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This paper is devoted to the homogenization of Richards’ equation of van Genuchten–
Mualem model, which is a nonlinear degenerate parabolic differential equation. It is usually
used to model the motion of saturated–unsaturated water flow in porous media. We firstly
apply the Kirchhoff transformation to the equation and obtain a simpler equivalent
equation with a linear oscillated diffusion term. Then under the real assumption for van
Genuchten–Mualem model, we obtain the homogenized equation based on the two-scale
convergence theory. Some results on the first order corrector are also presented.
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1. The physical introduction

Richards’ equation [5,15–17] is usually accepted to describe the motion of saturated–unsaturated water flow in porous
media. It is a nonlinear degenerate parabolic differential equation. Denoting Ω ⊂ Rn (n � 1) as the domain occupied by the
porous medium with Lipschitz boundary and (0, T ] (0 < T < +∞) as the time interval. The continuity condition combined
with Darcy’s law leads to the following multi-scale Richards’ equation

∂tθ − div
(

K ε(x, θ)(∇p + �ez)
) = 0, (x, t) ∈ Ω × (0, T ], (1.1)

where ε > 0 is a small parameter that signifies explicitly the multi-scale nature of medium, θ is the saturation, p is the
pressure, K ε denotes the permeability of the medium and �ez is the unit vector which points against the gravitational direc-
tion. Based on experimental results, different retention curves relating the permeability and the pressure to the saturation
have been proposed in the literature [7,8,15,16,22]. According to the most popular van Genuchten–Mualem model [22,16],
the constitutive relations are as follows⎧⎪⎪⎪⎨

⎪⎪⎪⎩
θ(p) =

{
θr + θs−θr

(1+|αp|n)m for p � 0,

θs for p > 0,

K ε(x, θ) = K ε
s (x)Kr(Θ) = K ε

s (x) · Θ 1
2
[
1 − (

1 − Θ
1
m
)m]2

,

Θ = θ−θr
θs−θr

, 0 � Θ � 1,

(1.2)
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here α, m ∈ (0,1) and n = 1
1−m are the parameters of porous media, θs is the fluid content at saturation, θr is the residual

fluid content. K ε
s , Kr are the absolute and relative permeability respectively.

Without the saturated region, i.e., meas{θ = θs} = 0, Richards’ equation (1.1) can also be expressed in terms of the
saturation Θ as

∂tΘ − div
(

Dε(x,Θ)∇Θ + K ε
s (x)Kr(Θ) · �ez

) = 0, (x, t) ∈ Ω × (0, T ], (1.3)

with the moisture diffusivity D defined by

Dε(x,Θ) = −K ε(x, θ)
∂ p

∂θ
= (1 − m)K ε

s (x)

αm(θs − θr)
Θ

1
2
[
(1 − Θ)m + (1 − Θ)−m − 2

]
. (1.4)

In practical problems, due to complex heterogeneity of natural media and scarcity of the available field data, the co-
efficients K ε and Dε maybe oscillate rapidly with large contrast. In the above model, the multi-scale nature of the
problem comes from the heterogeneity of K ε

s , i.e., the coefficients Dε and K ε may be formulated as Dε(x, s) = D( x
ε , s)

and K ε(x, s) = K ( x
ε , s) = Ks(

x
ε )Kr(s). On the other hand, noticing the expression of Dε , one can find that Eq. (1.3) is degen-

erated by the fact that for Θ = 0 the moisture diffusivity Dε vanishes, while as Θ tends to 1, Dε goes to infinity. In this
paper, we will devote to the homogenization of multi-scale Richards’ equation (1.3) of van Genuchten–Mualem model.

