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The problem of the embeddability of two commuting continuous injections f, g : I =
(0, b] → I in Abelian semigroups is discussed. We consider the case when there is no
iteration semigroup in which f and g can be embedded. Explaining this phenomenon
we modify the definition of an iteration semigroup introducing a new notion –
a T -iteration semigroup of f and g, that is a family {f t : I → I, t ∈ T} of continuous
injections for which fu ◦ fv = fu+v, u, v ∈ T , such that f = f1 and g = fs for
an s ∈ T and s /∈ Q, where T � R+ is a dense semigroup which can be extended
to a group. We determine a maximal semigroup of indices Sem(f, g) � R+ such
that for every T -iteration semigroup T ⊂ Sem(f, g). We give also a construction
of maximal T -iteration semigroups of f and g that is such semigroups for which
T = Sem(f, g). We examine also some other Abelian semigroups of continuous
functions containing f and g.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the problem of the embeddability of two commuting continuous injections in semi-flows called
here iteration semigroups. The characterization of the embeddability of continuous commutable bijections
in iteration groups is given in [12]. It turns out that, except some very regular particular case, omitting
the assumption of surjectivity results in the lack of the embeddability in an iteration semigroup. In this
paper such a case is considered. We explain this phenomenon and we construct the Abelian semigroups
of mappings defined in the same interval I which substitute the iteration semigroups. The construction of
the maximal Abelian subsemigroups containing settled two commuting mappings is given. To this end let
us introduce the following notions.

Let I be an interval and let T be an additive dense subsemigroup of R+ such that 1 ∈ T . A one parameter
family F := {f t : I → I, t ∈ T} of continuous functions f t such that f t ◦ fs = f t+s for all t, s ∈ T is said
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to be a T -iteration semigroup, however the semigroup T will be called a support of F . We will also say that
F is supported by semigroup T . Note that every T -iteration semigroup is Abelian.

If for every x ∈ I the mapping t ∈ T → f t(x) is an injection then a T -iteration semigroup is said to
be injective. If T = R+ then T -iteration semigroup is said to be an iteration semigroup also called in the
literature a semiflow (see [8]). Note that if f1 is an injection then the remaining f t are also injective.

If f, g : I → I are given functions and there exists a T -iteration semigroup {f t : I → I, t ∈ T} such that
f1 = f and fs = g for an s ∈ T then we say that f and g are T -embeddable. If T = R+ then we will say
shortly that f and g are embeddable.

A family of functions A is said to be disjoint whenever f, g ∈ A and f(x) = g(x) for some x then f = g

(see [2]). Note that a T -iteration semigroup {f t : I → I, t ∈ T} is disjoint if and only if, for every t ∈ T , f t

either has no fixed points or is the identity.
Denote here by N the set of natural numbers with 0. The mappings f, g : I → I are said to be iteratively

incommensurable when for every x ∈ I and every n,m ∈ N such that n + m �= 0, fn(x) �= gm(x). In such a
case the graphs of iterates are disjoint.

2. Preliminaries

Let I = (0, b] be an interval. On given functions f and g we assume the general hypothesis:

(H) f, g : I → I are continuous, strictly increasing, f ◦ g = g ◦ f and f , g are iteratively incommensurable.

Note that the assumption I = (0, b] implies that f and g are not surjections, f < id and g < id.
It is easily visible that for every x ∈ I there exists a unique sequence {mk(x)} of positive integers such

that fmk(x)+1(x) � gk(x) < fmk(x)(x). Moreover, there exists the finite limit

lim
k→∞

mk(x)
k

=: s(f, g),

and this limit does not depend on x (see [11]). This limit s := s(f, g) is said to be the iterative index of f
and g. Index s /∈ Q if and only if f and g are iteratively incommensurable.

Assume that f and g satisfy (H). Define

N+(x) :=
{
(n,m) ∈ N× N: fn(x) ∈ gm[I]

}
,

N−(x) :=
{
(n,m) ∈ N× N: gm(x) ∈ fn[I]

}
and

C+(x) :=
{
g−m ◦ fn(x): (n,m) ∈ N+(x)

}
,

C−(x) :=
{
f−n ◦ gm(x): (n,m) ∈ N−(x)

}
.

Put

Lf,g := C+(x)d,

where Ad means the set of all limit points of A. After [6] we quote

Proposition 1. (See Theorem 1 in [6], Theorem 1 in [9].) The set Lf,g does not depend on the choice of x.
C−(x)d = C+(x)d and Lf,g is either a Cantor set, i.e. a perfect and nowhere dense set or Lf,g is an interval.
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If we drop the assumption that f(b) < b and assume that f and g are the surjections then we get the
following.

Lemma 1. (See Theorem 1 in [6].) If the surjections f, g satisfy (H) with I = (0, b) then Lf,g = {g−m ◦
fn(x): n,m ∈ N}d = {f−n ◦ gm(x): n,m ∈ N}d = {gm ◦ fn(x): n,m ∈ Z}d.

Proposition 2. (See Corollary 1 in [7].) If IntLf,g �= ∅ then there exists a unique iteration semigroup
continuous with respect to iterative parameter in which f and g are embeddable.

In particular (see [7]), if f and g are diffeomorphisms on (0, c) for some c < b and the derivatives f ′, g′
are of finite variation in (0, c), then there exists a continuous iteration semigroup embedding f and g.

Proposition 3. (See Corollary 1 in [7].) If IntLf,g = ∅ then f and g are not embeddable in any iteration
semigroup.

Now let us quote some useful fact from [3]. Denote by Bi(J) the set of all increasing bijections from
open interval J onto itself. A disjoint group G ⊂ Bi(J) is said to be a spoiled group whenever L(G) :=
{f(x): f ∈ G}d for an x ∈ J is a Cantor set. The set L(G) does not depend on x (see Theorem 2a in [3]).

