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In this paper, we aim at studying the existence, uniqueness and the exact asymptotic
behavior of positive solutions to the following boundary value problem

⎧⎪⎪⎨⎪⎪⎩
1
A

(
Au′)′ + a(t)uσ = 0, t ∈ (0,∞),

lim
t→0+

u(t) = 0, lim
t→∞

u(t)
ρ(t)

= 0,

where σ < 1, A is a continuous function on [0,∞), positive and differentiable on
(0,∞) such that 1

A
is integrable on [0, 1] and

∫∞
0

1
A(t) dt = ∞. Here ρ(t) =

∫ t

0
1

A(s) ds,
for t � 0 and a is a nonnegative continuous function that is required to satisfy some
assumptions related to the Karamata classes of regularly varying functions. Our
arguments are based on monotonicity methods.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In [15], Zhao considered the following problem⎧⎪⎪⎨⎪⎪⎩
u′′ + ϕ(., u) = 0, on (0,∞),
u > 0, on (0,∞),
lim
t→0+

u(t) = 0,
(1.1)
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where ϕ is a measurable function on (0,∞) × (0,∞), dominated by a convex positive function. Then he
showed that there exists b > 0 such that for each μ ∈ (0, b], there exists a positive continuous solution u

of (1.1) satisfying limt→∞
u(t)
t = μ.

On the other hand, in [10], Mâagli and Masmoudi generalized the result of Zhao to the more general
boundary value problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
A

(
Au′)′ + f

(
., u, Au′) = 0, on (0,∞),

u > 0, on (0,∞),
lim
t→0+

u(t) = 0,

(1.2)

where A is a positive and differentiable function on (0,∞) and f is a measurable function on (0,∞) ×
(0,∞) × (0,∞), which may change sign and is dominated by a regular function. Then they proved the
existence of a constant b > 0 such that for each μ ∈ (0, b], problem (1.2) has a continuous solution u

satisfying limt→∞
u(t)
ρ(t) = μ, where ρ(t) =

∫ t

0
1

A(s) ds, for t � 0.
Note also that various existence results for this type of equations have appeared in the literature (see [1–15]

and the references therein).
In this paper, we aim at studying the existence, uniqueness and the exact asymptotic behavior of positive

solution to the following boundary value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
A

(
Au′)′ + a(t)uσ = 0, t ∈ (0,∞),

u > 0, on (0,∞),

lim
t→0+

u(t) = 0, lim
t→∞

u(t)
ρ(t) = 0,

(1.3)

where σ < 1, A is a continuous function on [0,∞), positive and differentiable on (0,∞). We also assume
that 1

A is integrable on [0, 1] and
∫∞
0

1
A(t) dt = ∞. The function ρ is defined by ρ(t) =

∫ t

0
1

A(s) ds, for t � 0.
The nonnegative potential function a is required to be continuous on (0,∞) that may be singular at 0

or unbounded near ∞ and satisfying some conditions related to the Karamata classes K and K∞ (see
Definitions 1.1 and 1.2 below).

For the case σ < 0, the existence and the uniqueness of a positive continuous bounded solution to
problem (1.3) is proved in [2, Theorem 2], under the condition that a is a positive continuous function on
(0,∞) satisfying

∞∫
0

A(s) min
(
1, ρ(s)

)
a(s) ds < ∞. (1.4)

Also some estimates for such solution are given. Thus, it is interesting to know the exact asymptotic behavior
and to extend the study of (1.3) to 0 � σ < 1.

Throughout this paper and without loss of generality, we assume that
∫ 1
0

1
A(t) dt = 1.

To state our result, we need some notations. We first introduce the following Karamata classes of regularly
varying functions.

Definition 1.1. The class K is the set of all Karamata functions L defined on (0, η] by

L(t) := c exp
( η∫

t

z(s)
s

ds

)
,

for some η > 1 and where c > 0 and z ∈ C([0, η]) such that z(0) = 0.
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Definition 1.2. The class K∞ is the set of all Karamata functions L defined on [1,∞) by

L(t) := c exp
( t∫

1

z(s)
s

ds

)
,

where c > 0 and z ∈ C([1,∞)) such that limt→∞ z(t) = 0.

It is easy to verify the following.

