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1. Introduction

Janson [10] says that the law L(X) of a positive random variable X has moments of gamma type if its moment function
has the form

M(t) := E
(

Xt) = C Dt

∏ J
j=1 Γ (a jt + b j)∏K
k=1 Γ (a′

kt + b′
k)

for some integers J , K � 0 and real constants C, D > 0, a j , b j , a′
k , b′

k . He shows by example that many common and not so
common laws have moments of gamma type. Janson [11] is a supplement with further examples. Janson [10, Theorem 5.4]
shows that L(X) has an infinitely differentiable density function if

∑ J
j=1 |a j | − ∑K

k=1 |a′
k| > 0 which condition will hold for

cases occurring in this paper. The case where a j = a′
k = 1 and b j,b′

k > 0 are called Dufresne laws; see Chamayou [4] and
references therein.

The positive stable laws comprise an important subclass of laws with moments of gamma type. Let 0 < α < 1 and Sα be
a random variable having the standard stable law with density function σα(x), meaning that its Laplace–Stieltjes transform
is

σ̂α(θ) = E
(
e−θ Sα

) = e−θα
. (1.1)

It is known that (Shanbhag and Sreehari [27, Corollary 1])

E
(

S−t
α

) = Γ (1 + t/α)

Γ (1 + t)
(t > −α). (1.2)

See Janson [10, Example 3.10] for the ‘obvious’ simple derivation using (1.1). So a1 = −α−1 and −a′
1 = b1 = b′

1 = 1 for
stable(α). It follows too from (1.1) that
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− d

dθ
σ̂α(θ) = αθα−1σ̂α(θ), (1.3)

equivalently, that

yσα(y) = α

Γ (1 − α)

y∫
0

(y − v)−ασα(v)dv. (1.4)

The stable(α) law is an infinitely divisible law (abbreviated infdiv law with definitions recalled in Section 2) whose
Lévy measure has support [0,∞) and density �α(y) = (α/Γ (1 − α))y−α−1. So (1.4) asserts that the y-tilt of σα equals the
convolution of σα and the y-tilt of �α . A general form of this relation characterizes any positive infdiv law; see (9.3) below
or Steutel and van Harn [29, Theorem 4.17].

Infdiv laws in general have a central importance in the limit theory of sums of independent random variables and
stochastic modelling. Consequently they have been extended in various ways. Lévy’s semistable laws comprise the earliest
such extension. The contemporary approach to these is through finding all characteristic function solutions of functional
equations satisfied by the characteristic function of symmetric stable laws. See Ramachandran and Lau [22, Chapter 3]. It
follows from this approach that semistable laws coincide with those infinitely divisible laws whose Lévy measure is formed
from a multiplicatively periodic modulation of a stable Lévy measure. Extending still further to almost periodic modulation
gives so-called pseudostable laws; see Uchaikin and Zolotarev [31, p. 191]. Semistable laws are generalized in another
direction (Ramachandran and Lau [22]) by starting from more general functional equations.

Modifying stable Lévy measures arises in other contexts. For example, the exponentially tilted density function
σα,c(x) ∝ e−cxσα(x) (x > 0) corresponds to the infinitely divisible law whose Lévy measure has the density proportional
to e−cxx−α−1. This family of laws includes the inverse Gaussian (α = 1

2 ), and they were introduced for modelling survival
data (Hougaard [9]). Similar two-sided exponential thinnings of the Lévy density of a general stable law yields the so-called
truncated, or tempered, stable laws advocated by some for modelling financial returns. See Cont and Tankov [6, pp. 110,
119] and Pakes [17].

Our goal in this paper is exploring the generalization of (1.4) obtained by replacing the tilting factor y on the left-hand
side by the general power ym where m > 0. More specifically, is there a (positive) law L(X) having a density function f
solving the integral equation

ym f (y) = α

Γ (1 − α)

y∫
0

(y − v)−α f (v)dv.

Schneider [26] restricts m = 1,2, . . . in which case a positive solution for the integral equation is equivalent to showing
there is a completely monotone solution f̂ of the differential equation(

− d

dθ

)m

f̂ (θ) = αθα−1 f̂ (θ). (1.5)

Schneider [25] gives two reasons for pursuing this extension. The first is to show that σα is the first member of a
sequence of density functions (indexed by m) which have an ‘explicit’ form in terms of Fox H-functions, i.e., inverses of
Mellin transforms (1.1); see Mathai [14]. This relation is not mentioned in the main essay Janson [10] but it is in the
supplement. Second, the reciprocal generalized stable laws in the case m = 2 arise in connection with particle transport
along the one-dimensional lattice; see Bernasconi et al. [1].

The proof method in Schneider [25] is by way of an analytical treatment of the integral equation satisfied by g(x) =
x−2 f (x−1), i.e., ignoring an essentially arbitrary normalization factor,

g(x) = xm+α−2

∞∫
x

(z − x)−αzα g(z)dz. (1.6)

This equation with m = 2 is essentially (27) in Bernasconi et al. [1]. Schneider shows that the Mellin transform of g has
the form (1.1) with J = m and K = 1. There is more detail in Schneider [26] where he explains (somewhat obscurely)
that (1.5) has a unique completely monotone solution. Defining a = m + α − 1, a positive law L(X) whose density function
satisfies (1.6) is called a reciprocal generalized stable law with parameters a and m, abbreviated r-gstable(a,m), and the law
of Y = X−1 is a generalized stable law (in the sense of Schneider), abbreviated gstable(a,m). It transpires that these laws
are well-defined if −(m − 1) < α < 1. Schneider [26] shows that gstable(a,m) laws arise as limit laws of a certain infinite
dimensional non-linear system.

Questions which are left open include:

• Is there a more direct probabilistic construction?
• What is the relation, if any, with the stable(α) law?
• Are generalized stable laws infdiv, or even self-decomposable?
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We provide some direct answers starting from results in Pakes [16] about characterizing probability laws by invari-
ance under length-biasing (or size-biasing) followed by an independent random contraction, i.e., multiplication by an
independent factor B ∈ (0,1). The salient facts are recalled in Section 2, as well as some about infinite divisibility and
self-decomposability. Proposition 2.1 relates a typology of spectrally-positive self-decomposable laws to their background
driving Lévy processes.

The particular case where the contraction factor B has a beta(a,b) law is discussed in Section 3. If r > 0 denotes the
order of length-biasing, then there is a unique scale family L(a,b, r) of laws having the above invariance property. The
scaling can be chosen so that L(X) has a density function g(x) satisfying (3.2) below. Theorems 3.1 and 3.2 assert some
infinite divisibility properties.

In general X has at least two infinite product representations; compare (3.7) and Lemma 3.2. Certain parameter combi-
nations yield a finite product representation. Two examples are exhibited and in both cases L(X) and L(X−1) are infdiv.

Section 4 is devoted to a third finite product reduction giving the gstable(a,m) laws. We begin by explaining how the
case r = a and m := a + b > 0 yields laws whose Laplace–Stieltjes transforms solve the fractional-order version of (1.5),
thus locating our results in the wider context of fractional-order dynamics and statistics. See Klafter et al. [12] or Uchaikin
and Sibatov [30] for an overview and references to this area of investigation. The further restriction m = 1,2, . . . yields the
gstable(a,m) laws (Definition 4.1 and Theorems 4.1 and 4.3). In the case that 0 < a � 1 Theorem 4.2 exhibits X as a finite
product with Sa as one factor, thus legitimizing the nomenclature in this case.

Some infinite divisibility and self-decomposability results are obtained in Section 5. In particular, the gstable(a,m) is a
generalized gamma convolution (defined in Section 5) if 0 < a � 1 and m = 2,3, . . . . Infinite divisibility is an open question
if 1 < a < m.

Some further self-decomposability properties are established in Section 6. Janson [10, Remark 11.2] observes that there
exists no general theory of infinite divisibility laws with moments of gamma type. Our results add to the corpus of specific
cases. Representations for the density functions of generalized stable laws and related Laplace transforms are obtained for
the physically significant case m = 2 in Section 7.

If a j,a′
k > 0 in (1.1), then L(X) has finite moments of all positive orders. Janson [10, Remark 11.1] raises the question

of whether L(X) is uniquely determined by its moment sequence. He exhibits examples showing that non-uniqueness can
occur. Reciprocal generalized stable laws have finite moments of all positive integer orders. Section 8 gives results which
completely answer the moment problem for these and the related laws identified as Cases 1 and 2 in Section 3.

Proofs of many of the results are confined to Section 9. There is some minor duplication of notation between sections,
but no confusion should result.

2. Preliminaries on characterization by length-biasing

Let X � 0 have the distribution function F and suppose that E(Xr) < ∞ for a positive constant r. Define the moment
function of X by M(t) = E(Xt) for all real t for which this function takes finite values. Finally, let rX = sup{x � 0: F (x) < 1}
be the right-extremity of the law L(X) of X , and similarly for other random variables. The length-bias operator of order
r � 0 by definition maps F to the distribution function

F̂r(x) = 1

M(r)

x∫
0

zr dF (z) (x � 0).