For L ⊂ I being a Cantor set let L∗−, L∗+ and L∗∗ be the sets of all left-sided, right-sided and two-sided
limit points of L, respectively.

Proposition 4. (See Proposition 5 in [3].) If G is a spoiled subgroup of Bi(I), L = L(G) and f ∈ G, then
f(L∗−) = L∗−, f(L∗+) = L∗+ and f(L∗∗) = L∗∗, where f is a continuous extension of f onto cl I.

The important role in the next considerations is played by the following.

Proposition 5. (See Theorem 2 in [6], Theorem 2 in [10].) Let f and g satisfy (H), where I = (0, b] or
I = (0, b). The system of Abel’s equations{

ϕ(f(x)) = ϕ(x) + 1

ϕ(g(x)) = ϕ(x) + s(f, g)
, x ∈ I, (1)

where ϕ is an unknown function, has a unique up to an additive constant continuous solution. This solution
is decreasing. The solution is invertible if and only if IntLf,g �= ∅. Moreover, the closure of each component
of the set I \ Lf,g is a maximal interval of constancy of ϕ.

Combining the selected parts of Lemma 2 and Theorem 4 in [5], Theorem 1 in [6], Theorem 6 in [3],
Proposition 12 in [4] and Theorem 2 in [10] we get

Proposition 6. Let f , g satisfy (H) on I = (0, b]. Then for every interval J = (0, b′), b < b′ and for every
homeomorphic extension f of f onto J such that f(x) < x, x ∈ J and f(b′) = b′ there exists a unique
homeomorphic extension g of g mappings cl J onto itself such that

g ◦ f = f ◦ g.

f , g satisfy (H) on J , s(f, g) = s(f, g) and Lf,g ∩ [0, b) = Lf,g \ {b}. Moreover, every continuous solution ϕ

of system (1) has a unique continuous extension ϕ satisfying system{
ϕ(f(x)) = ϕ(x) + 1

, x ∈ J. (2)

ϕ(g(x)) = ϕ(x) + s(f, g)
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If IntLf,g = ∅ then ϕ[Lf,g] = R, the functions ϕ|L∗∗
f,g

, ϕ|L∗−
f,g

and ϕ|L∗+
f,g

are injective and the closure of each
component of the set I \ Lf,g is a maximal interval of constancy of ϕ.

From the last statement we get

Corollary 1. If IntLf,g = ∅ and ϕ is a continuous solution of system (1) then ϕ restricted to the set L∗∗
f,g∪L∗−

f,g

and ϕ restricted to the set L∗∗
f,g ∪ L∗+

f,g are strictly decreasing.

Let G := {fn ◦ gm: n,m ∈ Z}. This is a spoiled subgroup of Bi(I). By Propositions 4 and 6 we get the
following.

Corollary 2. If f and g are the extensions of f and g defined as in Proposition 6 and IntLf,g = ∅ then

f
[
L∗∗
f,g

]
= L∗∗

f,g
= g

[
L∗∗
f,g

]
,

f
[
L∗−
f,g

]
= L∗−

f,g
= g

[
L∗−
f,g

]
.

The aim of the paper is to consider the problem of T -embeddability in the case when Lf,g is not an
interval. As it was mentioned in Proposition 3, in such a case there is no iteration semigroup embedding f

and g. This means that always T �= R+.
As a matter of the above fact we have the lack of surjectivity. Under the surjectivity, with some additional

conditions, f and g can be embedded even in an iteration group but nonmeasurable with respect to the
iterative parameter (Theorem 2 in [12]). So, our aim is to construct a new notion, a modified iteration
semigroup, with the restriction on time index, where f and g can be embedded without any changes in
domains of theirs iterates. Thus we will consider T -iteration semigroups embedded f and g and we determine
the maximal semigroups with this property. Obviously then T �= R+. For this purpose let us introduce

Definition. A T -iteration semigroup such that T �= R+ and T is dense in R+ is said to be a refinement
iteration semigroup.

To determine the refinement T -iteration semigroups containing f and g such that IntLf,g = ∅ we define
a special subsemigroup Sem(f, g) of R+ limiting the sets of indices T . We give a construction of refinement
iteration semigroups supported by this maximal semigroup Sem(f, g). To do this we first determine some
special simple semigroups generated by f and g−1 as well as by g and f−1 supported by (Z+sZ)∩R+. Next
we deal with a set-valued semigroups generated by f and g. Based on the properties of these semigroups
we give the mentioned construction. We deal also with the structure of Abelian semigroups of continuous
injections containing given functions.

3. Auxiliary results

Let us start with some useful lemmas

Lemma 2. Let ϕ be a continuous solution of Abel’s system of Eqs. (1). Then for every a ∈ (0, b]

ϕ
[
Lf,g ∩ (0, a]

]
=

[
ϕ(a),∞

)
.

Proof. Let b < b′ and f and g be the homeomorphic commuting extensions of f and g on (0, b′). Let b ∈ Lf,g.
Then, by Proposition 6, Lf,g ∩ (0, a] = Lf,g ∩ (0, a]. Let ϕ be a continuous solution of the system of Abel’s
equations for f and g and ϕ = ϕ|I . We know, by Proposition 6, that ϕ is decreasing and ϕ[Lf,g∩(0, b′)] = R.
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Hence R = ϕ[Lf,g ∩ (0, a]] ∪ ϕ[Lf,g ∩ (a, b′)], ϕ[Lf,g ∩ (0, a]] ⊂ [ϕ(a),∞) and ϕ[Lf,g ∩ (a, b′)] ⊂ (−∞, ϕ(a)].
This relations imply that ϕ[Lf,g ∩ (0, a]] = [ϕ(a),∞). If b /∈ Lf,g then ϕ is constant in the interval [c, b],
where c = supLf,g. Hence by the first part of the proof we get our equality. �
Lemma 3. The set {n− sm: (n,m) ∈ N+(x)} for every x ∈ I is dense in R+.