Remark 1.3. (i) A function L is in K if and only if L is a positive function in C1((0, η]), for some η > 1,
such that limt→0+

tL′(t)
L(t) = 0.

(ii) A function L is in K∞ if and only if L is a positive function in C1([1,∞)) such that limt→∞
tL′(t)
L(t) = 0.

Remark 1.4. (See [3].) Let L be a function in K∞, then there exists m � 0 such that for every β > 0 and
t � 1 we have

(1 + β)−mL(t) � L(β + t) � (1 + β)mL(t).

As a typical example of function belonging to the class K (see [11,13]), we quote

L(t) =
m∏

k=1

(
logk

(
ω

t

))ξk

,

where ξk are real numbers, logk x = log ◦ log ◦ · · · log x (k times) and ω is a sufficiently large positive real
number such that L is defined and positive on (0, η], for some η > 1.

In the sequel, we denote by B+((0,∞)) the set of nonnegative Borel measurable functions in (0,∞) and
by C0([0,∞)) the set of continuous functions v on [0,∞) such that limt→∞ v(t) = 0. It is easy to see that
C0([0,∞)) is a Banach space with the uniform norm ‖v‖∞ = supt>0 |v(t)|.

For two nonnegative functions f and g defined on a set S, the notation f(t) ≈ g(t), t ∈ S means that
there exists c > 0 such that 1

cf(t) � g(t) � cf(t), for all t ∈ S.
Furthermore, we denote by G(t, s) = A(s) min(ρ(t), ρ(s)) the Green’s function of the operator u �→

− 1
A (Au′)′ on (0,∞) with the Dirichlet conditions limt→0+ u(t) = 0 and limt→∞

u(t)
ρ(t) = 0.

For f ∈ B+((0,∞)), we put

V f(t) =
∞∫
0

G(t, s)f(s) dt, for t > 0.

We point out that if the map s → A(s) min(1, ρ(s))f(s) is continuous and integrable on (0,∞), then V f is
the solution of the boundary value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 1
A

(
Au′)′ = f, in (0,∞),

lim
t→0+

u(t) = 0,

lim
t→∞

u(t)
ρ(t) = 0.

(1.5)

Throughout this paper we assume that the function a is nonnegative on (0,∞) and satisfies the following
condition:
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(H) a ∈ C((0,∞)) such that

a(t) ≈ 1
(A(t))2

(
ρ(t)

)−λ(1 + ρ(t)
)λ−μ

L1
(
min

(
1, ρ(t)

))
L2

(
max

(
1, ρ(t)

))
, t > 0,

where λ � 2, μ � 1, L1 ∈ K defined on (0, η], for some η > 1 and L2 ∈ K∞ satisfying

η∫
0

L1(s)
sλ−1 ds < ∞ and

∞∫
1

L2(s)
sμ

ds < ∞. (1.6)

In what follows, we put

ν = min
(

1, 2 − λ

1 − σ

)
, ζ = −min

(
1, μ− 1

1 − σ

)
(1.7)

and we define the function θ on (0,∞) by

θ(t) =
(
ρ(t)

)ν(1 +
(
ρ(t)

))ζ−ν(
L̃1

(
min

(
1, ρ(t)

))) 1
1−σ

(
L̃2

(
max

(
1, ρ(t)

))) 1
1−σ , (1.8)

where for t ∈ (0, η),

L̃1(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ t

0
L1(s)

s ds if λ = 2,

L1(t) if 1 + σ < λ < 2,∫ η

t
L1(s)

s ds if λ = 1 + σ,

1 if λ < 1 + σ,

(1.9)

and for t � 1

L̃2(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫∞
t

L2(s)
s ds if μ = 1,

L2(t) if 1 < μ < 2 − σ,∫ t+1
1

L2(s)
s ds if μ = 2 − σ,

1 if μ > 2 − σ.

(1.10)

Our main result is the following.

Theorem 1.5. Let σ < 1 and assume (H). Then problem (1.3) has a unique positive continuous solution u

satisfying for t ∈ (0,∞)

u(t) ≈ θ(t). (1.11)

The content of this paper is organized as follows. In Section 2, we present some fundamental properties
of the two Karamata classes of regularly varying functions K and K∞ and we establish sharp estimates on
some potential functions. In Section 3, exploiting the results of the previous section and using monotonicity
methods, we prove Theorem 1.5.