A random variable having this law is denoted by X̂r , and it is stochastically larger than X . See Lemma 2.1 in Pakes [16] for
this and other properties of the length-bias operator.

Let B be a random variable such that P (0 � B � 1) = 1. We may ask whether there is a law represented by X such that

X
L= B X̂r, (2.1)

where
L= denotes equality in law and the factors on the right-hand side are independent. If P (B = 0) < 1 and rB � 1 then

the answer is ‘Yes’, and solutions are unique up to scaling if and only if rB = 1. We always assume the last condition.
Solutions satisfy rX = ∞ if and only if P (B = 1) = 0. Finally, if X satisfies (2.1), then M(t) < ∞ for all positive t .

A solution X of (2.1) can be represented as an infinite product of random variables as follows. Note that we assume
without further comment that factors in products of random variables are independent. Let N(t) = E(Bt) denote the moment
function of B . If X satisfies (2.1) and M= M(r), then M satisfies the functional equation

M(t) = N(t)
M(r + t)

M(r)

whose solution has an infinite product form implying the representation

X
L=M1/r

∞∏(
N(rn)

N(r(n + 1))

)1/r

B̂rn. (2.2)

n=0
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It follows that if B has an absolutely continuous law, then so does X . In addition it can be written in the limiting form

X
L=M1/r lim

n→∞
(
N(rn)

)−1/r
n−1∏
j=0

B̂ jr . (2.3)

In summary, any non-degenerate law for B such that rB = 1 yields a unique scale family solution for X , and we write
L(X) ∈L(B, r) to denote inclusion in the type of law so defined. This gives characterizations of many common laws and we
refer to Pakes [16] and references there for examples.

We will be concerned with the case where B = e−V and V has a positive infinitely divisible (infdiv) law. This means that
N(t) = E(e−tV ) = e−ψ(t) , where the cumulant function ψ has the canonical form

ψ(t) =
∞∫

0

(
1 − e−tx)ν(dx), (2.4)

and the Lévy measure ν satisfies
∫ ∞

0 (x ∧ 1) ν(dx) < ∞. Note that our assumption rB = 1 implies that there is no drift term.
The corresponding representation for solutions of (2.1) is X = e−W where W has a spectrally-positive infdiv law. This

means that M(t) = e−ξ(t) where

ξ(t) = At +
∞∫

0

(
1 − e−tx − txe−x)Π(dx), (2.5)

and the Lévy measure Π satisfies
∫ ∞

0 (x2 ∧ 1)Π(dx) < ∞. The drift constant A is arbitrary because it corresponds to the
scaling constant e−A for X . We state the following result which extends Theorem 5.1 in Pakes [16] by dropping an implied
restriction that

∫ 1
0 xΠ(dx) < ∞. Its proof is the same as in Pakes [16].

Theorem 2.1. Let ν and Π be Lévy measures, as in (2.4) and (2.5), respectively, and related by

Π(dx) = (
1 − e−rx)−1

ν(dx), (2.6)

equivalently,

ψ(t) = ξ(t) + ξ(r) − ξ(r + t). (2.7)

Then any pair of the following statements implies the third:

(a) X ∼= B X̂r ;
(b) B = e−V and V has the positive infdiv law with cumulant function (2.7); and
(c) X = e−W where W has a spectrally-positive infdiv law whose Lévy measure is Π as in (2.6).

Note that the proof that (a) and (b) implies (c) in Pakes [16] gives the specific drift rate

A = −r−1

∞∫
0

(
1 − e−rx − rxe−x)Π(dx),

i.e., M(r) = 1.
We end this section by recalling a classification of infdiv laws. Suppose that L(X ) is an arbitrary spectrally-positive infdiv

law with Lévy measure Λ supported in (0,∞) (so
∫ ∞

0 (x2 ∧ 1)Λ(dx) < ∞), and with no Gaussian component. We say that

L(X ) is of: Type 0 if Λ is a finite measure, Type 1 if Λ is infinite but
∫ 1

0 xΛ(dx) < ∞, and Type 2 otherwise. This typology
reflects the sample path behaviour of the corresponding Lévy process (which will be said to have the same type): a Type 0
process is compound Poisson, and otherwise sample paths have jump times which are dense in the positive reals. Paths
of a Type 1 process have bounded variation in bounded intervals and Type 2 process paths have unbounded variation in
bounded intervals. An infdiv law whose cumulant function has the form (2.4) cannot be of Type 2; the corresponding Lévy
process is a subordinator, i.e., its paths are non-decreasing. A Type 2 infdiv law is two-sided. See Sato [23, p. 65] for these
concepts, but note that he uses A, B and C for the more usual 0, 1 and 2.

A spectrally-positive infdiv law L(X ) with Lévy density �(x) is self-decomposable if and only if x�(x) is non-increasing
on the positive real line (Steutel and van Harn [29, p. 277]). We say too that a random variable is self-decomposable if its
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law has this property. In addition, there is a Lévy process (Ds: s � 0) called the background driving Lévy process (BDLP),
such that X has the stochastic integral representation

X =
∞∫

0

e−s dDs.

The significance of this result is that L(X ) is the limiting law of the Ornstein–Uhlenbeck process defined by dXs = −Xs ds +
dDs . See Sato [23, §17] and the penultimate paragraph on p. 426.

The Lévy measure Nb of the BDLP is given by

Nb(x,∞) = x�(x) if x > 0, (2.8)

and, since we limit ourselves to spectrally-positive laws, Nb(−∞,0) = 0, i.e., the BDLP also is spectrally positive.
The following result relates the typologies of L(X ) and its BDLP.

Proposition 2.1.

(a) The BDLP is Type 2 if and only if L(X ) is Type 2.
(b) If L(X ) is Type 1, then the BDLP is Type 0 if and only if

lim
x→0

x�(x) = Nb(0,∞) < ∞. (2.9)

Proof. It follows from (2.8) that

1∫
0

x�(x)dx = Nb(1,∞) +
1∫

0

1+∫
x

Nb(dy)dx = Nb(1) +
1+∫
0

y Nb(dy),

and (a) follows. This identity implies that if L(X ) is Type 1, then the BDLP is Type 0 or Type 1 and, from (2.8), the former
occurs if and only if (2.9) holds. �
3. Beta scaling

Let beta(a,b) denote the beta law with parameters a,b > 0, i.e., its density function is

h(x) = xa−1(1 − x)b−1

B(a,b)
(0 < x < 1)

and B(a,b) = Γ (a)Γ (b)/Γ (a + b) is the beta function. The moment function of this law is

N(t) = B(a + t,b)

B(a,b)
= Γ (a + t)

Γ (a + b + t)
· Γ (a + b)

Γ (a)
. (3.1)

The right-hand side is identically equal to unity if b = 0, and hence we can consistently define the beta(a,0) law as the
point mass at unity, i.e., P (B = 1) = 1.

We use notation such as Z ∼= (·) to mean that the random variable has the law specified by (·) which can be a named
law or a distribution function. The following result is easily proved.

Lemma 3.1. If B ∼= beta(a,b) and Z ∼= H, then the density function of the product B Z is

p(x) = xa−1

B(a,b)

∞∫
x

(z − x)b−1z−a−b+1 dH(z).

We now assume that B ∼= beta(a,b), in which case we write L(a,b, r) to denote the scale family of laws L(X) which
satisfy (2.1). Since X has a density function, denoted by g , we can apply Lemma 3.1 to the product in (2.1) to obtain the
equivalent density function identity

g(x) = xa−1

B(a,b)M(r)

∞∫
(z − x)b−1zr−a−b+1 g(z)dz. (3.2)
x
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Scaling so that M(r)B(a,b) = 1 shows that Schneider’s equation (1.6) is the particular case of (3.2) with b = 1 − α and
a = r = m + α − 1. We consider this case in the next section.

Theorem 2.1 is applicable to the beta scaling case. This follows from the Malmstén integral representation of the gamma
function (Whittaker and Watson [32, p. 249]) which we express as

log
Γ (c + βt)

Γ (c)
= −

∞∫
0

[
1 − e−xt

1 − e−x/β
e−cx/β − βte−x/β

]
dx

x
. (3.3)

For later reference, let γc denote a random variable having the gamma law with parameter c, i.e., its density function is
xc−1e−x/Γ (c) (x > 0). The moment function of γc is

E
(
γ t

c

) = Γ (c + t)

Γ (c)
. (3.4)

Using (3.3) to compute the right-hand side of (3.1) shows that V = − log B has a positive infdiv law with the Lévy
measure in (2.4) having the density

n(x) = e−ax(1 − e−bx)

x(1 − e−x)
(x > 0), (3.5)

a result first found by Shanbhag et al. [28, Remark 2]. This gives the following corollary of Theorem 2.1.

