−γ , we see that ϵ2q−3
λ |ϵ̇λ|

2q−3
≥ γ 2q−3λ2(2q−3). Hence we obtain

LλŪλ ≥
ϵ̇2λ

2


−(2 + γ−1)g + γ−1λ−2φq

+ 2d0γ 2q−3λ2(2q−3)g2q−1 , (y, t) ∈ Q2.

Therefor there exists λ′′

0 > 0 such that LλŪλ ≥ 0 for (y, t) ∈ Q2 and λ ∈ (0, λ′′

0). Thus the claim is proved. Next we claim
that there exists λ1 > 0 such that for λ ∈ (0, λ1)

Ūλ(y, 0) ≥ U(y, 0), y ∈ R+.

This claim follows fromp. 145 in [5]without anymodifications. Finally, we claim that for any γ > 0 there exists a continuous
function 0 < Z(t) < ∞ such that Ūλ(Z(t), t) > U(Z(t), t) for t ∈ (0,∞). From Lemma 4.2, we note that u(x, t) ≤ M for
(x, t) ∈ (1,∞)× (0,∞). Hence it holds that

U(y, t) ≤ λ1/(q−1)M, y ≥ ϵλ(t)−1. (41)

By the explicit expression of g(y), there exists y1 > 0 such that

g(y) ≥
A1

2
y(2q−1)/(q−1), y ≥ y1.

Hence by definition of Ūλ(y, t), we obtain

Ūλ(y, t) ≥
A1γ

4
λ2(1 + t)−(2γ+1)y(2q−1)/(q−1), y ≥ y1.

Here we set Z(t) = K(1 + t)ν(q−1), where ν > 0 and K > y1 are constants chosen later. Then it is clear that Z(t) ≥ y1 for
t > 0. Hence it holds that

Ūλ(Z(t), t) ≥
A1γ

4
λ2K

2q−1
q−1 (1 + t)−(2γ+1)+ν(2q−1).

Therefore for any λ, γ > 0 there exist K0 > y1 and ν0 > 0 such that for t ≥ 0

Z(t) = K0(1 + t)ν0(q−1)
≥ λ−1(1 + t)γ = ϵλ(t)−1,

Ūλ(Z(t), t) ≥
A1γ

4
λ2K

2q−1
q−1

0 (1 + t)−(2γ+1)+ν0(2q−1)
≥ λ1/(q−1)M.

Then from (41), it follows that

Ūλ(Z(t), t) ≥ Uλ(Z(t), t), t ≥ 0,

which assures the claim. Therefore since ∂νUλ(0, t) = Uλ(0, t)q for t > 0 and ∂ν Ūλ(0, t) = Ūλ(0, t)q for t > 0, applying
Lemma 2.4 in Q := {(y, t) ∈ R+ × (0,∞); 0 < y < Z(t)}, we conclude that

Uλ(y, t) ≤ Ūλ(y, t), (y, t) ∈ Q.

Here we take y = 0, then we get from g(0) = 0

u(0, t) ≤ ϵ(t)−1/(q−1)φ(0)
= λ−1/(q−1)(q − 1)−1/(q−1)(1 + t)γ /(q−1), t > 0.

Thus by using (40), we obtain

∥u(t)∥∞ ≤ c(1 + t)γ /(q−1), t > 0.
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Next we consider a general case, namely we do not assume (40). For any initial data u0 ∈ BC(R+), we can choose a function
ū0 ∈ BC1(R+) satisfying ∂xū0(x) ≤ 0 for x ∈ R+ and ū0(x) ≥ u0(x) for x ∈ R+. Let ū(x, t) be a classical solution of (1).
Then Lemma 2.1 implies u(x, t) ≤ ū(x, t) for (x, t) ∈ R+ × (0,∞). Furthermore by the same argument as in the proof of
Lemma 3.1, we verify that ūx(x, t) ≤ 0 for (x, t) ∈ R+ × (0,∞). Therefore by the previous argument, ū(x, t) satisfies

∥ū(t)∥ ≤ cγ (1 + t)γ , t > 0

for any γ > 0. Thus the proof of Lemma 4.5 is completed. �

5. Large time behavior of global solutions

In this section, we study the large time behavior of positive bounded global solutions. Let u(x, t) be a solution of (1) and
define the ω-limit set of u by

ω(u) = {ξ ∈ BC(R+); u(·, tk) → ξ in Cloc(R+) for some sequence tk → ∞}.

The purpose of this section is to investigate the ω-limit set of positive bounded global solutions. To state our result, we set

X = {u ∈ L2q(R+); ux ∈ L2(R+)}.