To this kind of multi-scale problem, it is impossible to account explicitly for the spatial variability at fine scale because
of the computational resource limitations in realistic situation. In recent decades, there exists a vast literature on the up-
scaling or homogenization techniques for various multi-scale problems that lump the small-scale details of the medium into
a few representative macroscopic parameters or effective parameters on a coarse scale which preserve the larger-scale be-
havior of the medium and are more appropriate for reservoir simulations; see, e.g., [23,4,6,9–11,14,19–21,24,25,17,27,18,28].
Of those papers, the information on the homogenization of immiscible two-phase flow and transport in porous media can be
found in [4,6,25]; [28] dealt with the homogenization of the two-phase Stefan problem; in [11], the authors considered the
homogenization of nonlinear degenerate evolution equations using the method of two-scale convergence. Here we would
review some papers concerning on some degenerate problems which were similar to our problem. For example, in [19,24],
the authors considered the homogenization of multi-scale degenerate problem

∂t uε − ∇ · a

(
x

ε
,

t

ε
, uε,∇uε

)
= f ,

under the frame of weighted Sobolev space theory, where the operator a(y, s,μ, ξ) satisfied the following degenerate con-
dition

Λ1(x)|ξ |2 � a(y, s,μ, ξ)ξ � Λ2(x)|ξ |2, (1.5)

where Λi (i = 1,2) can vanish or be infinity at some points and belongs to some special weighted Sobolev space.
In [23,18,20], the authors considered the homogenization of a nonlinear degenerate parabolic equations as

∂tb
(
uε

) − ∇ · a

(
x

ε
,

t

ε
, uε,∇uε

)
= f ,

under the degenerate assumption that there exists some constant τ > 0, such that∣∣b(s1) − b(s2)
∣∣ � C(δ, R)|s1 − s2|τ , ∀s1, s2 ∈ [−R, R] with 0 < δ < |s1|, (1.6)

while the second order term is not degenerate.
The degenerate conditions (1.5) and (1.6) don’t hold for the Richards’ equation of van Genuchten–Mualem model. So far,

the multi-scale Richards’ equation (1.1) had been considered in [10,17]. In [10], the authors considered a non-degenerate
settings for θ(s) and K (·, s) such as Gardner model [15]. An upscaling procedure was proposed and detailed numerical
analysis was presented. In [17], the author assumed that

0 < Kmin � K (y, s) � Kmax and θ ′(s) vanishes at some points, (1.7)

to obtain the homogenized equation and furthermore assumed that θ ′(s) > 0 to get some results on the corrector. However
for van Genuchten–Mualem model, K (y, s) can approach zero because the relative permeability Kr depending only on
saturation can approach zero in completely dry area (Θ = 0) and the strictly monotonicity of saturation θ(s) in (1.2) is not
valid either.

Combining the all above, the homogenization of the Richards’ equation (1.3) under the real assumptions for van
Genuchten–Mualem model is still open so far. However, the techniques needed to attack this problem are prepared well
in the above literatures.

From the formulation (1.4), the key observation is that Dε is separable, i.e., Dε = Ds(
x
ε )Dr(Θ) with Ds = K ε

s (x) being
the absolute permeability of the medium (all the multi-scale nature is included in this term and it is non-degenerate)

and Dr = −Kr(Θ)
∂ p = (1−m)

Θ
1
2 [(1 − Θ)m + (1 − Θ)−m − 2] being the relative diffusivity (this term is nonlinear and
∂θ αm(θs−θr )
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degenerate but no multi-scale information is explicitly included). Here, we point out that the diffusion tensor is not always
separable in other physical model. Moreover, in many practical applications so-called block heterogeneities are encountered,
implying a special conditions at the interface between two homogeneous blocks, as presented in [27,12]. These are beyond
the scope of the paper.

Considering multi-scale nature of the problem and using the separated formulation of Dε , (1.3) can be rewritten as

∂tΘ − div

(
Ds

(
x

ε

)
Dr(Θ)∇Θ + Ks

(
x

ε

)
Kr(Θ) · �ez

)
= 0, (1.8)

where the degeneration comes from the fact that the relative diffusivity Dr vanishes for Θ = 0, while as Θ tends to 1, Dr
goes to infinity.