Proof. Let x ∈ I and ϕ be a continuous solution of (1). Since ϕ is decreasing, ϕ(x) ∈ [ϕ(b),∞). Fix c � 0
and put y := ϕ(x) + c. By Lemma 2 there exists z ∈ Lf,g such that ϕ(z) = y. The definition of the set Lf,g

ensures the existence of a sequence {(nk,mk)} with terms in N+(x) such that g−mk ◦ fnk(x) → z, k → ∞.
The continuity of ϕ gives ϕ(z) = limk→∞ ϕ(g−mk ◦ fnk(x)). From system (1) we get

ϕ
(
g−mk ◦ fnk(x)

)
= ϕ(x) + nk − smk.

Hence limk→∞(nk − smk) = ϕ(z) − ϕ(x) = c, what means that the set {n− sm: (n,m) ∈ N+(x)} is dense
in R+. �

The same property has the set {n− sm: (n,m) ∈ N−(x)}.
Now we consider some particular but useful refinement iteration semigroups. Define

N+ :=
{
(n,m) ∈ N× N: fn � gm

}
, N− :=

{
(n,m) ∈ N× N: gm � fn

}
and

G+
f :=

{
g−m ◦ fn: (n,m) ∈ N+

}
,

G−
g :=

{
f−n ◦ gm: (n,m) ∈ N−

}
.

Note that N− = N−(b) and N+ = N+(b). By Proposition 5 it is easy to see that

(n,m) ∈ N+ if and only if n− sm � 0

and

(n,m) ∈ N− if and only if n− sm � 0.

By Lemma 3 sets

V + :=
{
n− sm: (n,m) ∈ N+

}
, V − :=

{
sm− n: (n,m) ∈ N−

}
, (3)

are dense in R+, V + ∩ V − = {0} and V + + V − = R+ ∩ (Z + sZ).
Putting ht := g−m◦fn for t = n−sm and ht := f−n◦gm for t = sm−n we can write G+

f = {ht: t ∈ V +}
and G−

g = {ht: t ∈ V −}, i.e. G+
f is a V +-iteration semigroup and G−

g is a V −-iteration semigroup. We have
the following.

Theorem 1. G+
f and G−

g are disjoint refinement iteration semigroups supported, respectively, by V + and V −,
f ∈ G+

f and g ∈ G−
g . Semigroups G+

f and G−
g have the only one common element, the identity function.

Moreover, the functions from G+
f commute with the functions from G−

g and

Gf,g :=
{
h1 ◦ h2: h1 ∈ G+

f , h2 ∈ G−
g

}
is a disjoint refinement semigroup containing f and g, supported by the semigroup V := (Z + sZ) ∩ R+.
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The proof is very technical but for convenience of the readers we present it below.

Proof. Take h1, h2 ∈ G+
f . There exist (n,m), (q, p) ∈ N+ such that h1 = g−m ◦fn and h2 = g−p ◦fq. By the

definition of set N+ we get fn � gm and fq � gp. Consequently, fn ◦ fq � gm ◦ fq and gm ◦ fq � gm ◦ gp,
and, furthermore, fn ◦ fq � gm ◦ gp, whence (n+ q,m+ p) ∈ N+ and, by the commutativity of fn and g−p

on gp[I] and the inclusion fq[I] ⊂ gp[I],

h1 ◦ h2 = g−m ◦ fn ◦ g−p ◦ fq = g−(m+p) ◦ fn+q ∈ G+
f .

Similarly h2 ◦ h1 = g−(m+p) ◦ fn+q. Reasoning for G−
g is the same.

Now we show the disjointness of the set G+
f . Let h1 = g−m ◦ fn ∈ G+

f , h2 = g−p ◦ fq ∈ G+
f . Assume

that there exists an x0 ∈ I such that h1(x0) = h2(x0). Then, for m � p, fn(x0) = gm−p(fq(x0)) and for
m < p, gp−m ◦ fn(x0) = fq(x0). In the first case, for n � q, after the substitution y0 := fq(x0), we obtain
fn−q(y0) = gm−p(y0), what means that n − q = m − p = 0 and consequently, h1 = h2. For n < q putting
y0 := fn(x0) we get y0 = gm−p ◦ fq−n(y0), what contradicts to the condition f(x) < x and g(x) < x. In the
second case one can use similar argumentation. Again, reasoning for G−

g is the same. To show that f ∈ G+
f

and g ∈ G−
g it is enough to see that (1, 0) ∈ N+ and (0, 1) ∈ N−.

Suppose g−m◦fn = f−q◦gp for some (n,m) ∈ N+ and (q, p) ∈ N−. Then gp[I] ⊂ fq[I], fn[I] ⊂ gm[I] and
we get fn+q = fq◦fn = fq◦gm◦f−q◦gp = gm◦fq◦f−q◦gp = gm+p what, in a view of noncommensurability
of f and g, gives n + q = m + p = 0 and, consequently, n = q = m = p = 0. Thus G+

f ∩G−
g = {id}.