2. Sharp estimates on the potential of some Karamata functions

We collect in this paragraph some properties of functions belonging to the Karamata class K (resp. K∞)
and we give estimates on some potential functions.
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Proposition 2.1. (See [11,13].)

(i) Let L1, L2 ∈ K (resp. K∞) and p ∈ R. Then the functions

L1 + L2, L1L2 and Lp
1 belong to the class K

(
resp. K∞)

.

(ii) Let L be a function in K (resp. K∞) and ε > 0. Then we have

lim
t→0+

tεL(t) = 0
(
resp. lim

t→∞
t−εL(t) = 0

)
.

Theorem 2.2. (See [11,13].)

(I) Let γ ∈ R and L be a function in K defined on (0, η]. We have:
(i) If γ < −1, then

∫ η

0 sγL(s) ds diverges and
∫ η

t
sγL(s) ds ∼

t→0+
− tγ+1L(t)

γ+1 .

(ii) If γ > −1, then
∫ η

0 sγL(s) ds converges and
∫ t

0 sγL(s) ds ∼
t→0+

tγ+1L(t)
γ+1 .

(II) Let γ ∈ R and L be a function in K∞. We have:
(i) If γ > −1, then

∫∞
1 sγL(s) ds diverges and

∫ t

1 sγL(s) ds ∼
t→∞

tγ+1L(t)
γ+1 .

(ii) If γ < −1, then
∫∞
1 sγL(s) ds converges and

∫∞
t

sγL(s) ds ∼
t→∞

− tγ+1L(t)
γ+1 .

The proof of the next lemma can be found in [4] (see also [9]).

Lemma 2.3. Let L be a function in K defined on (0, η]. Then we have

lim
t→0+

L(t)∫ η

t
L(s)
s ds

= 0.

In particular

t →
η∫

t

L(s)
s

ds ∈ K.

If further
∫ η

0
L(s)
s ds converges, then we have limt→0+

L(t)∫ t
0

L(s)
s ds

= 0.
In particular

t →
t∫

0

L(s)
s

ds ∈ K.

In the next lemma, we have the following properties related to the class K∞. For the proof we refer to [3].

Lemma 2.4. Let L be a function in K∞. Then we have

lim
t→∞

L(t)∫ t

1
L(s)
s ds

= 0.

In particular

t →
t+1∫

L(s)
s

ds ∈ K∞.
1
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If further
∫∞
1

L(s)
s ds converges, then we have

lim
t→∞

L(t)∫∞
t

L(s)
s ds

= 0.

In particular

t →
∞∫
t

L(s)
s

ds ∈ K∞.

Now, we put

b(t) = 1
(A(t))2

(
ρ(t)

)−β(1 + ρ(t)
)β−γ

L3
(
min

(
1, ρ(t)

))
L4

(
max

(
1, ρ(t)

))
, t > 0, (2.1)

where L3 ∈ K and L4 ∈ K∞. We aim at giving sharp estimates on the potential function V b(t).

Proposition 2.5. Assume that L3 ∈ K defined on (0, η], for some η > 1 and L4 ∈ K∞. Let β � 2 and γ � 1
such that

η∫
0

s1−βL3(s) ds < ∞ and
∞∫
1

s−γL4(s) ds < ∞. (2.2)

Then for t > 0

V b(t) ≈ ψβ

(
min

(
1, ρ(t)

))
φγ

(
max

(
1, ρ(t)

))
,

where for t ∈ (0, 1],

ψβ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ t

0
L3(s)

s ds if β = 2,
t2−βL3(t) if 1 < β < 2,
t
∫ η

t
L3(s)

s ds if β = 1,
t if β < 1,

and for t � 1

φγ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t
∫∞
t

L4(s)
s ds if γ = 1,

t2−γL4(t) if 1 < γ < 2,∫ t+1
1

L4(s)
s ds if γ = 2,

1 if γ > 2.