Firstly, define the Kirchhoff transformation [3] as

ψ : [0,1] → R+, Θ �→
Θ∫

0

Dr(s)ds. (1.9)

Since Dr(s) is positive except for the point s = 0, this transformation is invertible. Denote

uε = ψ(Θ), Θ = ψ−1(uε
) .= b

(
uε

)
. (1.10)

Applying the transformation (1.9) to (1.8), we have

∂tb
(
uε

) − div

(
Ds

(
x

ε

)
∇uε + Ks

(
x

ε

)
Kr

(
b
(
uε

)) · �ez

)
= 0, (1.11)

here b(s) is strictly increasing with b′(0+) = +∞ and b′(+∞) = 0 and the diffusion term becomes linear. However,
the problem (1.11) remains to be degenerated, leading to lacking of regularity for its solutions. Fortunately, in the form
as (1.11), most conditions in (1.7) are valid. So mainly along the line of [17] and [3], we can derive the homogenized
equation for Richards’ equation of van Genuchten–Mualem model.

From now on, C will denote a generic positive constant which is independent of ε . In the homogenization procedure
of Eq. (1.11), the main task is to prove the strongly convergence of solution sequence {uε} of (1.11) in Lp(Ω × (0, T ))

(for some p), which cannot be followed directly from the fact ‖∇uε‖L2(Ω×(0,T )) � C and ‖∂tb(uε)‖L2(0,T ;H−1(Ω)) � C due to
the degeneration of b(·). To obtain the results on the corrector, the main difficulty is to handle the convergence of term∫
Ω

∫ T
0 ∂tb(uε)uε dx dt , which is also not obvious. In order to overcome these difficulties, we make some careful estimates

and apply the compactness method based on the ideas of [3,17]. To derive the homogenization and corrector results, we do
not suppose any L∞-bounds on the solution uε and b(uε) of (1.11), which is needed in [23,20].

The layout of the paper is as follows. In Section 2, we give some assumptions on the coefficients of equation and provide
the main result. In Section 3, we prove the a priori estimate and review the two-scale convergence results. These results are
the basis of our theory. In Section 4, we prove our main theorems.

2. Problem setting and main results

Here we work in a slightly more general context which includes equation (1.11). Our aim is to establish the homogeniza-
tion theory for the following problem{

∂tb(uε) − ∇ · (A( x
ε )∇uε + g( x

ε ,b(uε))) = f ( x
ε ,b(uε)) in ΩT ,

uε(x, t) = 0 on ∂Ω × (0, T ),

uε(x,0) = u0 in Ω.

(2.1)

Notations. ΩT = Ω × (0, T ), V = L2(0, T ; H1
0(Ω)), Y = (0,1)n and H1

per(Y ) be the space of elements of H1(Y ) having the

same trace on opposite face of Y = (0,1)n . (·, ·) stands for the inner product on L2 and 〈·, ·〉 for the duality pairing between
H1

0 and H−1. For other function spaces we refer to [1].
Based on the van Genuchten–Mualem model, the following assumptions are supposed.

Assumptions.

• (H1) b is a strictly increasing and continuous function in R and b′(s) ∈ [0 + ∞], s ∈ R . b also satisfies

∃L, M ∈ R,
∣∣b(s)

∣∣ � L|s| + M. (2.2)

Define the Legendre transform Ψ of the primitive of b by

Ψ : R → [0,+∞], s → sup
z∈R

(
zs −

s∫
b(τ )dτ

)
.

0
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It is superlinear in the sense of (2.3) and admits the representation

∀z ∈ R, B(z) := Ψ
(
b(z)

) = zb(z) −
z∫

0

b(τ )dτ ,

∀δ > 0, ∃Cδ < +∞, |s| � δΨ (s) + Cδ, ∀s ∈ R. (2.3)

• (H2) The symmetrical tensor A = (A(y))i j (1 � i, j � n) is continuous, periodic in y and satisfies

∃0 < λ1 � λ2, λ1|ξ |2 � A(y)ξ · ξ � λ2|ξ |2, ∀ξ ∈ Rn.