Take h1 = g−m ◦ fn ∈ G+
f and h2 = f−q ◦ gp ∈ G−

g . Put H1 := h1 ◦ h2 = (g−m ◦ fn) ◦ (f−q ◦ gp)
and H2 := h2 ◦ h1 = (f−q ◦ gp) ◦ (g−m ◦ fn). Note that there exists a δ such that (0, δ) ⊂ gm[I] and all
factors of H1 and H2 commute on (0, δ). Thus on the interval (0, δ) functions H1 and H2 coincide. Let
x ∈ I. Taking the index i such that f i(x) ∈ (0, δ) we get f i(g−m(x)) = g−m(f i(x)) and consequently
H1(f i(x)) = f i(H1(x)) and H2(f i(x)) = f i(H2(x)). Since f i is invertible, H1 = H2. Hence we infer that
Gf,g is a semigroup containing f and g. By Lemma 3, G+

f , G−
g and Gf,g are the refinement semigroups

supported, respectively, by V +, V − and V + + V − = R+ ∩ (Z + sZ). �
Put N ∗

+ := N+ ∪ (N×−N), N ∗
− := N− ∪ (−N× N) and define

G+
f,g :=

{
g−m ◦ fn: (n,m) ∈ N ∗

+
}
, G−

f,g :=
{
f−n ◦ gm: (n,m) ∈ N ∗

−
}
.

Similarly as in Theorem 1, G+
f,g, G

−
f,g can be treated as iteration semigroups. Moreover, using the same

technic of the proof as in Theorem 1 we obtain also the following.

Corollary 3. G+
f,g and G−

f,g are disjoint refinement iteration semigroups, G+
f ⊂ G+

f,g, G−
g ⊂ G−

f,g, f, g ∈
G+

f,g ∩G−
f,g and Gf,g = G+

f,g ◦G−
f,g.

Hence we infer

Remark 1. Gf,g is not a minimal refinement iteration semigroup containing f and g.

4. Main results

Let f and g satisfy (H), IntLf,g = ∅ and ϕ be a continuous solution of Abel’s system of Eqs. (1).
Define (see [4])

Realm(f, g) :=
{
h : I → I, ∃c ∈ R, ∀x ∈ I, ϕ

(
h(x)

)
= ϕ(x) + c

}
.

It is easy to verify the following.
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Remark 2. Realm(f, g) with the operation of composition is a semigroup containing f and g.

The set Realm(f, g) does not depend on the choice of the solution ϕ (because ϕ is unique up to an
additive constant). Since for every h ∈ Realm(f, g) the function ϕ ◦ h−ϕ is constant in I we can define the
mapping ind : Realm(f, g) → R by the formula

indh := ϕ ◦ h− ϕ.

Remark 3. The function ind is a homomorphism mapping semigroup Realm(f, g) into R+.

Proof. Let h ∈ Realm(f, g). Since h(b) � b and ϕ is decreasing indh = ϕ(h(b)) − ϕ(b) � 0. Let h1, h2 ∈
Realm(f, g). Then ϕ + indh1 ◦ h2 = ϕ ◦ (h1 ◦ h2) = ϕ ◦ h2 + indh1 = ϕ + indh2 + indh1. �
Remark 4. If h ∈ Realm(f, g) is continuous then indh = 0 if and only if h has a fixed point.

Proof. If h has a fixed point x0 then indh = ϕ(h(x0))−ϕ(x0) = 0. Conversely, if indh = 0 then ϕ(h(x)) =
ϕ(x), for x ∈ I. We know, by Proposition 5, that ϕ is decreasing and each closure of component of the set
I \ Lf,g is a maximal interval of constancy of ϕ. Hence h[cl J ] ⊂ cl J for every component J of I \ Lf,g.
Consequently h has a fixed point in each interval cl J . �
Remark 5. If h ∈ Realm(f, g) is continuous, strictly increasing, commutes with f and indh > 0, then
indh = s(f, h).

This is a consequence of Proposition 5 since the pair (f, h) satisfies (H).

Lemma 4. If h : I → I is either continuous or monotonic and commutes with f and g then h ∈ Realm(f, g).

Proof. Since f, g ∈ Realm(f, g) we have ϕ ◦h ◦ f = ϕ ◦ f ◦h = ϕ ◦h+ 1 and ϕ ◦h ◦ g = ϕ ◦ g ◦h = ϕ ◦h+ s.
Putting ψ = ϕ ◦ h gives {

ψ
(
f(x)

)
= ψ(x) + 1

ψ
(
g(x)

)
= ψ(x) + s

, x ∈ I,

hence ψ is a solution of system (1). If h is continuous then ψ is also continuous. If h is monotonic then ψ is
also monotonic and consequently continuous except at most countable set. Since the set Lf,g is uncountable
ψ is continuous at least one point of Lf,g. The solution of (1) continuous at least one point of Lf,g is unique
up to an additive constant (see Theorem 2 in [6] and Corollary 2 in [10]), so ψ = ϕ + c, for a c, hence
ϕ ◦ h = ϕ + c. The proof is ended. �

Let C(I, I) := {f : I → I, f is continuous} and M(I, I) := {f : I → I, f is monotonic}. Lemma 4
implies the following.

Theorem 2. If A ⊂ C(I, I) or A ⊂ M(I, I) is an Abelian semigroup and f, g ∈ A, then A ⊂ Realm(f, g).

Directly by the above statement and Theorem 1 we get

Corollary 4. If f and g are T -embeddable in {f t, t ∈ T} then f t ∈ Realm(f, g) for every t ∈ T .

Corollary 5. Gf,g ⊂ Realm(f, g).
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Remark 6. ind[G+
f ] = V +, ind[G−

g ] = V −, where V + and V − are given by (3), and ind[Gf,g] = V + + V − =
{n− sm: n,m ∈ N} ∩ R+.