Proof. For t > 0, we have

V b(t) =
∞∫
0

min(ρ(t), ρ(s))
A(s)

(
ρ(s)

)−β(1 + ρ(s)
)β−γ

L3
(
min

(
1, ρ(s)

))
L4

(
max

(
1, ρ(s)

))
ds

=
∞∫
0

min
(
ρ(t), ξ

)
ξ−β(1 + ξ)β−γL3

(
min(1, ξ)

)
L4

(
max(1, ξ)

)
dξ

= �
(
ρ(t)

)
,
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where

�(r) :=
∞∫
0

min(r, ξ)ξ−β(1 + ξ)β−γL3
(
min(1, ξ)

)
L4

(
max(1, ξ)

)
dξ

≈
η∫

0

min(r, ξ)ξ−βL3(ξ) dξ +
∞∫
η

min(r, ξ)ξ−γL4(ξ) dξ

= I(r) + J(r).

Case 1: Assume that 0 < r � 1.
By using (2.2), we deduce that

J(r) ≈ r. (2.3)

On the other hand,

I(r) =
r∫

0

ξ1−βL3(ξ) dξ + r

η∫
r

ξ−βL3(ξ) dξ

= I1(r) + I2(r).

Using Theorem 2.2 and hypothesis (2.2), we deduce that

I1(r) ≈
{
r2−βL3(r) if β < 2,∫ r

0
L3(ξ)

ξ dξ if β = 2,

and

I2(r) ≈
{
r2−βL3(r) if 1 < β � 2,

r
∫ η

r
ξ−βL3(ξ) dξ if β � 1.

Hence, it follows by Lemma 2.3, Proposition 2.1 and hypothesis (2.2) that

I(r) ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ r

0
L3(ξ)

ξ dξ if β = 2,

r2−βL3(r) if 1 < β < 2,

r
∫ η

r
L3(ξ)

ξ dξ if β = 1,

r if β < 1.

(2.4)

Combining (2.3), (2.4) and using Proposition 2.1 and hypothesis (2.2), we deduce that for 0 < r � 1,

�(r) ≈ ψβ(r). (2.5)

Case 2: Assume that r > η + 1.
By using (2.2), we deduce that

I(r) ≈ 1. (2.6)
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On the other hand,

J(r) =
r∫

η

ξ1−γL4(ξ) dξ + r

∞∫
r

ξ−γL4(ξ) dξ

= J1(r) + J2(r).

Using again Theorem 2.2 and hypothesis (2.2), we deduce that

J1(r) ≈
{
r2−γL4(r) if 1 � γ < 2,∫ r

η
ξ1−γL4(ξ) dξ if γ � 2,

and

J2(r) ≈
{
r2−γL4(r) if γ > 1,
r
∫∞
r

L4(ξ)
ξ dξ if γ = 1.

Hence, it follows from Lemma 2.4 and hypothesis (2.2) that

J(r) ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r
∫∞
r

L4(ξ)
ξ dξ if γ = 1,

r2−γL4(r) if 1 < γ < 2,∫ r

η
L4(ξ)

ξ dξ if γ = 2,
1 if γ > 2.

(2.7)

Combining (2.6), (2.7) and using Proposition 2.1, hypothesis (2.2) and Remark 1.4, we deduce that for
r > η + 1,

�(r) ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r
∫∞
r

L4(ξ)
ξ dξ if γ = 1,

r2−γL4(r) if 1 < γ < 2,∫ r

η
L4(ξ)

ξ dξ if γ = 2,
1 if γ > 2,

≈ φγ(r). (2.8)

Now since the functions r → �(r) and r → φγ(r) are positive and continuous on [1, η + 1], we deduce that
for r ∈ [1, η + 1],

�(r) ≈ φγ(r). (2.9)

Finally, using (2.5), (2.8) and (2.9), we obtain the required result. �
3. Proof of the main result

The next results will play a crucial role in the proof of Theorem 1.5.

Lemma 3.1. Assume that the function a satisfies (H) and put ω(t) = a(t)θσ(t) for t > 0. Then we have for
t ∈ (0,∞)

V ω(t) ≈ θ(t).
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Proof. We recall that

ν = min
(

1, 2 − λ

1 − σ

)
, ζ = −min

(
1, μ− 1

1 − σ

)
and

θ(t) =
(
ρ(t)

)ν(1 +
(
ρ(t)

))ζ−ν(
L̃1

(
min

(
1, ρ(t)

))) 1
1−σ

(
L̃2

(
max

(
1, ρ(t)

))) 1
1−σ ,

where for t ∈ (0, 1],

L̃1(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ t

0
L1(s)

s ds if λ = 2,

L1(t) if 1 + σ < λ < 2,∫ η

t
L1(s)

s ds if λ = 1 + σ,

1 if λ < 1 + σ,

and for t � 1

L̃2(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫∞
t

L2(s)
s ds if μ = 1,

L2(t) if 1 < μ < 2 − σ,∫ t+1
1

L2(s)
s ds if μ = 2 − σ,

1 if μ > 2 − σ.