• (H3) g = (g(y, s))i (1 � i � n) : Rn × R → Rn and f (y, s) : Rn × R → R are continuous in s, periodic in y and fulfill the
following identities

∃k > 0 such that
∣∣g(y, s)

∣∣ � k, ∀(y, s) ∈ Rn × R → R, (2.4)

∃α,β ∈ (0,1] such that
∣∣g(y, s1) − g(y, s2)

∣∣ � C |s1 − s2|α, (2.5)∣∣ f (y, s1) − f (y, s2)
∣∣ � C |s1 − s2|β, (2.6)∣∣ f (y, s1)

∣∣ � C, ∀y ∈ Rn, s1, s2 ∈ R (2.7)

and u0 ∈ L∞(Ω).

Existence, uniqueness and regularity of the solution for the above problem is studied in several papers (see, for example,
[3,13,29] and references therein). In the present paper, we only focus on the asymptotic behavior of the problem (2.1) as
ε → 0. A definition of the weak solution for the problem (2.1) is as follows:

Definition 2.1. Fix ε > 0, we say that uε ∈ V is a weak solution of problem (2.1), if it satisfies the following two identities:

1. b(uε) ∈ L2(ΩT ) and ∂tb(uε) ∈ L2(0, T ; H−1(Ω)) with

T∫
0

〈
∂tb

(
uε

)
,ϕ

〉
dt +

∫
ΩT

(
b
(
uε

) − b(u0)
)
∂tϕ dx dt = 0, (2.8)

for every ϕ ∈ V ∩ H1(0, T ; L2(Ω)) with ϕ(T ) = 0.
2. For all ϕ ∈ V ,

T∫
0

〈
∂tb

(
uε

)
,ϕ

〉
dt +

∫
ΩT

(
A

(
x

ε

)
∇uε∇ϕ + g

(
x

ε
,b

(
uε

)) · ∇ϕ

)
dx dt =

∫
ΩT

f ϕ dx dt. (2.9)

In order to express our main results conveniently, the following definition of the two-scale convergence [2] is needed.

Definition 2.2. Let 1 < q < ∞. A sequence of function vε ∈ Lq(Ω) is said to two-scale converge to a function v ∈ Lq(Ω × Y )

(denoted by vε � v), if∫
Ω

vεψ

(
x,

x

ε

)
dx →

∫
Ω

∫
Y

v(x, y)ψ(x, y)dy dx (ε → 0), (2.10)

for all ψ ∈ Lq∗
(Ω; C per(Y )) (q∗ = q

q−1 ).

In the rest of the section, the main results of this paper are summarized in the following theorems.

Theorem 2.3. Suppose that (H1)–(H3) hold and uε is the sequence of weak solutions of problem (2.1), then there exist u ∈ V and
U (x, y, t) ∈ L2(ΩT ; H1

per(Y )) such that as ε → 0, one has

uε → u strongly in Lq(0, T ; L2(Ω)
)
, for some q ∈ [1,2), (2.11)

∇uε � ∇xu(x, t) + ∇y U (x, y, t), (2.12)

where u also satisfies the following problem
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{
∂tb(u) − ∇ · (A∗∇u + g∗(b(u))) = f ∗(b(u)) in ΩT ,

u(x, t) = 0 on ∂Ω × (0, T ),

u(x,0) = u0 in Ω.

(2.13)

Furthermore, if u ∈ C(0, T ; C1(Ω)) and U ∈ C(ΩT ; C1
per(Y )), then

∇uε → ∇u + ∇y U strongly in L2(ΩT ). (2.14)

The homogenized coefficients are defined as

A∗
i j =

∫
Y

(
Aij(y) + Aik(y)

∂Λ j

∂ yk

)
dy, (2.15)

g∗(s) =
∫
Y

(
A(y)∇yη + g(y, s)

)
dy, (2.16)

f ∗(s) =
∫
Y

f (y, s)dy, (2.17)

where Λi, η(·, s) ∈ H1
per(Y ) are periodic solutions of the following cell problems respectively

∇y · (A(y)
(�ei + ∇yΛ

i)) = 0 in Y and

∫
Y

Λi dy = 0, (2.18)

−∇y · (A(y)∇yη(y, s)
) = ∇y · (g(y, s)

)
in Y and

∫
Y

ηdy = 0. (2.19)

This theorem will be proved later in Section 4. As a special application of the theorem, we have the homogenization
results on Richards’ equation of van Genuchten–Mualem model.