Proof. Let (n,m) ∈ N+. We have n = ind fn = ind gm ◦ (g−m ◦ fn) = ind gm + ind g−m ◦ fn. Since
ind gm = ms we obtain ind g−m ◦ fn = n − sm. Similarly ind f−n ◦ gm = sm − n. Since ind[G+

f ] :=
{ind g−m ◦fn, (n,m) ∈ N+} we get the first statement. The second one is a consequence of Theorem 1. �

It is also easy to see that

ind
[
G+

f,g

]
= V + + M and ind

[
G−

f,g

]
= V − + M,

where M := {n + sm: n,m ∈ N}.
Now we move to semigroups of set-valued functions.
Let ϕ be a continuous solution of Abel’s system of Eqs. (1). Define the following set-valued function

F t(x) = ϕ−1[t + ϕ(x)
]
, t � 0. (4)

The values of F t are either closed intervals or singletons. Denote cc[I] := {[c, d] ⊂ I}. We have

Theorem 3. The family {F t : I → cc[I], t � 0} is a set-valued iteration semigroup, that is

Fu ◦ F v(x) = Fu+v(x), u, v � 0, x ∈ I,

where

Fu ◦ F v(x) :=
⋃

y∈Fv(x)

Fu(y),

such that f(x) ∈ F 1(x) and g(x) ∈ F s(x) for x ∈ I, where s = ind g.

Proof. Fix an x ∈ I. Let z ∈ Fu ◦ F v(x). Then there exists a y ∈ F v(x) such that z ∈ Fu(y), that is
ϕ(y) = v + ϕ(x) and ϕ(z) = u + ϕ(y). Consequently, ϕ(z) = u + v + ϕ(x), what means that z ∈ Fu+v(x).
To see the opposite inclusion let z ∈ Fu+v(x). Then ϕ(z) = u + v + ϕ(x). Take a y ∈ F v(x). We have
ϕ(y) = v+ϕ(x), and, what follows, ϕ(z) = u+ϕ(y). Whence z ∈ Fu(y) and, consequently, z ∈ Fu ◦F v(x).
To show that f(x) ∈ F 1(x) and g(x) ∈ F s(x) for x ∈ I it is enough to use Abel’s equations ϕ(f(x)) = ϕ(x)+1
and ϕ(g(x)) = ϕ(x) + s, respectively. �

Lemma 3 allows us to introduce the following families of functions

f t
−(x) := sup

{
g−m ◦ fn(x): n− sm > t, (n,m) ∈ N+(x)

}
, t � 0,

f t
+(x) := inf

{
g−m ◦ fn(x): n− sm < t, (n,m) ∈ N+(x)

}
, t > 0 (5)

defined on I.
We have f t

− � f t
+ for t > 0. This is a simple consequence of the following implication (see Lemma 2

in [6])

n1 − sm1 < n2 − sm2 ⇒ g−m2 ◦ fn2(x) < g−m1 ◦ fn1(x) (6)

for (n1,m1), (n2,m2) ∈ N+(x).
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We have also

f t
+ < id, t > 0. (7)

In fact, if (n1,m1), (n2,m2) ∈ N+(x) and n1 − sm1 � 0 < n2 − sm2 < t then g−m2 ◦ fn2(x) � x <

g−m1 ◦ fn1(x). Now, taking into account Lemma 3, we obtain that inf{g−m ◦ fn(x): n− sm < t, (n,m) ∈
N+(x)} = inf{g−m ◦ fn(x): 0 < n− sm < t, (n,m) ∈ N+(x)} < x which proves (7).

If n− sm > t, n,m ∈ N then n− sm > 0 and, by Proposition 5, fn < gm. Thus (n,m) ∈ N+(x) for every
x ∈ I and consequently

f t
− = sup

{
g−m ◦ fn: n− sm > t, n,m ∈ N

}
. (8)

Similarly we get

f t
+ = inf

{
g−m ◦ fn: 0 < n− sm < t, n,m ∈ N

}
. (9)

In fact, {g−m ◦ fn(x): n − sm < t, (n,m) ∈ N+(x)} = {g−m ◦ fn(x): 0 < n − sm < t, n,m ∈ N} =
{g−m ◦ fn(x): n − sm � 0, (n,m) ∈ N+(x)}. If 0 < n − sm then g−m ◦ fn(x) < x. If n − sm � 0 and
(n,m) ∈ N+(x) then x �= g−m ◦ fn(x) which implies (9).

Let f and g be the homeomorphic extensions of f and g on an interval J = (0, b′) ⊃ (0, b] = I defined as
in Proposition 6. Put

f t
− := sup

{
g−m ◦ fn: n− sm > t, n,m ∈ N

}
(10)

and

f t
+ := inf

{
g−m ◦ fn: 0 < n− sm < t, n,m ∈ N

}
. (11)

Since g−m ◦ fn = gm ◦ fn in (0, b] for n− sm > 0 in a view of (8) and (9) we get

f t
−|I = f t

− and f t
+|I = f t

+. (12)

Theorem 4. Both of the families {f t
−: t � 0} and {f t

+: t > 0} are iteration semigroups of increasing
functions.

Proof. The mappings f t
+ are increasing as lower bounds of strictly increasing functions. In [13] (see

Lemma 16) it is proved that fu
±◦fv

± = fu+v
± for u, v ∈ R+. Hence, directly by (12), we get also fu

±◦fv
± = fu+v

± ,
u, v ∈ R+. �

If Lf,g is an interval then f t
+ = f t

− for all x ∈ I and t � 0 and these families build the continuous
iteration semigroup {f t := f t

+ = f t
−, t � 0}, the same unique iteration semigroup in which f and g can be

embedded.
Let further again Lf,g be a Cantor set. We have

I \ Lf,g =
⋃
α∈A

Iα, (13)

where Iα are open pairwise disjoint intervals and A = (−∞, ρ]∩Q for a ρ > 0 except at most one interval Iρ
as far as ρ ∈ Q, in this case Iρ = (�, b].
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Lemma 5. For every x ∈ I and t � 0, f t
−(x) ∈ Lf,g and for every t > 0, f t

+(x) ∈ Lf,g.