Theorem 3.1. If L(X) ∈ L(a,b, r), then W = − log X has a spectrally-positive Type 2 infdiv law with arbitrary drift parameter and
whose Lévy measure has the density

πW (x) = e−ax(1 − e−bx)

x(1 − e−x)(1 − e−rx)
. (3.6)

It can be asked whether L(X) itself is infdiv. A sufficient condition can be inferred from Theorem 3.1 (with proof in
Section 9) as follows.

Theorem 3.2. Suppose that L(X) ∈L(a,b, r). Then L(X) is infdiv if a � 2 and b � r, and then it is of Type 1. If b < r, then L(X) is not
infdiv.

The law L(X) = gamma(a) is infdiv for all a and it satisfies X ∼= Ba,b X̂r with b = r, showing that the condition a � 2 in
the theorem is not a necessary one. Hence an open question is what can be said when a > 2 and b < r?

It follows from (3.1) that B̂r ∼= beta(a + r,b), so we see from (2.2) that X is an infinite product of scaled beta random
variables. The scaling constants in (2.2) can be simplified:

N(rn)

N(r(n + 1))
= Γ (a + rn)

Γ (r + a + rn)
· Γ (r + a + b + rn)

Γ (a + b + rn)
=

(
a + b + rn

a + rn

)r(
1 + O

(
n−2)),

where the right-hand term comes from a known asymptotic expansion for quotients of gamma functions. Thus we can write

X ∼= M
∞∏

n=0

a + b + rn

a + rn
Ba+rn,b, (3.7)

where Ba,b
∼= beta(a,b), and M is an arbitrary scaling constant. The presence of the beta random factors can be inferred

from expanding (3.6) as

xπW (x) = 1 − e−bx

1 − e−x

∞∑
n=0

e−(a+rn)x

and reference to (3.3).
This insight can be used to show that although the solution L(X) is unique up to scaling, the representation (3.7) is not

unique. This could be anticipated from the existence of distributional identities of the sort discussed e.g. by Chamayou [4].
A different representation for X is obtained by expanding the factor (1 − e−x)−1 in (3.6), with the following result. Its proof
is in Section 9.

Lemma 3.2. If L(X) ∈L(a,b, r), then the representation (3.7) can be expressed as

X
L=M

[ ∞∏
n=0

a + b + n

a + n
B(a+n)/r,b/r

]1/r

,

where M= M(r).
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Filling the gap in Theorem 3.2 is partially resolved by seeking parameter combinations, if any, which give a simple finite
representation for M(t) and/or X . This is fruitful because the resulting laws have moments of gamma type. We consider
two cases in this section. Pakes [16, p. 298] pursues finite term reductions of M(t) by manipulating product identities for
gamma functions. We show here a simpler approach using the Lévy density (3.6).

Case 1. Suppose m is a positive integer and b = mr. Then

πW (x) = [
x
(
1 − e−x)]−1

m−1∑
j=0

e−(a+ jr)x.

It follows from (3.3) and (3.4) that

X
L=M

m−1∏
j=0

γa+ jr .

The case r = 1 occurs as Theorem 4.3 in Pakes [16]. The logarithm of a gamma random variable has a self-decomposable
law, and hence log X has a self-decomposable law without the restrictions of Theorem 3.2. In addition, L(X) belongs to
the Bondesson class B of laws (Bondesson [3, pp. 68, 79]), i.e., it has a density f (x) which is hyperbolically completely
monotone (meaning that for each u > 0, the product f (uv) f (u/v) is a completely monotone function of v + v−1). This
class of laws has the property that X and X−1 are self-decomposable.

Case 2. If b = m, a positive integer, then

πW (x) = [
x
(
1 − e−x)]−1

m−1∑
j=0

e−(a+ j)x

whence

X
L=M

m−1∏
j=0

(γ(a+ j)/r)
1/r .

This was derived using different means by Pakes and Khattree [19, Theorem 6.1]. Again log X has a self-decomposable law,
and L(X) and L(X−1) belong to B if r � 1 (Bondesson [3, p. 85]).

4. Generalized stable laws

There is much activity modelling physical systems in terms of fractional-order differential equations. See Klafter et al. [12]
and Uchaikin and Sibatov [30] for recent accounts and references. In particular, the time-dependent density function of
a stable process solves an evolution equation in which the spatial derivative has fractional order. The Laplace–Stieltjes
transform of the law L(Y ) derived from Theorem 3.1 satisfies a fractional-order differential equation generalizing (1.5).

Define the order α ∈ [0,1] Weyl integral of the function φ(θ) by

(Iαφ)(θ) = 1

Γ (α)

∞∫
θ

(y − θ)α−1φ(y)dy,

assumed to be finite. For a constant a > 0 choose the positive integer νa such that νa − 1 < a � νa . Define the order-a
fractional derivative of φ by

Daφ(θ) = (
Iνa−aφ

(νa)
)
(θ).

It is easily checked that

Dae−θ y = (−1)νa yae−θ y,

agreeing with the usual case when a = νa .
It follows that the order-a derivative of the Laplace transform f̂ (θ) is

Da f̂ (θ) = (−1)νa

∞∫
yae−θ y f (y)dy.
0
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A routine calculation using (3.7) shows that the density function f (y) of Y = X−1 solves

B(a,b)M(r)ya+b f (y) =
y∫

0

(y − v)b−1 va−r f (v)dv,

and hence f̂ satisfies

B(a,b)M(r)(−1)νb+r Db+r f̂ (θ) = Γ (b)θ−b Da−r f̂ (θ).

Apart from a constant multiplier, this takes the form (1.5) if a = r and a + b = m > 0 and it reduces precisely to (1.3) if
a = r = α < 1 and b = 1 − α.

We now focus on the case m = 1,2, . . . .

Definition 4.1. The law-type L(Y ) is a generalized stable law if M= 1, r = a > 0 and b � 0 is such that a + b = m, a positive
integer. We write Y ∼= gstable(a,m). This choice corresponds to Schneider’s representation in (1.6) if a = m + α − 1 and
b = 1 − α = m − a. Since 0 < a < m, the allowable range for α is −(m − 1) < α < 1. If m � 2, then this extends the range
0 < α < 1 examined by Schneider [25,26].

In particular L(X) has the reciprocal law, r-gstable(a,m), it solves

X
L= Ba,m−a X̂a, (4.1)

and it has moments of gamma type.

Theorem 4.1. Let 0 < a < m. The r-gstable(a,m) law has the finite product moment function

M(t) = Γ (1 + t/a)

Γ (1 + t)

m−1∏
j=1

Γ (( j + t)/a)

Γ ( j/a)
. (4.2)

and the product is interpreted as unity if m = 1 (in which case α = a � 1). In particular

E(X) = a−1Γ (m/a) = m−1Γ (1 + m/a). (4.3)

Proof. The proof follows as for the two above cases by decomposing πW in the form

xπW (x) = 1 − e−mx

(1 − e−x)(1 − e−ax)
− 1

1 − e−x

= e−ax

1 − e−ax
− e−x

1 − e−x
+

m−1∑
j=1

e− jx

1 − e−ax
,

where the sum is understood to be zero if m = 1. The product (4.2) telescopes if t = 1. Observe that a = m if α = 1, in
which case πW (x) is identically zero and X is almost surely constant-valued. �

The solution of (4.1) in the case a = 1 and m � 2 occurs as Theorem 4.3 in Pakes [16], and the solution X = MS−1
a for

the case m = 1 and a < 1 is an alternative and cleaner characterization of the reciprocal stable law given as Theorem 4 in
Pakes [16].

Referring to (1.2) and (3.4) we obtain the following explicit representation for L(Y ) in the case that a � 1.

Theorem 4.2. If 0 < a � 1 and m = 1,2, . . . and Y ∼= gstable(a,m), then

Y
L= Sa

m−1∏
j=1

γ
−1/a
j/a , (4.4)

where the product is interpreted as unity if m = 1.

Theorem 4.2 holds in a more general sense if 0 < a � 1 and m = a+b > 1 is not an integer. This can be seen by supposing

that X
d= S−1

a T . It follows from (1.3) and (3.1) that the moment function version of (4.1) implies that the moment function
MT of T satisfies MT (t) = B(1 + t,m − 1)MT (a + t)/MT (a), i.e., T = B1,m−1 T̂a . It follows from (3.7) that

T =
∞∏

n=0

m + an

1 + an
B1+an,m−1.

No useful simplification appears possible without more assumptions.
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If a > 1, then the quotient factor in (4.2) is not the moment function of any random variable. Indeed its reciprocal is the
moment function of S−1/a

1/a . However, the following generalization of Schneider’s key result is evident from Theorem 4.1.

Theorem 4.3. If m = 1,2, . . . and 0 < a < m, i.e., −(m − 1) < α < 1, then (1.5) has a unique completely monotone solution which is
the Laplace–Stieltjes transform of a scaled version of Y = X−1 whose moment function is M(−t) where M is given by (4.2).