Theorem 2.4. Suppose Ks(y) is uniformly bounded. Then, under the constitution relations of van Genuchten–Mualem, for Richards’
equation (1.2)–(1.4) subject to the Dirichlet boundary condition Θ = ΘD(x, t) ∈ [0,1] (ΘD(x, t) is sufficiently smooth) and initial
condition Θ = Θ0(x) ∈ [0,1], the homogenized model is as follows

∂tΘ
∗ − ∇ · (K ∗

s Dr
(
Θ∗)∇Θ∗ + Kr

(
Θ∗)K ∗

s (x)�ez
) = 0, in ΩT ,

Θ∗(x, t) = ΘD(x, t), x ∈ ∂Ω; Θ∗(x,0) = Θ0(x), x ∈ Ω, (2.20)

where K ∗
s is a tensor defined as

(
K ∗

s

)
i j =

∫
Y

�ei Ks(y) · (�e j + ∇yΛ
j)dy,

where Λ j is the periodic solutions of the following cell problems

∇y · (Ks(y)
(�e j + ∇yΛ

j)) = 0 in Y and

∫
Y

Λ j dy = 0.

Furthermore, we can introduce the pressure p∗ and the homogenized Richards’ equation can also be written in a saturation–pressure
form as follows

∂tθ
∗ − ∇ · (K ∗(θ∗)(∇p∗ + �ez

)) = 0 in ΩT (2.21)

with the same constitution relationship as in (1.2)

θ∗(p∗) =
{

θr + θs−θr
(1+|αp∗|n)m for p∗ � 0,

θs for p∗ > 0,
(2.22)

where K ∗(θ∗) = K ∗
s Kr(Θ

∗) and we still have the relationship Dr(Θ
∗) = −Kr(θ

∗) ∂ p∗
∂θ∗ .

Proof. Firstly, by the maximum principle, we get that the solution Θ of Richards’ equation (1.2)–(1.4) with boundary and
initial conditions is bounded, i.e. Θ ∈ [0,1] (see [26]). It is easy to verify that b(·), Ds(y) and K (y, ·) in (1.11) satisfy the
assumptions (H1)–(H3) under the relations of (1.2) and (1.4). Along the ideas of [20] and [23] to treat the nonhomogeneous
boundary condition, (2.20) can be obtained by Theorem 2.3 and inverse transformation (1.9). Noting that Dε

s = K ε
s , the rest

of the proof can be completed by a straight calculation. �
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3. Preliminaries

In this section we will do some preliminary work. Firstly, we obtain some a priori bounds for the weak solution of (2.1).
Secondly, we recall the main results concerning the method of two-scale convergence which will be used in the proof of
Theorem 2.3.

Lemma 3.5. Assume B(u0) ∈ L1(Ω) and (H1)–(H3) hold. If uε is the solution of problem (2.1) then∥∥∂tb
(
uε

)∥∥
L2(0,T ;H−1(Ω))

+ ∥∥B
(
uε

)∥∥
L∞(0,T ;L1(Ω))

+ ∥∥∇uε
∥∥

L2(ΩT )
� C . (3.1)

Proof. Setting ϕ = uε in the formulation (2.9), we get

T∫
0

〈
∂tb

(
uε

)
, uε

〉 = ∫
Ω

(
B
(
uε(T )

) − B
(
u0)),

∫
Ω

B
(
uε(T )

) +
∫

ΩT

A

(
x

ε

)
∇uε · ∇uε =

∫
Ω

B
(
u0) −

∫
ΩT

g
(

x

ε
,b

(
uε

)) · ∇uε +
∫

ΩT

f uε . (3.2)

Noticing that the first term in (3.2) is nonnegative, we get from assumptions (H2) that