For t > 0, we have

ω(t) ≈ 1
(A(t))2

(
ρ(t)

)−λ+νσ(1 + ρ(t)
)λ−μ+(ζ−ν)σ

× L1
(
min

(
1, ρ(t)

))(
L̃1

(
min

(
1, ρ(t)

))) σ
1−σL2

(
max

(
1, ρ(t)

))(
L̃2

(
max

(
1, ρ(t)

))) σ
1−σ .

Using Proposition 2.5 with β = λ−νσ and γ = μ−ζσ, L3(t) = L1(t)(L̃1(t))
σ

1−σ and L4(t) = L2(t)(L̃2(t))
σ

1−σ ,
we obtain for t ∈ (0, 1]

V ω(t) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ ρ(t)
0

L1(s)
s (

∫ s

0
L1(r)

r dr)
σ

1−σ ds if λ = 2,

(ρ(t))
2−λ
1−σ L1(ρ(t))(L1(ρ(t)))

σ
1−σ if 1 + σ < λ < 2,

ρ(t)
∫ η

ρ(t)
L1(s)

s (
∫ η

s
L1(r)

r dr)
σ

1−σ ds if λ = 1 + σ,

ρ(t) if λ < 1 + σ,

≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
∫ ρ(t)
0

L1(s)
s ds)

1
1−σ if λ = 2,

(ρ(t))
2−λ
1−σ (L1(ρ(t)))

1
1−σ if 1 + σ < λ < 2,

ρ(t)(
∫ η

ρ(t)
L1(s)

s ds)
1

1−σ if λ = 1 + σ,

ρ(t) if λ < 1 + σ,

≈ θ(t).

On the other hand, using again Proposition 2.5 and Remark 1.4, we get for t � 1,
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V ω(t) ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ(t)

∫∞
ρ(t)

L2(s)
s (

∫∞
s

L2(r)
r dr)

σ
1−σ ds if μ = 1,

(ρ(t))ζL2(ρ(t))(L2(ρ(t)))
σ

1−σ if 1 < μ < 2 − σ,∫ ρ(t)+1
1

L2(s)
s (

∫ s+1
1

L2(r)
r dr)

σ
1−σ ds if μ = 2 − σ,

1 if μ > 2 − σ,

≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ(t)(
∫∞
ρ(t)

L2(s)
s ds)

1
1−σ if μ = 1,

(ρ(t))ζ(L2(ρ(t)))
1

1−σ if 1 < μ < 2 − σ,

(
∫ ρ(t)+1
1

L2(s)
s ds)

1
1−σ if μ = 2 − σ,

1 if μ > 2 − σ,

≈ θ(t).

This completes the proof. �
Lemma 3.2. (See [2].) Let a � 0 and u ∈ C1((a,∞)) be a function satisfying⎧⎪⎪⎨⎪⎪⎩

− 1
A

(
Au′)′ � 0, in (a,∞),

lim
t→a+

u(t) = 0 and lim
t→∞

u(t)
ρ(t) = 0.

(3.1)

Then u is nondecreasing and nonnegative function on (a,∞).

Proof. Since by (3.1) the function t �→ A(t)u′(t) is nonincreasing on (a,∞), then we have limt→a+ A(t)×
u′(t) := l0 ∈ R and limt→+∞ A(t)u′(t) := l ∈ [−∞,+∞).

We claim that l = 0. To prove this, we have the following cases:

Case 1: If l = −∞, then there exists b > a, such that

∀s > b, u′(s) < − 1
A(s) .

Integrating this, we get

∀t > b,
u(t)
ρ(t) − u(b)

ρ(t) < −
(

1 − ρ(b)
ρ(t)

)
. (3.2)

Now since limx→∞
u(t)
ρ(t) = 0 and limt→∞ ρ(t) = ∞, then by taking t → ∞ in (3.2), we obtain a contradiction.