Throughout this section, we assume (14) and use the same notations as in Section 4. Then our result is stated as follows.

Theorem 5.1. Assume that u0 ∈ X ∩ BC(R+) and there existsΛ > 0 such that v0(x) ≥ ψ−Λ(x) for x > rΛ. Then it holds that
ω(u) = {0} or ω(u) = {φα} for some α > 0.

Proof. Define the energy functional E(u) by

E(u) =


∞

0


u2
x + u2q dx −

1
q + 1

u(0)q+1, u ∈ X .

Since u0 ∈ X , by a standard argument, there exists a unique solution u ∈ C([0,∞); X) of (1) such that

E(u(t2))− E(u(t1)) = −

 t2

t1


∞

0
ut(x, t)2dxdt, t1 < t2.

FromTheorem4.1, u(x, t) is uniformly bounded onR+×(0,∞). Hence since E(u(t)) is nonincreasing, E∞ = limt→∞ E(u(t))
exists. Therefore we get

∞

0


∞

0
ut(x, t)2dxdt = −E∞ + E(u0) < ∞.

This implies

lim
t→∞


∞

t
dτ


∞

0
ut(x, τ )2dx = 0. (42)

To obtain the regularity of ut(x, t), we differentiate (13) with respect to t . Then we see that z(x, t) = ut(x, t) satisfies
zt = zxx − q(2q − 1)u2q−2z for (x, t) ∈ R+ × (0,∞) and ∂νz(0, t) = qu(0, t)q−1z(0, t) for t > 0. Therefore since u(x, t) is
uniformly bounded on R+ × (0,∞), by a parabolic regularity theory with (42), we get

lim
t→0

ut(x, t) → 0 in locally uniformly on R+. (43)

Set

α1 = lim inf
t→∞

u(0, t), α2 = lim sup
t→∞

u(0, t).

By virtue of (43), if α1 = α2 := α, we find that

ω(u) = {φα} if α > 0, ω(u) = {0} if α = 0,

which completes the proof. Therefore it is sufficient to show α1 = α2. To derive a contradiction, we suppose that α1 < α2.
We putα3 = (α1+α2) > 0. Then by definition ofα1 andα2, there exists a sequence {tk}k∈N (tk → ∞) such that u(0, tk) = α3
for k ∈ N. Therefore by (43), we see that u(x, tk) → φα3(x) in Cloc(R+) as k → ∞, which implies

lim
k→∞

|v(x, tk)− ψα3(x)| = 0 in locally uniformly on R+. (44)



J. Harada / J. Math. Anal. Appl. 404 (2013) 11–28 27

We set γ = (α3 + α2)/2 and

vR(x) =


ψγ (x) if x < R,
ψγ (R) if R ≤ x ≤ ρR,
ψ−Λ(x) if x > ρR,

where ρR is a unique root of ψγ (R) = ψ−Λ(ρR), which is given by ρR = R + (γ−(q−1)
+ Λ−(q−1))/(q − 1). Since

v0(x) ≥ ψ−Λ(x) for x > rΛ, by Lemma 4.1, we see that v(x, t) ≥ ψ−Λ(x) for (x, t) ∈ (rΛ,∞) × (0,∞). Therefore by
(44) and ψα3(x)− ψγ (x) = α

−(q−1)
3 − γ−(q−1) > 0, for any R > 0 there exists k0 ∈ N such that for k ≥ k0

v(x, tk) ≥ vR(x), x ∈ R+. (45)

By the same way as in the proof of Lemma 4.6, we can show that there exists R0 > 0 such that
∞

0
(vR0(x)− ψα2(x))θγ (x)dx > 0,

where θγ (x) = (x + b)−q/(q−1), b = γ−(q−1)/(q − 1). Then by (45), there exists k1 ∈ N such that

v(x, tk1) ≥ vR0(x), x ∈ R+.

Furthermore there exists a smooth function ξ(x) satisfying (A1)–(A4) with β = γ in (A2), ξ(x) < vR0(x) and
∞

0
(ξ(x)− ψα2(x))θγ (x)dx > 0. (46)

Let ξ(x, t) be a solution of (15) with the initial data ξ(x). Since ξ(x) < v(x, tk1), Lemma 4.1 shows that ξ(x, t) ≤ v(x, t + tk1)
for (x, t) ∈ R+ × (0,∞). Then by the same way as in the proof of Theorem 4.1, we see that there exists a function W (x, t)
satisfying ξ(x, t) − ψα2(x) ≥ W (x, t) and W (x, t) → κ in Cloc(R+) as t → ∞. Since κ is characterized by (25), it follows
from (46) that κ > 0. Therefore there exists t0 > 0 such that ξ(0, t) ≥ ψα2(0)+ κ/2 for t ≥ t0. Since v(0, t) ≥ ξ(0, t) for
t ≥ 0, we deduce that

u(0, t) = v(0, t)−1/(q−1)
≤


α

−(q−1)
2 + κ/2

−1/(q−1)
, t ≥ t0.