λ1
∥∥∇uε

∥∥2
L2(ΩT )

�
∫
Ω

B
(
u0) −

∫
ΩT

g
(

x

ε
,b

(
uε

)) · ∇uε +
∫

ΩT

f uε . (3.3)

Using (2.4) and (2.7), a straight calculation gives∣∣∣∣−
∫

ΩT

g
(

x

ε
,b

(
uε

)) · ∇uε

∣∣∣∣ � λ1

4

∥∥∇uε
∥∥2

L2(ΩT )
+ C,

∣∣∣∣
∫

ΩT

f

(
x

ε
,b

(
uε

))
uε

∣∣∣∣ � λ1

4

∥∥∇uε
∥∥2

L2(ΩT )
+ C .

The above two inequalities combine with (3.3) we get ‖∇uε‖L2(ΩT ) � C .
Combining this result, assumptions (H2) and (H3), we have∥∥∂tb

(
uε

)∥∥
L2(0,T ;H−1(Ω))

� C . (3.4)

Then from Lemma 1.5 [3], it follows that∥∥B
(
uε

)∥∥
L∞(0,T ;L1(Ω))

� C . �
Lemma 3.6. Let uε be the solution of problem (2.1) and assume (H1)–(H3) hold, then up to a subsequence of uε (still denote by uε ),
there exists a function u such that

uε → u weakly in V , (3.5)

uε → u strongly in Lq(0, T ; L2(Ω)
)
, for some 1 � q < 2, (3.6)

b
(
uε

) → b(u) strongly in L1(ΩT ), (3.7)

∂tb
(
uε

) → ∂tb(u) weakly in L2(0, T ; H−1(Ω)
)
, (3.8)

B
(
uε

) → B(u) strongly in L1(ΩT ). (3.9)

Proof. From Lemma 3.5, there exist functions u and w such that

uε → u weakly in V ,

∂tb
(
uε

) → w weakly in L2(0, T ; H−1(Ω)
)
. (3.10)

In the following, we will use some ideas from [3,17] to prove (3.7) and (3.9). Firstly, we will verify that b(uε) →
b(u) strongly in L1(ΩT ). Let a small number h > 0 be given, we can choose ϕ1 = h−1

∫ t uε(x, τ )η(τ )dτ and ϕ2 =
t−h
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h−1
∫ t

t−h uε(x, τ + h)η(τ )dτ as test function in (2.8) and (2.9) respectively, where η(τ ) = 1, τ ∈ (0, T − h) and η(τ ) = 0
elsewhere. Using integration transformation, we get

T∫
0

∫
Ω

∂tbε
(
x, u(t)

)
(ϕ2 − ϕ1)dx dt

= −
T∫

0

∫
Ω

b
(
uε(x, t)

)
(∂tϕ2 − ∂tϕ1)dx dt = 1

h

T −h∫
0

∫
Ω

[
b
(
uε(x, t + h)

) − b
(
uε(x, t)

)](
uε(x, t + h) − uε(x, t)

)
dx dt

=
∫

ΩT

[
A

(
x

ε

)
∇uε + g

(
x

ε
,b

(
uε

))]
· (∇ϕ1 − ∇ϕ2)dx dt +

∫
ΩT

f
(
b
(
uε

))
(ϕ2 − ϕ1)dx dt.

Moreover, we can get that ‖ϕ1‖L2(0,T ;H1
0(Ω)) and ‖ϕ2‖L2(0,T ;H1

0(Ω)) are bounded, see [17]. In fact, by Jensen’s inequality,

we have

∫
ΩT

|∇ϕ1|2 dx dt � 1

h

∫
ΩT

t∫
t−h

∣∣∇uε(x, τ )
∣∣2

dτ dx dt � C
∥∥∇uε

∥∥
L2(ΩT )

.

Thus, by (H2), (H3) and Lemma 3.5, we have

1

h

T −h∫
0

∫
Ω

[
b
(
uε(x, t + h)

) − b
(
uε(x, t)

)](
uε(x, t + h) − uε(x, t)

)
dx dt � C .