Case 2: Suppose that l ∈ R. Then ∀ε > 0, there exists b > a, such that

∀s > b,
l − ε

A(s) < u′(s) < l + ε

A(s) .

Integrating this, we get

∀t > b, (l − ε)
(

1 − ρ(b)
ρ(t)

)
<

u(t)
ρ(t) − u(b)

ρ(t) < (l + ε)
(

1 − ρ(b)
ρ(t)

)
.

So as in Case 1 by letting t → ∞, we obtain

∀ε > 0, |l| � ε.
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That is l = 0. Hence, by the monotonicity of t �→ A(t)u′(t), we deduce that u is nondecreasing on (a,∞)
with limt→a+ u(t) = 0, which implies that u is a nonnegative function on (a,∞). �
Proposition 3.3. Assume that σ < 0. Let u, v be two positive functions belonging to C1((0,∞)) such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1
A

(
Au′)′ � a(t)uσ, in (0,∞),

lim
t→0+

u(t) = 0,

lim
t→∞

u(t)
ρ(t) = 0,

(3.3)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1
A

(
Av′

)′ � a(t)vσ, in (0,∞),

lim
t→0+

v(t) = 0,

lim
t→∞

v(t)
ρ(t) = 0.

(3.4)

Then u � v.

Proof. Let ω̃(t) := u(t) − v(t), for t > 0. Assume that there exists t0 ∈ (0,∞) such that ω̃(t0) > 0. Then
there exists a maximal interval (a, b) ⊂ (0,∞) containing t0 such that

ω̃(t) > 0, for each t ∈ (a, b). (3.5)

This implies that ω̃(a) = 0 and ω̃(b) = 0 if b < ∞.
So we have the following cases:

Case 1: If b = ∞, then we have ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1
A

(
Aω̃′)′ � 0, in (a,∞),

lim
t→a+

ω̃(t) = 0,

lim
t→∞

ω̃(t)
ρ(t) = 0.

From Lemma 3.2, we deduce that ω̃ is nonincreasing on [a,∞) with ω̃(a) = 0. This is a contradiction with
the fact that ω̃(t) > 0, for each t ∈ (a,∞).

Case 2: If b < ∞, then we have

⎧⎪⎪⎨⎪⎪⎩
− 1
A

(
Aω̃′)′ � 0, in (a, b),

ω̃(a) = 0,

ω̃(b) = 0.

This implies that the function t → A(t)ω̃′(t) is nondecreasing on (a, b). In particular there exists
limt→b− A(t)ω̃′(t) := l ∈ R.
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On the other hand, since ω̃(b) = 0 and ω̃ ∈ C1(0,∞), it follows by (3.5) that limt→b−
ω̃(t)
t−b = ω̃′(b) � 0.

So limt→b− A(t)ω̃′(t) � 0.
Hence, for each t ∈ (a, b), A(t)ω̃′(t) � 0 and ω̃(a) = ω̃(b) = 0. This yields a contradiction. �

Proof of Theorem 1.5. From Lemma 3.1, there exists M > 1 such that for each t > 0

1
M

θ(t) � V ω(t) � Mθ(t), (3.6)

where ω(t) = a(t)θσ(t).
On the other hand, using hypothesis (H) and Theorem 2.2, we verify that

∞∫
0

A(s) min
(
1, ρ(s)

)
ω(s) ds < ∞. (3.7)

We will discuss the following two cases.

Case 1: σ < 0. It is obvious to see that if a satisfies hypothesis (H), then a verifies condition (1.4). This implies
from [2, Theorem 2], that problem (1.3) has a unique positive solution u. We claim that u satisfies (1.11).
Indeed, from (3.7) and (1.5), we deduce that the function v(t) := V ω(t) is a solution of

− 1
A

(
Av′

)′ = ω, in (0,∞). (3.8)

Now using (3.6), (3.8), we verify by a simple computation that the functions M
σ

1−σ v and M
−σ
1−σ v satisfy

respectively (3.3) and (3.4). Hence by Proposition 3.3, we obtain that

M
σ

1−σ v � u � M
−σ
1−σ v,

which proves that u satisfies (1.11).

Case 2: 0 � σ < 1. Put c0 = M
1

1−σ , where the constant M is given in (3.6) and let

Λ =
{
v ∈ C0

(
[0,∞)

)
: θ(t)
c0(1 + ρ(t)) � v(t) � c0θ(t)

1 + ρ(t) , t > 0
}
.