Proof. Let x ∈ I and t � 0. By Lemma 3 the set S(x) := {n−sm: (n,m) ∈ N+(x)} is dense in R+, so there
exists a decreasing sequence {nk − smk} ⊂ S(x) converging to t such that f t

−(x) = limk→∞ g−mk ◦ fnk(x).
By Lemma 2 in [6] the sequence {g−mk ◦ fnk(x)} is strictly increasing, so, by Proposition 1, f t

−(x) ∈
{g−mk ◦ fnk(x)}d ⊂ Lf,g. For f t

+(x) one can use analogous argumentation. �
Taking into account (12), directly by Proposition 6 and Lemmas 11, 20, 26, 24 in [13] applied for the

semigroups {f t
±, t > 0}, we get the following non surjective version of these lemmas.

Lemma 6. The functions f t
± are discontinuous, however, they are constant on every interval cl Iα. Moreover,

for every x ∈ I the mappings t → f t
±(x) are strictly decreasing.

Lemma 7. If f t
−(x0) = f t

+(x0) =: dt for an x0 ∈ Int I then dt ∈ L∗∗
f,g. If f t

−(x0) �= f t
+(x0) for an x0 ∈ Int I

then (f t
−(x0), f t

+(x0)) = Iα for an α ∈ A and α < ρ.

We prove the following.

Lemma 8. f t
− and f t

+ are in Realm(f, g) and ind f t
− = ind f t

+ = t for t > 0.

Proof. Fix x ∈ I and t > 0. By Lemma 3, there exists an increasing sequence {nk − smk} such that
nk − smk → t and limk→∞ g−mk ◦ fnk(x) = f t

+(x). By the continuity of ϕ we get

ϕ
(
f t
+(x)

)
= lim

k→∞
ϕ
(
g−mk ◦ fnk(x)

)
= lim

k→∞
ϕ(x) + nk − smk = ϕ(x) + t.

The proof for f t
− is analogous. �

By Remark 3 and Lemma 8 we get

Corollary 6. The index function ind is an epimorphism of the semigroup Realm(f, g) onto R+.

Theorem 5. f t
−(x) = inf F t(x) and f t

+(x) = supF t(x) for x ∈ I and t > 0.

Proof. By Proposition 6 the continuous solution ϕ of system (1) is weakly decreasing and the intervals cl Iα
from the decomposition (13) are the maximal intervals of constancy of ϕ. Fix an x ∈ I such that F t(x)
is not a singleton. Hence F t(x) = ϕ−1[t + ϕ(x)] = cl Iα for an α ∈ A. By Lemma 8 ϕ(f t

±(x)) = ϕ(x) + t,
so f t

−(x), f t
+(x) ∈ F t(x) = cl Iα. Suppose f t

−(x) = f t
+(x) =: dt, then, by Lemma 7, dt ∈ L∗∗

f,g but this
is a contradiction since L∗∗

f,g ∩ cl Iα = ∅. On the other hand, by Lemma 5, f t
−(x), f t

+(x) ∈ Lf,g. Since
f t
−(x) �= f t

+(x) and f t
−(x), f t

+(x) ∈ cl Iα Lemma 7 implies that [f t
−(x), f t

+(x)] = cl Iα. Thus we get F t(x) =
cl Iα = [f t

−(x), f t
+(x)]. If F t(x) is a singleton then F t(x) = f t

−(x) = f t
+(x) and the thesis is proved. �

Every function from an Abelian semigroup A containing f and g can be estimated by elements of families
{f t

−} and {f t
+} defined by (5). Namely,

Theorem 6. If A is an Abelian semigroup containing f and g then for every h ∈ A without fixed point

f ind h
− � h � f ind h

+ .
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Proof. We know that A ⊂ Realm(f, g). Let h ∈ A and put t := indh. Then ϕ(h(x)) = ϕ(x) + t and, by
Lemma 8, ϕ(f t

−(x)) = ϕ(x) + t, ϕ(f t
+(x)) = ϕ(x) + t. Thus ϕ(h(x)) = ϕ(f t

−(x)) = ϕ(f t
+(x)). Hence, by the

last statement in Proposition 6, either h(x) = f t
−(x) = f t

+(x) or h(x), f t
−(x), f t

+(x) ∈ cl Iα for an α ∈ A and
cl Iα is a maximal interval of constancy of ϕ. By Lemma 19 from [13] f t

−(x) and f t
+(x) are the ends of Iα,

so we get the inequality

f t
−(x) � h(x) � f t

+(x), x ∈ I. �
Now we prove some invariant properties of limit sets L∗∗

f,g, L
∗−
f,g and L∗+

f,g.

Lemma 9.

f
[
L∗∗
f,g

]
= L∗∗

f,g ∩ f [I], g
[
L∗∗
f,g

]
= L∗∗

f,g ∩ g[I],

f
[
L∗−
f,g

]
= L∗−

f,g ∩ f [I], g
[
L∗−
f,g

]
= L∗−

f,g ∩ g[I],

f
[
L∗+
f,g

]
= L∗+

f,g ∩ f [I], g
[
L∗+
f,g

]
= L∗+

f,g ∩ g[I].