The above inequality and (3.1) imply that b(uε) → b(u) strongly in L1(ΩT ) ([3], Lemma 1.9), which together with (3.10)
yields (3.8).

Secondly, we will show that uε → u strongly in L1(ΩT ). Define the strictly convex function h(s) = ∫ s
0 b(τ )dτ and observe

that

b
(
uε

)(
uε − u

)
� h

(
uε

) − h(u) a.e. in ΩT .

Recall the assumption (H1) |b(uε)| � L|uε | + M , we have b(uε) ∈ L2(ΩT ). This result together with (3.7) and (3.8) implies
that b(uε) strongly convergence to b(u) in L2(0, T ; H−1(Ω)). Thus, we obtain

0 ←
∫

ΩT

b
(
uε

)(
uε − u

)
�

∫
ΩT

h
(
uε

) − h(u)
.= G

(
uε

) − G(u),

then we arrive at lim supε→0 G(uε) � G(u). Lemma 4.2 in [17] implies that uε → u, strongly in L1(ΩT ). Combining this fact
with (3.5), we get (3.6). The proof of (3.9) is similar to the above, refer to [17]. �

The following facts about two-scale convergence [2] will be needed below.

Theorem 3.7. If vε and ∇vε are bounded in Lq(Ω), then there exist v ∈ W 1,q(Ω) and V ∈ Lq(Ω, W 1,q
per(Y )) such that, up to a

subsequence, vε and ∇vε converge in two-scale in W 1,q(Ω),

vε � v(x), ∇vε � ∇x v(x) + ∇y V (x, y).

Using the two-scale convergence theory, it follows that [2,23,17]

Lemma 3.8. Under the assumptions of Lemma 3.6, there exist a function U ∈ L2(ΩT ; H1
per(Y )) and a subsequence of uε (still denoted

by uε ) such that

∇uε � ∇xu(x, t) + ∇y U (x, y, t). (3.11)

Furthermore, the pair (u, U ) satisfies the following two-scale homogenized problem
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T∫
0

〈
∂tb(u),φ

〉
dt +

∫
ΩT

∫
Y

A(y)
(∇xu(x) + ∇y U (x, y, t)

) · (∇xφ + ∇yΦ(x, y, t)
)

dy dx dt

+
∫

ΩT

∫
Y

g
(

y,b(u)
) · (∇xφ + ∇yΦ(x, y, t)

)
dy dx dt =

∫
ΩT

∫
Y

f
(

y,b(u)
)
φ dy dx dt (3.12)

for all φ ∈ C∞
0 (ΩT ) and Φ ∈ C∞

0 (ΩT ; C∞
per(Y )).

4. Proof of Theorem 2.3

In this section, we will complete the proof of Theorem 2.3.

Proof. First, (2.11) and (2.12) have been proved in Lemma 3.6 and 3.8 respectively.
Setting φ = 0 in (3.12), we have∫

ΩT

∫
Y

A(y)
(∇xu(x, t) + ∇y U (x, y, t)

) · ∇yΦ(x, y, t)dy dx dt = −
∫

ΩT

∫
Y

g
(

y,b(u)
) · ∇yΦ(x, y, t)dy dx dt. (4.1)

Noticing that u is independent of variable y and Φ is arbitrary, we may determine, up to a constant, that

U = ∇u · �Λ(x, y, t) + η(x, y, t), �Λ(x, y, t) = (
Λ1, . . . ,Λn)′

. (4.2)

And it is easy to verify that Λi and η satisfy the problem (2.18) and (2.19) respectively.
Let Φ = 0 in (3.12), we obtain

T∫
0

〈
∂tb(u),φ

〉
dt +

∫
ΩT

∫
Y

A(y)
(∇xu(x, t) + ∇y U (x, y, t)

) · ∇xφ dy dx dt

+
∫

ΩT

∫
Y

g
(

y,b(u)
) · ∇xφ dy dx dt =

∫
ΩT

∫
Y

f
(

y,b(u)
) · φ dy dx dt. (4.3)

Using the expression of U , we get

T∫
0

〈
∂tb(u),φ

〉
dt +

∫
ΩT

∫
Y

A(y)(Id×d + ∇y �Λ)dy∇xu(x, t) · ∇xφ dx dt

+
∫

ΩT

∫
Y

(
A(y)∇yη + g

(
y,b(u)

))
dy · ∇xφ dx dt =

∫
ΩT

∫
Y

f
(

y,b(u)
) · φ dy dx dt.