However this contradicts the definition of α2, which completes the proof. �

6. Sign changing solutions in a bounded interval

In this section, we study the large time behavior of sign changing solutions of (1) with I = (−1, 1).ut = uxx − q|u|2q−2u, (x, t) ∈ (−1, 1)× (0, T ),
∂νu = |u|q−1u, (x, t) ∈ {−1, 1} × (0, T ),
u(x, 0) = u0(x), x ∈ (−1, 1).

(47)

As is stated in Introduction, the large time behavior of positive solutions of (47) is completely understood. Every positive
solution converges to the positive singular solutions Ψ (x) as t → ∞. Here we provide a complete classification of the large
time behavior of sign changing solutions of (47), which is stated as follows.

Theorem 6.1. Let u0 ∈ C([−1, 1]) and u(x, t) be a classical solution of (47). Then u(x, t) converges to either ±Ψ (x) uniformly
on any compact set in (−1, 1) or zero uniformly on [−1, 1] as t → ∞.

Remark 6.1. Theorem 6.1 gives a negative answer to the question given in Introduction: ‘‘Are there solutions which
converge to the sign changing singular solutions ±Ψs(x) as t → ∞’’?

Proof. We denote by N (t) the number of zeros of u(·, t). By Lemmas 2.5 and 2.6, we see that N (t) < ∞ for t > 0 and
N (t) is a nonincreasing function. Therefore there exist t0 > 0 and N∞ ∈ N ∪ {0} such that

N∞ = N (t), t ≥ t0.

Let −1 < z1(t) < · · · < zN∞
(t) ≤ 1 be zeros of u(·, t) for t ≥ t0. Then the large time behavior of solutions are classified in

terms of N∞.

(I) N∞ = 0, (II) N∞ ≥ 1.

For the case (I), since the solution u(x, t) is positive or negative, Theorem4.7 in [3] implies that the solution u(x, t) converges
to the positive singular solutionΨ (x) or the negative singular solution −Ψ (x) as t → ∞. Next we consider the case (II). Set
O = {(x, t) ∈ (−1, 1)× (t0,∞); −1 < x < z1(t)}. Here we recall that z1(t) is continuous on [t0,∞) (e.g. Lemma 2.7 in [2]).
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Now we fix a nonnegative function U0(x) ∈ C∞
c (R+) satisfying U0(x + 1) ≥ |u(x, t0)| for x ∈ (−1, 1). Let U(x, t) be

a solution of (1) (I = R+) with the initial data U0(x). Since U0(x) has compact support, there exists Λ > 0 such that
U0(x) ≤ ψ−Λ(x)−1/(q−1) for x > rΛ. Therefore by Theorem 4.1, U(x, t) is uniformly bounded on R+ × (0,∞). Here we put
Û(x, t) = U(x + 1, t − t0) and Û0(x) = U0(x + 1). Then it is easily verified that Û(x, t) satisfies Ût = Ûxx − qÛ2q−1 for
(x, t) ∈ (−1,∞)× (t0,∞) and ∂ν Û(−1, t) = Û(−1, t)q for t > t0. Furthermore by definition of O, we see that

u(z(t), t) = 0 for t > t0, Û(z(t), t) > 0 for t > t0.

Therefore since |u(x, t0)| ≤ Û0(x) for x ∈ (0, z(t0)) and

∂νu(−1, t) = u(−1, t)q for t > t0, ∂ν Û(−1, t) = Û(−1, t)q for t > t0,

applying Lemma 2.4 in O, we obtain |u(x, t)| ≤ Û(x, t) in O. Hence |u(−1, t)| is uniformly bounded for t ∈ (0,∞). By the
same way, we obtain a boundedness of |u(1, t)|. We set

m0 = sup
t∈(t0,∞)

(|u(1, t)| + |u(−1, t)|)+ sup
x∈(−1,1)

|u(x, t0)|,

then Ū(x) ≡ m0 becomes a super-solution. Hence Lemma 2.2 implies |u(x, t)| ≤ Ū(x) for (x, t) ∈ (−1, 1) × (t0,∞).
Therefore u(x, t) is uniformly bounded on R+ × (0,∞). Since there are no nontrivial bounded stationary solutions of (47),
the solution u(x, t) converges to zero uniformly on x ∈ [0, 1] as t → ∞, which completes the proof. �
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