Clearly, the function t → θ(t)
1+ρ(t) ∈ C0([0,∞)) and so Λ is not empty.

We define the operator T on Λ by

Tv(t) = 1
1 + ρ(t)

∞∫
0

G(t, s)a(s)
(
1 + ρ(s)

)σ
vσ(s) ds. (3.9)

We shall prove that T has a fixed point in Λ.
First observe that for this choice of c0, we have for all v ∈ Λ and t > 0

Tv(t) � c0θ(t)
1 + ρ(t) and Tv(t) � θ(t)

c0(1 + ρ(t)) . (3.10)

On the other hand, for all t, s > 0, we have

G(t, s) � A(s) min
(
1, ρ(s)

)
. (3.11)
1 + ρ(t)
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Since for each s > 0, the function t → G(t,s)
1+ρ(t) is in C0([0,∞)), we deduce by using (3.11) and (3.7) that

T (Λ) ⊂ C0([0,∞)). Therefore, T (Λ) ⊂ Λ.
Now, let (vk)k be a sequence of functions in C0([0,∞)) defined by

v0 = θ(t)
c0(1 + ρ(t)) and vk+1 = Tvk, for k ∈ N.

Since for 0 � σ < 1, the operator T is nondecreasing and T (Λ) ⊂ Λ, we deduce that

v0 � v1 � v2 � · · · � vk � vk+1 � c0θ(t)
1 + ρ(t) .

Hence, by the convergence monotone theorem, the sequence (vk)k converges to a function v satisfying

θ(t)
c0(1 + ρ(t)) � v � c0θ(t)

1 + ρ(t) and v(t) = 1
1 + ρ(t)

∞∫
0

G(t, s)a(s)
(
1 + ρ(s)

)σ
vσ(s) ds.

By similar argument as above, we prove that v is a continuous function on [0,∞).
Put u(t) = (1 + ρ(t))v(t). Then u is a positive continuous function satisfying

u = V
(
auσ

)
.

Since the function s → A(s) min(1, ρ(s))a(s)uσ(s) is continuous and integrable on (0,∞), then it follows
that u is a solution of problem (1.3).

Finally, it remains to prove that u is the unique positive continuous solution satisfying (1.11). To this
end, assume that problem (1.3) has two positive continuous solutions u, v satisfying (1.11). Then there
exists a constant m > 1 such that

1
m

� u

v
� m.

This implies that the set

J =
{
m � 1: 1

m
� u

v
� m

}
is not empty. Let c = inf J . Then c � 1 and we have 1

cv � u � cv. It follows that uσ � cσvσ and that the
function w := cσv − u satisfies ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 1
A

(
Aw′)′ = a

(
cσvσ − uσ

)
� 0,

lim
t→0+

w(t) = 0,

lim
t→∞

w(t)
ρ(t) = 0.

This implies by Lemma 3.2 that the function w = cσv − u is nonnegative. By symmetry, we have also
v � cσu. Hence cσ ∈ J and c � cσ. Since 0 � σ < 1, then c = 1 and therefore u = v. �
Example 3.4. Let σ < 1 and a be a positive continuous function on (0,∞) such that

a(t) ≈ 1
(A(t))2

(
ρ(t)

)−λ(1 + ρ(t)
)λ−μ log

(
2

min(1, ρ(t))

)
, t > 0,
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where λ < 2 and μ > 1. Then by Theorem 1.5, problem (1.3) has a unique positive continuous solution u

satisfying for t > 0,

u(t) ≈
(
ρ(t)

)ν(1 + ρ(t)
)ζ−ν(

L̃1
(
min

(
1, ρ(t)

))) 1
1−σ

(
L̃2

(
max

(
1, ρ(t)

))) 1
1−σ ,

where ν = min(1, 2−λ
1−σ ), ζ = −min(1, μ−1

1−σ ),

L̃1(t) =

⎧⎪⎨⎪⎩
log(2

t ) if 1 + σ < λ < 2,
(log(2

t ))
2 if λ = 1 + σ,

1 if λ < 1 + σ,

and

L̃2(t) =
{ log(1 + t) if μ = 2 − σ,

1 if μ �= 2 − σ.
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