We end this section with the following result about existence of moments and the right-hand tail behaviour of Y = X−1

where L(X) ∈ L(a,b, r). Schneider [25] obtains the asymptotic form of g(x) as x → 0, and this may be used to determine
the right-hand tail behaviour of generalized stable laws, although he does not do this. His proof uses the facts that the
moment function M is the Mellin transform of xg(x) and that the Mellin inverse of the right-hand side of (4.2) is a Fox
H-function, which has a power series expansion. Clearly his methodology can be applied to Cases 1 and 2 in Section 3
since the moment function there is a finite product of gamma functions. The following result covering all cases uses a much
simpler argument.

Theorem 4.4. Suppose that Y = X−1 , where L(X) ∈L(a,b, r). Then E(Y ν) < ∞ if and only if ν < a and

P (Y > y) ∼ K y−a (y → ∞) (4.5)

where

K = M(r − a)

aB(a,b)M(r)
.

Proof. The moment function form of (2.1) is

M(t) = N(t)
M(t + r)

M(r)
,

and since M(t) is finite if t > 0, it follows that it is finite for t < 0 such that the right-hand side is finite. But N(t) < ∞
if and only if t > −a, and this implies the first assertion. In addition, M(r − a) < ∞, so it follows that the integral in (3.2)
converges as x ↓ 0 to M(r − a), and hence g(x) ∼ aK xa−1, implying the tail estimate (4.5). �

This result implies that the gstable(a,m) law has finite moments of integer order up to m − 1, but not larger. In this
case, K −1 = aB(a,m − a)M(a).

5. Infinite divisibility

We begin with the following result about infinite divisibility of r-gstable(a,m) laws.

Theorem 5.1.

(a) The r-gstable(a,m) law is infdiv if :
(i) a � 1

2 and m � 1; or

(ii) 1
2 < a � 1 and m � 2; or if

(iii) 1 < a � 2 and m � 4.
(b) The r-gstable(a,m) law is not infdiv if a > m/2, m = 1,2, . . . .

Proof. Theorem 3.2 implies assertion (a). Proving assertion (b) uses the fact that if L(X) is infdiv, then there is a positive
constant c such that P (X > x) � exp(−cx log x) if x 
 1; see Steutel and van Harn [29, p. 115]. The right-hand tail estimate
of the r-gstable(a,m) density function is derived by Schneider [25, p. 215]. Integration by parts yields the tail estimate

P (X > x) ∼ AxB exp
(−kxτ

)
,

where A, B and k are positive constants, and τ = a/(m − a). Clearly τ > 1 if and only if a > m/2, thus giving a tail so thin
that it violates the above necessary condition for infinite divisibility, and assertion (b) follows. �

It follows that the r-gstable(a,m) law is not infdiv if m = 2 and a > 1
2 m = 1, or if m = 3 and a > 3/2. The case m = 3

and 1 < a � 3/2 is undecided. Finally, the r-gstable(a,m) law is not infdiv if m � 2 and a ∈ (m − 1,m). This is the parameter
range used by Schneider for his definition of gstable laws.

The r-gstable(a,1) law is just the reciprocal stable(a) law, which Theorem 5.1 asserts is infdiv if and only if a � 1
2 . This

assertion is a particular case of the following general result for powers of a stable law.
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Lemma 5.1. If 0 < a < 1 and β > 0, then L(S−β
a ) is infdiv if and only if β � a/(1 − a).

Proof. The direct (if) assertion follows from Theorem 1 in Shanbhag et al. [28] which implies that if β � a/(1 − a), then
L(S−β

a ) is an exponential mixture, and hence it is infdiv. These authors remark that L(S−β
a ) need not be infdiv if β <

a/(1 − a). In fact, under this condition, a Chernoff inequality leads to the tail estimate

P
(

S−β
a > x

)
� exp

(−K xa/β(1−a)
)
,

which implies that the tail is too thin for infinite divisibility. �
Next, we ask whether the gstable(a,m) laws are infdiv? An incomplete answer is that if a ∈ (0,1] and m � 2, then

they are self-decomposable, an outcome which generalizes the stable(α) case where m = 1 and α = a. Proving this is quite
simple, but it needs some preliminary notions. Suppose that Z � 0 is a random variable independent of Sa . With reference
to (4.4), the random variable

Y = Sa Z 1/a (5.1)

inherits infdiv properties from Z . For example, if L(Z) is infdiv then so is L(Y ). To see this, recall that the Laplace–Stieltjes
transform has the form exp(−C Z (θ)) where the cumulant function C Z is a Bernstein function, meaning that

C Z (θ) =
∞∫

0

(
1 − e−θx) L(dx),

where L is a Lévy measure. The cumulant function of Y is C Z (θa), a composition of two Bernstein functions, and hence it is
Bernstein too; see Corollary 3.7(iii) in Schilling et al. [24]. Again, if L(Z) is self-decomposable, then so is L(Y ). This follows
easily using the Laplace–Stieltjes transform version of the autoregression representation of Z . The closure result we need
asserts that if L(Z) is a generalized gamma convolution (GGC), then so is L(Y ).

The law L(Z) is a GGC if Z is a sum of independent gamma random variables (allowing differing shape parameters) or it
is the weak limit of such sums. Such laws are self-decomposable and they are precisely the positive infdiv laws whose Lévy
measures have a density �(x) such that x�(x) is completely monotone:

x�(x) =
∫

(0,∞)

e−xv τ (dv), (5.2)

where the so-called Thorin measure τ satisfies∫
(0,1)

|log v|τ (dv) < ∞ and
∫

[1,∞)

v−1 τ (dv) < ∞. (5.3)

See Bondesson [3], Steutel and van Harn [29], or Schilling et al. [24] for these facts. The above GGC closure result is proved
in Bondesson [3, p. 41] using complex variable theory, and Steutel and van Harn [29, p. 363] give a real analytic proof.

A more probabilistic approach yields the closure assertion along with a formula for the Thorin measure of L(Y ) showing
that it is absolutely continuous. See Section 9 for the proof of the following assertion.

Theorem 5.2. Suppose that Y and Z are related by (5.1). If L(Z) is a GGC law with the Lévy density (5.2), then L(Y ) is a GGC law
whose Lévy density λ is given by

yλ(y) =
∞∫

0

e−yzu(z)dz,

where

u(z) = a

∫
(0,∞)

f R
(
zv−1/a)v−1/a τ (dv) (5.4)

is the density of a Thorin measure. Here

f R(y) = sin(πa)

π

ya−1

1 + 2ya cos(πa) + y2a
(y > 0), (5.5)

is the density function of R = S ′
a/Sa where S ′

a is an independent copy of Sa.
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We mention, as an aside, that the density function (5.5) occurs often in discussions about laws associated with the
Mittag-Leffler function

Ea(x) =
∞∑

n=0

xn

Γ (1 + na)
,

an obvious generalization of the exponential function; E1(x) = ex . Indeed the Laplace–Stieltjes transform of R is

f̂ R(θ) = E
(
e−θ R) = E

(
e−(θ/Sa)

a) =
∞∑

n=0

(−θ)n

n! E
(

S−na
a

) = Ea
(−θa),

upon using the moment identity (1.2). The assertion usually found about (5.5) is a reference to tables showing the Laplace
transform relation of f R to f̂ R which makes plain that f R really is a density function. Alternatively the form of f R is
derived from a Mellin transform table. See Kotz et al. [13, p. 205] for references. The connection to the quotient R is seldom
mentioned, although it is plainly implicit in Exercise 4.21 in Chaumont and Yor [5]. More specifically, they ask for the
density function of Ra which, from (5.5), is proportional to (1 + 2z cos(πa) + z2)−1, and to prove it, they suggest evaluating
a certain integral using residue calculus. A simple direct proof of (5.5) is offered in Section 9.

We now state a principle result of the paper.

Theorem 5.3. If 0 < a � 1 and m = 2,3, . . . , then the gstable(a,m) law is a GGC and hence self-decomposable.

Proof. It follows from Theorem 4.2 that Y has the form (5.1) where Z = ∏m−1
j=1 γ j/a implying that L(Z) ∈ B (defined in

Section 3); see Bondesson [3, p. 85]. Hence L(Z) is a GGC, and the assertion follows as explained above. �
A question is whether L(Y ) ∈ B? This would follow if L(Sa) ∈ B because B is closed under independent products. The

inclusion L(Sa) ∈ B is known if a−1 is a positive integer and it is open otherwise (Bondesson [3, p. 85]). Bondesson con-
jectures that L(Sa) ∈ B if a � 1

2 . Finally, since the above infdiv laws are positive laws with density functions, they are of
Type 1.

The major open question is whether L(Y ) is infdiv if m � 2 and 1 < a < m. This includes Schneider’s parameter range
0 < α < 1.