Proof. Let f, g : I ′ → I ′ be the functions defined in Proposition 6, where I = [0, b] ⊂ [0, b′] = I ′ for a b′ > b.
By Theorem 1 from [6] it is known that Lf,g\{b} = Lf,g∩[0, b). Whence we infer that L∗∗

f,g\{b} = L∗∗
f,g

∩[0, b)
and L∗−

f,g \ {b} = L∗−
f,g

∩ [0, b). Thus, by Corollary 2, f [L∗∗
f,g \ {b}] = f [L∗∗

f,g
∩ [0, b)] = f [L∗∗

f,g
] ∩ [0, f(b)) =

L∗∗
f,g

∩ f [I] = L∗∗
f,g ∩ f [I]. If b /∈ L∗∗

f,g the assertion is obvious.
If b ∈ L∗∗

f,g then b ∈ L∗∗
f,g

, f(b) ∈ f [L∗∗
f,g

] = L∗∗
f,g

and f(b) < b. Thus f(b) ∈ L∗∗
f,g. Hence f [L∗∗

f,g] =
f [L∗∗

f,g \ {b}] ∪ {f(b)} = L∗∗
f,g ∩ f [I] ∪ {f(b)} = L∗∗

f,g ∩ (0, f(b)] ∪ {f(b)} = L∗∗
f,g ∩ f [I].

For a function g reasoning is the same. To prove the remaining thesis one can use a similar argumenta-
tion. �

Denote by C∗(I, I) the subset of C(I, I) of all injections.

Lemma 10. If h ∈ C∗(I, I) and h commute with f and g, then h[L∗∗
f,g] = L∗∗

f,g ∩ h[I], h[L∗−
f,g] = L∗−

f,g ∩ h[I],
h[L∗+

f,g] = L∗+
f,g ∩h[I] and for every interval Iα, α ∈ A from the decomposition (13) there exists a β ∈ A such

that h[Iα] = Iβ ∩ h[I].

Proof. We show that h is iteratively incommensurable with f or with g. Let ϕ be a continuous solution of
system (1). (i) If there exists x0 ∈ I and n,m � 0 such that fn(x0) = hm(x0), then ϕ(fn(x0)) = ϕ(hm(x0)).
The left hand side of the last equality is equal to ϕ(x0)+n and the right hand side is equal to ϕ(x0)+m·indh.
Hence indh = n

m . (ii) If there exists x0 ∈ I and n,m � 0 such that gn(x0) = hm(x0), then, analogously, we
obtain that indh = s n

m .
This two cases cannot be satisfied simultaneously so either the pair (f, h) or the pair (g, h) satisfies the

assumption (H). Hence, by Lemma 9 applied for the pair (f, h) or the pair (g, h), we get our assertion.
By the proved part we get that for every α ∈ A, h[Iα] ⊂ h[I \ Lf,g] = h[I] ∩

⋃
β∈A Iβ . Since h[Iα] is an

interval it should be equal to one of the intervals Iβ ∩ h[I]. �
Using the idea of the proof of Lemma 9, in a view of Proposition 6, we can justify

Lemma 11. If ϕ is a continuous solution of system (1), then ϕ|L∗∗
f,g

and ϕ|L∗−
f,g

are invertible.

Remark 7. If H ⊂ C∗(I, I) is a disjoint semigroup in which all functions commute with f and g then
H ⊂ Realm(f, g) and H is Abelian.
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Proof. Let h ∈ H and ϕ be a continuous solution of system (1). Then ϕ ◦ h ◦ f = ϕ ◦ f ◦ h = ϕ ◦ h + 1 and
ϕ ◦ h ◦ g = ϕ ◦ g ◦ h = ϕ ◦ h + s. By the uniqueness of continuous solution of system (1) ϕ ◦ h = ϕ + c for a
c ∈ R. Hence h ∈ Realm(f, g) and consequently H ⊂ Realm(f, g).

Now let h1, h2 ∈ H and ϕ be a continuous solution of system (1). Then ϕ ◦ h1 ◦ h2 = ϕ ◦ h2 + indh1 =
ϕ + indh1 + indh2 = ϕ ◦ h2 ◦ h1. By the assumption h1 ◦ h2 and h2 ◦ h1 commute with f and g. Hence,
by Lemma 10, these functions map the set L∗∗

f,g into itself. Let x0 ∈ L∗∗
f,g. Then h1(h2(x0)) ∈ L∗∗

f,g and
h2(h1(x0)) ∈ L∗∗

f,g. Since ϕ(h1(h2(x0))) = ϕ(h2(h1(x0))), in a view of Lemma 11, h1(h2(x0)) = h2(h1(x0)).
Hence h1 ◦ h2 = h2 ◦ h1 since H is a disjoint semigroup. �

By Proposition 6 the continuous solution ϕ of the system (1) is constant on every interval cl Iα from the
decomposition (13). Thus

ϕ[I \ Lf,g] =
⋃
α∈A

ϕ[cl Iα] = ϕ
[
L∗−
f,g

]
= ϕ

[
L∗+
f,g

]
.

The solution ϕ is determined uniquely up to an additive constant thus we may assume that ϕ(b) = 0; in
the case of bijection ϕ(0) = ∞. Put

Kf,g := ϕ[I \ Lf,g] =
{
ϕ[Iα]: α ∈ A

}
.

Thus the set Kf,g is countable. Define

Sem(f, g) :=
{
t � 0: Kf,g + t = Kf,g ∩ [t,∞)

}
. (14)

Note that set Sem(f, g) is uniquely determined by f and g.

Theorem 7. Sem(f, g) is an additive semigroup, countable and dense in R+.

Proof. Let Kf,g + t = Kf,g ∩ [t,∞) and Kf,g + s = Kf,g ∩ [s,∞). Then Kf,g + t + s = Kf,g ∩ [t,∞) + s =
(Kf,g + s) ∩ [t + s,∞) = Kf,g ∩ [s,∞) ∩ [t + s,∞) = Kf,g ∩ [t + s,∞) which means that Sem(f, g) is an
additive semigroup. The set Sem(f, g) is countable because Kf,g is countable.