Noting the formulation of (2.15)–(2.17), the above equality is just the weak form of the homogenized problem (2.13).
What’s left is to prove the strong convergence (2.14) for ∇uε . To this purpose, we first have

λ1
∥∥∇uε − ∇u − ∇y U

∥∥2
L2(ΩT )

�
∫

ΩT

A

(
x

ε

)(∇uε − ∇u − ∇y U
) · (∇uε − ∇u − ∇y U

)

=
∫

ΩT

A

(
x

ε

)
∇uε · ∇uε − 2

∫
ΩT

A

(
x

ε

)
∇uε · (∇u + ∇y U )

+
∫

ΩT

A

(
x

ε

)
(∇u + ∇y U ) · (∇u + ∇y U )

.= I1 + I2 + I3,

where

I1 = −
T∫

0

〈
∂tb

(
uε

)
, uε

〉 − ∫
ΩT

g
(

x

ε
,b

(
uε

)) · ∇uε +
∫

ΩT

f

(
x

ε
,b

(
uε

))
uε

= −
∫ (

B
(
uε(T )

) − B
(
uε(0)

)) −
∫

g
(

x

ε
,b

(
uε

)) · ∇uε +
∫

f

(
x

ε
,b

(
uε

))
uε .
Ω ΩT ΩT
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Let’s rewrite∫
ΩT

g
(

x

ε
,b

(
uε

)) · ∇uε =
∫

ΩT

g
(

x

ε
,b(u)

)
· ∇uε +

∫
ΩT

(
g
(

x

ε
,b(u)

)
− g

(
x

ε
,b

(
uε

)))
· ∇uε .

Then from (2.4) and (2.6), a straight calculation gives that∣∣∣∣
∫

ΩT

(
g
(

x

ε
,b(u)

)
− g

(
x

ε
,b

(
uε

)))
· ∇uε

∣∣∣∣ � C

∫
ΩT

∣∣b(u) − b
(
uε

)∣∣ α
2
∣∣∇uε

∣∣
� C

∥∥b(u) − b
(
uε

)∥∥ α
2
L1(ΩT )

∥∥∇uε
∥∥

L2(ΩT )
. (4.4)

Thus, taking g( x
ε ,b(u)) as a test function and using (3.11) and (3.7), the two-scale convergence of ∇uε implies that,

as ε → 0,∫
ΩT

g
(

x

ε
,b

(
uε

)) · ∇uε →
∫

ΩT

∫
Y

g
(

y,b(u)
) · (∇u + ∇y U ).

Similarly, we have∫
ΩT

f

(
x

ε
,b

(
uε

)) · uε →
∫

ΩT

∫
Y

f
(

y,b(u)
) · u. (4.5)

By (3.9), we deduce

I1 → −
∫
Ω

(
B
(
u(T )

) − B
(
u(0)

)) −
∫

ΩT

∫
Y

g
(

y,b(u)
) · (∇u + ∇y U ) +

∫
ΩT

∫
Y

f
(

y,b(u)
) · u

= −
∫

ΩT

∂tb(u) · u −
∫

ΩT

∫
Y

g
(

y,b(u)
) · (∇u + ∇y U ) +

∫
ΩT

∫
Y

f
(

y,b(u)
) · u.

Selecting a proper function as the test function in I2, I3 and using Theorem 3.7, we have

I2 + I3 → −
∫

ΩT

∫
Y

A(y)(∇u + ∇y U ) · (∇u + ∇y U ).

Combining the above with (3.12), we get I1 + I2 + I3 → 0. Thus we finish the proof. �
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