6. Self-decomposability

In this section we present results about self-decomposability and the BDLP typology of some laws discussed above. We
note first that the dichotomy in assertion (b) of Proposition 2.1 reflects qualitatively different behaviours of the density
function h(x) of L(X ) in a neighbourhood of x = 0. The following result makes this precise and it is related to Theorem 53.6
in Sato [23]. In particular, the typology of the BDLP is determined by the behaviour at the origin of the distribution function
H of L(X ). The proof is in Section 9.

Proposition 6.1. Suppose that L(X ) is Type 0 or 1 and denote the limit (2.9) by ξ . If ξ < ∞ (i.e., L(X ) is Type 0), then H is regularly
varying at the origin, specifically, there is a slowly varying function λ(x) such that H(x) = xξ λ(1/x). If ξ = ∞ (i.e., L(X ) is Type 1),
then H is rapidly varying at the origin.

Assertion (a) of the following corollary follows from the tail estimate (4.5) and Proposition 6.1.

Corollary 6.1.

(a) The BDLP of any self-decomposable member of L(a,b, r) is compound Poisson.
(b) If L(X) ∈L(a,b, r) and the law of Y = X−1 is self-decomposable, then its BDLP has Type 1.

Proof of (b). It follows from Proposition 2.1 that L(Y ) is Type 0 or 1. If it is the former, then Proposition 6.1 implies that
the survivor function of L(X) is regularly varying at infinity. This cannot be because E(Xt) < ∞ for all positive t . �

As in Section 3, we assume that B ∼= beta(a,b). Shanbhag et al. [28] show that the law of V = − log B is self-
decomposable if either b � 1, or b < 1 and a + b � 1. They assert that V need not be self-decomposable if a + b < 1.
The following result sharpens this, and the details (in Section 9) are a little easier than the proof in Shanbhag et al. [28].

Theorem 6.1. Suppose that B ∼= beta(a,b). Then V = − log B has a self-decomposable law if and only if either b � 1, or b < 1 and
a � 1 (1 − b). In these cases the BDLP is Type 0.
2
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In the case b < 1, Theorem 6.1 asserts that there is a critical value a = 1
2 (1 − b) such that V is self-decomposable if and

only if a � a. Similar outcomes obtain for W = − log X in the following result.

Theorem 6.2. Suppose that L(X) ∈L(a,b, r).

(i) If b � 1 or b � r, then W = − log X is self-decomposable.
(ii) If b < 1 and b < r, then there exists a positive number a < 1

2 (1 − b) such that W is self-decomposable if and only if a � a.
(iii) If r = a, then W is self-decomposable. In particular, if m = 1,2, . . . and Y ∼= gstable(a,m), then W = log Y is self-decomposable.

In each case, the BDLP is Type 2.

7. The case m = 2

In this section we set m = 2 and exhibit a representation of the density function g and the Laplace transforms ĝ and f̂ .
Note that the density function f of Y = X−1 is obtained from f (y) = y−2 g(1/y). So we assume that a+b = 2 and r = a < 2,
in which case (4.2) with M= 1 becomes

M(t) = Γ (1 + t/a)

Γ (1 + t)
· Γ ((1 + t)/a)

Γ (1/a)
. (7.1)

We consider first the sub-case 0 < a � 1 and then the general case 0 < a < 2. Recall that σa(x) denotes the density function
of the positive stable(a) law.

Theorem 7.1. Let m = 2 and 0 < a � 1. The density function g has the exponential mixture form

g(x) = E
[

Q e−Q x], (7.2)

where Q has the density function

q(s) = (
Γ (1 + 1/a)

)−1
s−1 E

[
σa(s/Sa)

]
. (7.3)

The Laplace transform of the gstable(a,2) density function f is

f̂ (θ) = 2
√

θ

Γ (1/a)
K1/a

(
2θa/2), (7.4)

where Kν is a modified Bessel function, i.e., the Macdonald function.

The exponential mixture form (7.2) implies that the r-gstable(a,2) law is infdiv if a � 1, in agreement with Theo-
rem 5.1 (a) (i, ii). But note that the r-gstable(a,2) law is not infdiv if 1 < a � 2.

Remark 7.1. It follows from (7.2) that

ĝ(θ) = E

[
Q

Q + θ

]
= E

[ ∞∫
0

s

s + θ
s−1σa(s/Sa)ds

]
= E

[
Sa

Sa S ′
a + θ

]
.

The formal expansion of this quantity as a power series in θ has zero radius of convergence, as follows from Theorem 8.1.

Remark 7.2. Apart from a scale constant, (7.4) agrees with Eq. (3.22) in Schneider [25], whose derivation involves power
series expansions of H-functions and Bessel functions.

Starting with a different probability interpretation of (7.1) gives the following more complicated result valid if 0 < a < 2.

Theorem 7.2. Let m = 2 and 0 < a < 2. Then (7.4) is valid and the density function of X is

g(x) = a(a − 2)

Γ (2/a)
xa−1 E

[
Sa−1
η

(
1 − 4(xSη)a)1/a−3/2

+
]

(x � 0) (7.5)

where η = 2/a.

Recalling that η = 2/a, we have the following product representation for the gstable(a,2) law which shows that Y is a
product of two random variables with fat right-hand tails.
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Corollary 7.1. Suppose that L(Y ) = gstable(a,m) where a < m = 2. Then Y
L= Ja Vη , where Ja has the Pareto distribution function

Ha(y) = (
1 − 4y−a)ζ

+,

and Vη has the inverse length-biased stable distribution function

P (Vη � y) = E[S−1
η ; Sη � y]
E[S−1

η ] = (
Γ (1 + 2/a)

)−1
y∫

0

v−1ση(v)dv.

We end this section by stating a power series representation for ĝ(θ) thus giving explicit closed forms for all moments
of the r-gstable(a,2) law with 1 � a < 2.

Theorem 7.3. Let m = 2 and 1 � a < 2. Then

ĝ(θ) = 1

Γ (1/a)

∞∑
n=0

(−θ)n Γ (1 + n/a)Γ ((n + 1)/a)

(n!)2
, (7.6)

which has a finite positive radius of convergence if a = 1, and it is entire if 1 < a < 2.

8. Moment determinacy of r-gstable laws

Let m = 1,2, . . . and 0 < a < m. Knowing that the r-gstable(a,m) law has finite moments M(n) of all orders, questions
arise about conditions under which the power series form of its moment generating function has a positive radius of
convergence, and when these moments uniquely determine the law.

To address the first question, recall that if {cn} is a sequence of non-negative numbers such that 0 � R−1 = limn→∞ c1/n
n �

∞ exists, then R is the radius of convergence of the power series
∑

n�0 cnθn . Secondly, noting that (Γ (x))1/x ∼ x/e and

Γ (b + x) ∼ xbΓ (x) (b a real constant), both as x → ∞, we have if ρ > 0 that(
Γ (b + ρn)

)1/n ∼ (ρn/e)ρ . (8.1)

It follows from (4.2) that(
M(n)

)1/n ∼ M(ae)−m/an(m/a)−1 (n → ∞). (8.2)

This estimate, together with (n!)1/n ∼ n/e, settles the radius of convergence question.

Theorem 8.1. Let m = 1,2, . . . and 0 < a < m. Then the power series form of the moment generating function of the r-gstable(a,m)

law has radius of convergence

Ra =

⎧⎪⎪⎨⎪⎪⎩
∞ if 1

2 m < a < m,

m2

4M if a = 1
2 m, and

0 if 0 < a < 1
2 m.

We will say that a probability law supported in [0,∞) is determinate (in the Stieltjes sense) if it has finite moments
of all positive integer orders and if there is no other such law having the same sequence of moments. Among the many
reviews of this matter we cite Pakes et al. [20]. Before stating our result we must recall some derived parameters from
Janson [10, pp. 8–10]. For our purposes we need only report for the r-gstable(a,m) law that, using his notation, ρ+ = ∞,

γ ′ = γ = m

a
− 1 > 0, and δ = m − 1

2
γ .

He shows (his Theorem 6.1) that the density function g has the generalized Weibull asymptotic form

g(x) ∼ Cxc1−1 exp
(−c2x1/γ

)
(x → ∞) (8.3)

where C and c2 are positive constants and

c1 = δ + 1
2

γ
= m − 1

2
+ a

2(m − a)
> 0.

The following result shows that γ is the critical parameter determining whether or not the r-gstable(a,m) is determinate.
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Theorem 8.2. If m = 1,2, . . . and 0 < a < m, then the r-gstable(a,m) law is determinate if and only if

m

3
� a < m.

This result would follow directly from the form of (8.3) and Theorem 2 in Pakes et al. [20], except that there is a small
but vital oversight in its short proof. These authors are concerned with density functions supported in [0,∞) and having
the generalized form

g̃(x) = K −1
Q Q (x)exp

(−cx1/γ
)
, (8.4)

where c, γ > 0 and Q satisfies the following constraints: there are constants k � 1, 0 < ξ � 1 and x′ � 0 such that if x � x′ ,
then

0 < Q (x) � max
(
xξ−1, xk). (8.5)

The proof of Theorem 2 in Pakes et al. [20] is simply the application of Krein’s condition to prove that g̃ is indeterminate if
γ > 2 and it asserts that Q (x) = O (log x) if x � x′ . It is clear that there must be some restriction on the rate at which Q (x)
can approach zero as x → ∞ to avoid it dominating the Weibull factor in (8.4).

Thus Theorem 2 in Pakes et al. [20] should be expressed as follows.

Theorem 8.3. If g̃ is a density function having the form (8.4) and (8.5) and if, in addition, there are positive constants ζ,k1 such that
Q (x) > k1x−ζ if x � x′ , then a law with density g̃ is determinate if and only if γ � 2.

Theorem 8.2 follows directly from Theorem 8.3. We note in passing that inspection of the proof of Theorem 2 in Pakes
et al. [20] makes it clear that if γ > 2, then g̃ is indeterminate under a much weaker additional condition, for example, if
g̃(x) ∝ exp[−cx1/γ (1 + o(1))] as x → ∞.

Referring to Theorem 8.2, and recalling that if 0 < a < 1 then L(S−1
a ) is the r-gstable(a,1) law, we see that L(S−1

a ) is
determinate if and only if 1/3 � a < 1. From Theorem 8.1, its moment generating function has positive radius of convergence
if and only if 1

2 � a < 1. Similarly, the r-gstable(a,2) law is determinate if and only if 2/3 � a < 2.
The finite product laws L(X) identified as Cases 1 and 2 in Section 3 and the r-gstable(a,m) laws have the general

representation

X = S−b
a

m∏
j=1

γ
ρ j

a j
, (8.6)

where 0 < a � 1, 0 � b < ∞ and the a j ’s and ρ j ’s are positive constants. This includes examples arising from quan-
tum mechanics as examined by Penson et al. [21]. They consider for positive integer ρ the sequences: (i) s′

n = (2ρn)!;
(ii) s′′

n = ((ρn)!)2; (iii) s′′′
n = ((ρn)!)3; and (iv) s′

ns′′
n . Corresponding density functions are identified using Mellin transform

techniques with the result that, by finding suitable Stieltjes-classes (Pakes [18] and references therein), (i) and (ii) are
uniquely determining if ρ = 1, and not so if ρ = 2,3, . . . .

Assuming only that ρ is a positive constant, it is clear that the sequences (i) to (iii) are the moment sequences of
ε2ρ , (ε1ε2)

ρ and (ε1ε2ε3)
ρ , respectively, where the ε’s are independent and have the standard exponential law. Ostrovska

and Stoyanov [15] consider the moment problem for the related products
∏m

j=1 ε j , where the factors are independent and
standard exponential.

Referring to (8.3) the Janson parameters are

γ = b/a +
m∑

j=1

ρ j and δ =
m∑

j=1

a j − 1

2
m.

The next result embracing all these cases follows from (8.1) and Theorem 8.3.

Theorem 8.4. The radius of convergence of the moment generating function of the law L(X) defined by (8.6) is

R =

⎧⎪⎨⎪⎩
∞ if γ < 1,

e2 ∏m
j=1 ρ

−ρ j

j if γ = 1, and

0 if γ > 1.

In addition, L(X) is determinate if and only if γ � 2.
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Note that these outcomes are independent of the shape parameters a j . In particular, b = 0 and γ = m for Case 1 (in
Section 3), so the radius of convergence is finite and positive if m = 1 and it is zero if m � 2. However L(X) is determinate
if m = 2, and indeterminate if m � 3. We have b = 0 and γ = m/r for Case 2, so L(X) is determinate if and only if r � 1

2 m,
m = 1,2, . . . . The sequences (i) and (ii) above are determining if and only if ρ � 1. Penson et al. [21] did not pursue the
moment problem for sequences (iii) and (iv), but it is clear that γ = 3ρ for (iii) and γ = 4ρ for (iv), so these sequences are
determining if and only if 0 < ρ � 2/3 and 0 < ρ � 1

2 , respectively. Finally, if all ρ j = ρ in Theorem 8.4, then the critical
value is 2/m, and L(X) is indeterminate if and only if ρ > 2/m.

9. Proofs

Proof of Theorem 3.2. It suffices to show that X ∼= Zγ2 because mixtures of the gamma(2) law are infdiv, and the restriction
on the range of a is because there are mixtures of the gamma(c) law with c > 2 which are not infdiv. See Steutel and van
Harn [29, pp. 346, 409] for these facts. We approach this by choosing a constant c > 0 and seek conditions ensuring
the existence of a random variable Z such that the product representation X ∼= Zγc holds. This is the case if and only
if M(t)Γ (c)/Γ (c + t) is a moment function. However, (3.6) and (3.3) imply that this condition holds if the function q(x)
defined by

xq(x) = xπW (x) − e−cx

1 − e−x

is non-negative for x � 0. This is equivalent to the condition

e−ax(1 − e−bx)

1 − e−rx
− e−cx � 0 (x > 0).

Letting x → 0 shows that b � r is a necessary condition for infinite divisibility. Conversely, this condition implies that e−bx �
e−rx , all x � 0. Hence q(x) � 0 if also a � c. Finally, it is obvious that

∫ 1
0 x2q(x)dx < ∞, and hence the factorization holds with

− log Z having the spectrally-positive infdiv law with Lévy density q. The infdiv assertion of Theorem 3.2 follows by choosing
c = 2. To see that L(X) is Type 1, just note that it is a positive law and hence not Type 2. In addition E(exp(−θ X)) =
E[(1 + θ Z)−2] → 0 as θ → ∞, so L(X) is not Type 0. �
Proof of Lemma 3.2. This is best shown by exploiting an unexpected symmetry which is revealed by allowing the con-
traction factor B in (2.1) to be a power of a beta random variable. Specify positive constants α, β , ρ , r, and consider the
relation

X
L= B1/ρ X̂r where B ∼= beta(α/ρ,β/ρ). (9.1)

With W = log X it is clear from (3.3) and Theorem 2.1 that the Lévy density πW of L(W ) is given by

xπW (x) = e−αx(1 − e−βx)

(1 − e−ρx)(1 − e−rx)
.

This is symmetric in ρ and r, so interchanging these parameters in (9.1) yields the equivalent relation

X
L= D1/r X̂ρ where D ∼= beta(α/r, β/r).

Let

cn(ρ, r) = NB(rn/ρ)

NB(r(n + 1)/ρ)
= Γ ((α + rn)/ρ)

Γ ((α + β + rn)/ρ)
· Γ ((α + β + r + rn)/ρ)

Γ ((α + r + rn)/ρ)
.

It follows from (2.2) and (3.1) that the moment function M of X with scaling chosen so that M(r) = 1 is

M(t) =
∞∏

n=0

(
cn(ρ, r)

)t/r Γ ((α + rn + t)/ρ)

Γ ((α + rn)/ρ)
· Γ ((α + β + rn)/ρ)

Γ ((α + β + rn + t)/ρ)
.

Interchanging ρ and r yields the equivalent form

M(t) = Mt
∞∏

n=0

(
cn(r,ρ)

)t/ρ Γ ((α + ρn + t)/r)

Γ ((α + ρn)/r)
· Γ ((α + β + ρn)/r)

Γ ((α + β + ρn + t)/r)
,

where

M =
∞∏(

cn(r,ρ)
)−1/γ

(
α + β + ρn

α + ρn

)1/r

,

n=0



216 A.G. Pakes / J. Math. Anal. Appl. 411 (2014) 201–222
since M(r) = 1. Hence

M(t) =
∞∏

n=0

(
α + β + ρn

α + ρn

)t/r B((α + ρn + t)/r, β/r)

B((α + ρn)/r, β/r)
,

and this implies the representation

X
L=
[ ∞∏

n=0

α + β + ρn

α + ρn
B(α+ρn)/r,β/r

]1/r

.

Setting ρ = 1, a = α and b = β in this development yields the assertion. �
The analytical origin of the above symmetry relation appears to derive from power transformation identities satisfied

by Meijer-G functions. To understand this, note that the Laplace–Stieltjes transform f̂ (θ) of X−1 is related to the moment
function M of X through the Mellin transform relation

Γ (t)M(t) =
∞∫

0

θ t−1 f̂ (θ)dθ.

It follows from (2.3) and (3.1) that f̂ can be represented as the limit of a sequence of scaled Meijer-G functions. See Mathai
[14, p. 60] for facts about these functions, and in particular their specification as the inverse Mellin transform of products
and quotients of gamma functions. However, it is much easier to derive the symmetry relation by inspecting the form of
the Lévy density, as above.

Proof of Theorem 5.2. From (5.2) the cumulant function of L(Y ) is

CY (θ) =
∞∫

0

(
1 − exp

(−xθa))�(x)dx =
∞∫

0

E
[
1 − exp

(−x1/aθ Sa
)]

�(x)dx

= a

∞∫
0

(
1 − e−yθ

)
ya−1 E

[
S−a

a �
(
(y/Sa)

a)]dy.

It follows that L(Y ) is infdiv with a Lévy density λ(y) satisfying

yλ(y) = aE
[
(y/Sa)

a�
(
(y/Sa)

a)] = aE

[ ∫
(0,∞)

(
exp

(−(y/Sa)
a v

))
τ (dv)

]
.

As a function of y, the exponential term in the integrand is the Laplace–Stieltjes transform of a scaled positive stable(a)

random variable S ′
a , say. Hence

yλ(y) = a

∫
(0,∞)

E
[
exp

(−yR v1/a)]τ (dv). (9.2)

Thus yλ(y) is the Laplace transform of the density u(z) as specified by (5.4). To verify that u is the density of a Thorin
measure we begin by showing that I := ∫ 1

0 log z−1u(z)dz is finite. Write I = I1 + I2 where

I1 = a

∫
[1,∞)

v−1/a

1∫
0

log z−1 f R
(
zv−1/a)dz τ (dv).

We repeatedly use the bound

f R(y) � K
(

ya−1 ∧ y−a−1),
which is evident from (5.5) and where K denotes the normalization constant.

We have zv−1/a � 1 in the inner integral and hence

I1 � aK

∫
[1,∞)

v−1

1∫
0

za−1 log z−1 dz τ (dv) < ∞

since the inner integral equals a−2.
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Since zv−1/a � 1 if and only if z � v1/a , we obtain the estimate

I2 � aK

∫
(0,1)

v−1/a

[ v1/a∫
0

v−1+1/aza−1 log z−1 dz +
1∫

v1/a

v1+1/az−a−1 log z−1 dz

]
τ (dv).

Integration by parts yields

I21 := −a

v1/a∫
0

za−1 log z dz = −
v1/a∫
0

log z dza = (v/a)
(
1 + log v−1)

and

I22 := −a

1∫
v1/a

z−a−1 log z dz =
1∫

v1/a

log z dz−a � (av)−1 log v−1.

Hence

I2 � Ka−1
∫

(0,1)

(
1 + 2 log v−1)τ (dv) < ∞,

whence I < ∞.
Next, write J := ∫ ∞

1 z−1u(z)dz = J1 + J2 where

J1 = a

∫
(1,∞)

v−1/a

∞∫
1

z−1 f R
(
zv−1/a)dz τ (dv).

Proceeding as for I1 we have

J1 � aK

∫
[1,∞)

v−1

[ v1/a∫
1

za−2 dz + v

∞∫
v1/a

z−a−2 dz

]
τ (dv).

If a < 1 then the first inner integral is bounded above by (1 − a)−1. So computing the second inner integral gives the bound

J1 � const.

∫
[1,∞)

v−1 τ (dv) + const.

∫
[1,∞)

v−1/a τ (dv) < ∞.

Finally,

J2 = aK

∫
(0,1)

v−1/a

∞∫
1

z−1 f R
(
zv−1/a)dz τ (dv) � aK

∫
(0,1)

v

∞∫
1

z−a−2 dz τ (dv) < ∞.

Hence J < ∞ and we conclude that u(z) is indeed a Thorin density. It follows that L(Y ) is a GGC, as asserted, and hence it
is self-decomposable.

A direct, if formal, proof of (5.5) starts with the identity

f R(x) =
∞∫

0

yσa(xy)σa(y)dy = E
[

Saσa(xSa)
]
,

recalling that σa is the density function of Sa . Substitute the power series form of σa written as (see p. 583 in [7])

σa(x) = (πx)−1�
∞∑

n=1

Γ (1 + an)

n!
(−xae−iπan)n

,

and note that E(S−an
a ) = n!/Γ (1 + an). This yields a geometric series with sum (5.5). �
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Proof of Proposition 6.1. The densities h and � are related by (Steutel and van Harn [29, p. 95])

xh(x) =
x∫

0

y�(y)h(x − y)dy. (9.3)

So if ξ is finite then for ε ∈ (0, ξ) there exists x(ε) such that ξ − ε < y�(y) � ξ if 0 < y � x(ε). Hence, if x ∈ (0, x(ε)], then
it follows from (9.3) that (ξ − ε)H(x) � xh(x) � ξ H(x), implying that

lim
x→0

xh(x)

H(x)
= ξ. (9.4)

However, self-decomposable laws are unimodal so h is monotone in a neighbourhood of the origin; see Steutel and van
Harn [29, p. 235]. Regular variation of H follows from (9.4) and Lamperti’s theorem (Bingham et al. [2, p. 59]).

If ξ = ∞, then since x�(x) is non-increasing, it follows from (9.3) that xh(x) � x�(x)
∫ x

0 h(x − y), i.e.,

x�(x) � xh(x)

H(x)
.

Hence the right-hand side → ∞ as x → 0, and altering details of the proof of Lamperti’s theorem will show that H is
rapidly varying at the origin, i.e., limx→0 H(cx)/H(x) = 0 if 0 < c < 1. �
Proof of Theorem 6.1. Referring to (3.5) let k(x) = xn(x) and note that the self-decomposability property holds if and only
if k is non-increasing. We have k(0) = b > 0, and if φ(u) = k(x), where u = e−x , then

−k′(x)

k(x)
= φ′(u)

φ(u)
= q(u)

u(1 − u)(1 − ub)
,

where

q(u) = a(1 − u)
(
1 − ub) − u − bub − (1 − b)u1+b.

If b � 1 and 0 � u < 1, then

q(u) > u − bub + (b − 1)u1+b = (u + b)
(
1 − ub) > 0.

If b < 1 and a � 1 − b, then

q(u) > 1 − b + bu > 0.

So in both cases −k′(x) > 0, i.e., V is self-decomposable.
Suppose that b < 1 and a + b < 1. We have q(0) = a, q′(0) = −∞, and q(1) = q′(1) = 0. Algebra yields

q′′(u) = [
a(1 − b) + au(1 + b) + b(1 − b) − (

1 − b2)]bub−2.

It follows that q′′(1) = (2a − (1 − b))b, and that q′′(u) = 0 has a unique solution u and

1 − u = 1 − b − 2a

1 − b2 − a(1 + b)
.

The denominator is positive, so q has no point of inflection in (0,1) if a � 1
2 (1 − b) in which case q′′(1) � 0. It follows that

q is convex decreasing in (0,1), and hence takes only positive values. So again V is self-decomposable.
A calculation using l’Hôpital’s rule shows that k′(0) = 1

2 (1 − b) − a, so if a < 1
2 (1 − b) then k cannot be monotone, hence

V is not self-decomposable. Finally, it follows from (3.6) that limx→0 xn(x) = b, hence Proposition 6.1 implies that the BDLP
is compound Poisson with jump rate b. �
Proof of Theorem 6.2. Referring to (3.6), let K (x) = xπW (x). Clearly

r(x) := − K ′(x)

K (x)
= −k′(x)

k(x)
+ re−rx

1 − e−rx
.

It follows from the proof of Theorem 6.1 that K ′(x) < 0 for all positive x if b � 1.
For the case b � r it suffices to note that

re−rx

1 − e−rx
= r

erx − 1
=

( ∑
j�1

r j−1x j

j!
)−1

is a decreasing function of r. Hence this function exceeds be−bx/(1 − e−bx), so again K ′(x) < 0, and (i) follows.
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Assume now that b < 1 and b < r. Some algebra gives the identity

r(x) = a + 1

ex − 1
+ r

erx − 1
− b

ebx − 1
, (9.5)

implying that

r(x) = a − e−bx(1 + o(1)
)

(x → ∞),

and hence that δ(x) := r(x) − a < 0 if x > x′ where x′ is a positive number depending on a. In addition δ(x) → 0 as x → ∞,
and δ(x) → ∞ as x ↓ 0. We show that δ(x) has a negative global minimum as follows.

Let w = ebx , β = 1/b and ρ = r/b. Then β,ρ > 1 and

φ(w) := δ(x)

b
= β

wβ − 1
+ ρ

wρ − 1
− 1

w − 1
(w > 1).

The condition φ(w) = 0 is equivalent to

ψ(w) := β(w − 1)

wβ − 1
+ ρ(w − 1)

wρ − 1
= 1. (9.6)

We show that this equation has a unique solution in (1,∞).
To see this, let c > 1 and ψc(w) = c(w − 1)/(wc − 1). Then ψc(1+) = 1, ψc(w) → 0 as w → ∞ and

ψ ′
c(w)

ψc(w)
= wc − 1 − cwc−1(w − 1)

(w − 1)(wc − 1)
.

The numerator vanishes if w = 1, and the mean value theorem shows it equals (w − 1)(cζ c−1 − cwc−1), where 1 < ζ < w .
Since c − 1 > 0, it follows that ψ ′

c(w) < 0 in (1,∞). We conclude that, since ψ(1) = 2, (9.6) has a unique positive solution,
and hence that there is a number x̃ > 0 such that δ(x) > 0 in (0, x̃ ) and δ(x) < 0 in ( x̃,∞). Hence δ(x) has a global
minimum at x ∈ ( x̃,∞), and a := −δ(x) > 0. It follows that r(x) � 0 for all positive x if and only if a � a, and hence that W
is self-decomposable if and only if this condition holds. The upper bound for a follows from Theorem 6.1 since a = 1

2 (1 − b)

if the r-dependent term in (9.5) is absent. This completes the proof of (ii).
The assertion (iii) follows by setting z = ex in (9.5) and observing that

r(x) = q(z)

(za − 1)(zb − 1)
+ 1

z − 1
,

where we now define

q(z) = aza+b − (a + b)za + b.

But q(1) = 0 and q′(z) = a(a + b)za−1(zb − 1) > 0 if z > 1. It follows that K ′(x) < 0 if x > 0. �
The proof for (ii) can be extended to show that x is the unique critical point of δ, and hence the shape of its graph

resembles that of a Morse potential function.

Proof of Theorem 7.1. It follows from (4.4) that X ∼= S−1
a γ

1/a
1/a . An elementary calculation gives the density function of X as

g(x) = 1

Γ (1 + 1/a)

∞∫
0

ve−(xv)a
σa(v)dv

= 1

Γ (1 + 1/a)
E
[

Sae−(xSa)
a] = 1

Γ (1 + 1/a)
E
[

Sae−xSa S ′
a
]
, (9.7)

where S ′
a
∼= stable(a) and is independent of Sa . Observe that the function E[(S ′

a)
−1e−xSa S ′

a ] (x > 0) is completely monotone
and that it has the value Γ (1 + 1/a) at x = 0. Hence there is a non-negative random variable Q such that

E
(
e−Q x) = (

Γ (1 + 1/a)
)−1

E
[(

S ′
a

)−1
e−xSa S ′

a
]
.

Differentiating the right-hand side yields the right-hand side of (9.7), whence (7.2). Noting that

E
[(

S ′
a

)−1
e−xSa S ′

a
] =

∞∫
v−1 E

[
e−xv Sa

]
σa(v)dv,
0
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the change of variable y = v Sa and inversion of the Laplace–Stieltjes transform yields

P (Q � s) =
s∫

0

y−1 E
[
σa(y/Sa)

]
dy.

Thus Q has the density function (7.3).
To prove (7.4) we note that Y ∼= Saγ

−1/a
1/a and hence

f̂ (θ) = E
[
e−θa/γ1/a

] = (
Γ (1/a)

)−1
∞∫

0

z(1/a)−1e−ta/z dz.

Setting c = 2θ1/a , we observe that the integral equals 2(c/2)a/2 K−1/a(c), and the assertion follows from the symmetry
property K−ν(·) = Kν(·). �
Proof of Theorem 7.2. Write (7.1) as

Γ (1 + t)M(t) = Γ (1 + t/a)Γ ((1 + t)/a)

Γ (1/a)
(9.8)

and note that this can be expressed as

εX
L=(

ε′γ1/a
)1/a

where ε and ε′ have the standard exponential law. The density function of the left-hand side is

p(z) =
∞∫

0

x−1e−z/x g(x)dx =
∞∫

0

e−zy y f (y)dy,

i.e., the Laplace transform of yf (y).
On the other hand, it can be shown using entry 6.561 #16 in Gradshteyn and Ryzhik [8] that

∞∫
0

xt+ 1
2 (a−1)K1−1/a

(
2xa/2)dx = (2a)−1Γ (1 + t/a)Γ

(
(1 + t)/a

)
,

and hence the inverse Mellin transform version of (9.8) is

p(z) = 2z
1
2 (a−1)

Γ (1 + 1/a)
K1−1/a

(
2za/2). (9.9)

Next, observe that f̂ (θ) = ∫ ∞
θ

p(z)dz, and hence computing the integral using (9.9) and the substitution z = vθ yields

f̂ (θ) = 4θ(a+1)/2

Γ (1/a)

∞∫
1

v1/a K1−1/a
(
2θa/2 v

)
dv.

Setting ν = 1 − 1/a and c = 2θa/2, the last integral equals

∞∫
1

v1−ν Kν(cv)dv =
∞∫

1

v1−ν K−ν(cv)dv = c−1 K1−ν(c),

where we have used the entries 6.561 #8 and #16 in Gradshteyn and Ryzhik [8], and (7.4) follows.
To prove (7.5) we compute f (y) by expressing (7.4) as a Laplace transform. Let ν = 1 − 1/a and observing that Kν(z) =

K−ν(z), entry 8.432 #3 in Gradshteyn and Ryzhik [8] gives the representation

Kν(z) =
√

π(z/2)−ν

Γ ( 1
2 − ν)

∞∫
1

(
t2 − 1

)−ν− 1
2 e−zt dt,

valid if the integral converges, i.e., if a < 2. It follows that
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p(z) = 2
√

π

Γ (1 + 1/a)Γ (1/a − 1
2 )

∞∫
0

(
t2 − 1

)1/a−3/2
+

[
exp

(−2tza/2)]dt, (9.10)

where (·)+ denotes the positive part of (·).
The duplication formula for gamma functions can be expressed as

Γ (2n/a) = π− 1
2 2(2n/a)−1Γ (n/a)Γ

(
1

2
+ n/a

)
.

Taking n = 1 yields

C := 2
√

π

Γ (1 + 1/a)Γ (1/a − 1
2 )

= 2(2/a)−1(2 − a)

Γ (2/a)
. (9.11)

The exponential factor in the integrand at (9.10) equals E[exp(−zSη(2t)2/a)], where η = a/2 < 1. The exponential term in
this expectation is the Laplace–Stieltjes transform of the point mass δ((2t)a/2 Sη)(dy). The corresponding distribution function

equals unity if and only if t � 1
2 (y/Sη)a/2. Hence inversion yields

y∫
0

v f (v)dv = C E

[ 1
2 (y/Sη)a/2∫

0

(
t2 − 1

)1/a−3/2
+ dt

]
.

Differentiation with respect to y and further reduction together with (9.11) leads to the representation

f (y) = a(2 − a)

Γ (2/a)
y−a−1 E

[
Sa−1
η

(
1 − 4(Sη/y)a)1/a−3/2

+
]
. (9.12)

The assertion follows since g(x) = x−2 f (x−1). �
Proof of Corollary 7.1. Integrating (9.12) yields the distribution function of Y ,

F (y) = (
Γ (1 + 2/a)

)−1
E
[

S−1
η

(
1 − 4(Sη/y)a)ζ

+
]
, (9.13)

where ζ = a−1 − 1
2 . If Ja and Vη are independent random variables with laws as specified in the assertion, and noting that

the support of Ha is [22/a,∞) and that E(Vη) = (E(S−1
η ))−1 = (Γ (1 + 2/a))−1, it follows that (9.13) can be expressed as

F (y) = E
[

Ha(y/Vη)
] = P ( Ja Vη � y),

and the assertion follows. Note that the random scaling Vη has also the effect of randomly shifting the support of Ja . �
Proof of Theorem 7.3. Let φ = 41/a Sη in (7.5). Compute the Laplace transform

∞∫
0

xa−1(1 − (φx)a)ζ−1
+ e−θx dx = a−1φ−a

1∫
0

(1 − v)ζ−1(exp
(−(θ/φ)va))dv

= a−1φ−a
∞∑

n=0

(−θ/φ)n

n! B(1 + n/a, ζ ).

The interchange of integration and summation is valid because B(1 +n/a, ζ ) ∼ (a/n)ζ , and hence the power series is almost
surely uniformly convergent for |θ/φ| � R and any finite positive value of R . A standard argument based on the mono-
tone convergence and dominated convergence theorems shows that the expected value of this Laplace transform can be
computed term by term, giving

ĝ(θ) = 2 − a

4Γ (2/a)

∞∑
n=0

(−2−2/aθ)n

n! B(1 + n/a, ζ )E
(

S−n−1
η

)
.

Since E(S−n−1
η ) = Γ (1 + 2(n + 1)/a)/Γ (n + 2) and (2 − a)Γ (ζ ) = 2aΓ ( 1

2 + 1/a), the duplication formula can be used to
show that

(2 − a)B(1 + n/a)E
(

S−n−1
η

) = 22+2n/a Γ (2/a)

Γ (1/a)
· Γ (1 + n/a)Γ ((n + 1)/a)

n! ,

and (7.6) follows. The convergence assertions are implied by Theorem 8.1. �
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