Let us note that Kf,g = ϕ[L∗−
f,g]. By Corollary 5 we have for (n,m) ∈ N+ = N+(b)

ϕ
(
g−m

(
fn(x)

))
= n− sm + ϕ(x), x ∈ I \ {0},

so, by Lemma 10,

ϕ
[
L∗−
f,g

]
+ n− sm = ϕ

[
g−m ◦ fn

[
L∗−
f,g

]]
= ϕ

[
L∗−
f,g ∩

(
0, g−m ◦ fn(b)

]]
= ϕ

[
L∗−
f,g

]
∩ ϕ

[(
0, g−m ◦ fn(b)

]]
= ϕ

[
L∗−
f,g

]
∩ [n− sm,∞),

which gives that n − sm ∈ Sem(f, g) for (n,m) ∈ N+(b). By Lemma 3, we get the density of Sem(f, g)
in R+. �
Theorem 8. For every Abelian semigroup A ⊂ C∗(I, I) containing f and g, ind[A] ⊂ Sem(f, g).

Proof. Let h ∈ A. Then h commutes with f and g. By Theorem 2 h ∈ Realm(f, g), that is ϕ(h(x)) =
ϕ(x) + indh for x ∈ I. Hence, by Lemma 10, Kf,g ∩ [indh,∞) = ϕ[L∗−

f,g] ∩ [indh,∞) = ϕ[L∗−
f,g ∩ h[I]] =

ϕ[h[L∗−
f,g]] = ϕ[L∗−

f,g] + indh, since ϕ[h[I]] = [indh,∞). Thus indh ∈ Sem(f, g). �
Note that if u, v ∈ C∗(I, I) and u[I] ⊂ v[I] then v−1 ◦ u ∈ C∗(I, I). This simple property inspires the

following.
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Definition. An Abelian semigroup A ⊂ C∗(I, I) is said to be saturated if v−1 ◦ u ∈ A for every u, v ∈ A
such that u[I] ⊂ v[I].

Each saturated semigroup can be extended to the local group of germs, that is, for every function u ∈ A
its inverse u−1 is defined on a neighborhood of zero.

Similarly an additive semigroup T ⊂ R+ is said to be saturated if t− s ∈ T for every t, s ∈ T such that
s � t.

Note that semigroup A = {t + id, t ∈ T} defined in [0,∞) is saturated if and only if T is saturated
semigroup.

Theorem 9. Let T ⊂ R+ be a semigroup. If f and g are T -embeddable and IntLf,g = ∅ then T �= R+ and if
additionally T is a saturated semigroup then T is dense and T ⊂ Sem(f, g). Moreover, ind f t = t for t ∈ T .

Proof. Let {f t : I → I, t ∈ T} be a T -iteration semigroup such that f1 = f and fs = g for an s ∈ T . Put
γ(t) := ind f t. By Theorem 8 γ[T ] ⊂ Sem(f, g) ⊂ R+ and, by Remark 3,

γ(u + v) = γ(u) + γ(v), u, v ∈ T.

Suppose that T = R+. Then γ(t) = t, since γ(1) = 1 and the only additive function γ : R+ → R+ is a linear
function (see e.g. [1, p. 34]). In a consequence Sem(f, g) = R+ but this is a contradiction.

Further assume that T is saturated semigroup. Put

γ0(x) :=

⎧⎪⎨⎪⎩
−γ(−x), x ∈ −T

0, x = 0

γ(x), x ∈ T

.

Note that γ0 is additive and increasing since γ is nonnegative and its domain T is a saturated semigroup.
Note that u /∈ Q since f and g are iteratively incommensurable. Hence, in a view of Lemma 3, semigroup T

is dense in R+. Define the following functions γ+, γ− : R → R

γ+(x) := lim
t→x+

γ0(t), γ−(x) := lim
t→x−

γ0(t).

Obviously γ+ and γ− are additive and increasing, thus there exist a+ and a− such that γ+(x) = a+x and
γ−(x) = a−x, for x ∈ R (see e.g. [1, p. 34]). Since γ−(x) � γ0(x) � γ+(x) for x ∈ −T ∪ {0} ∪ T we
have a−x � γ0(x) � a+x for x ∈ −T ∪ {0} ∪ T . Putting x = 1 and x = −1 we get a− � 1 � a+ and
−a− � −1 � −a+. Hence a− = a+ = 1 and γ(x) = x for x ∈ T . �
Conclusion. Theorems 9 and 8 explain the phenomenon that commuting functions f and g with IntLf,g = ∅
cannot be embeddable in any iteration semigroup but only in T -iteration semigroups for which the sets of
iterative indices T are limited by the semigroup Sem(f, g).

In the rest of the note we shall show that there exist such the best T -iteration semigroups embedding f

and g for which T = Sem(f, g).

Lemma 12. If A ⊂ C∗(I, I) is an Abelian disjoint semigroup containing f and g then ind|A is a monomor-
phism.

Proof. We show that homomorphism ind|A is invertible. By Theorem 2 A ⊂ Realm(f, g). Let h1, h2 ∈ A.
If indh1 = indh2 then ϕ(h1(x)) = ϕ(h2(x)) for all x ∈ I. Take an x0 ∈ L∗∗

f,g. By Lemma 10 h1(x0) ∈ L∗∗
f,g

and h2(x0) ∈ L∗∗
f,g and, by Lemma 11, h1(x0) = h2(x0). Hence h1 = h2 since A is a disjoint semigroup. �
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Theorem 10. Every Abelian disjoint saturated semigroup A ⊂ C∗(I, I) such that f, g ∈ A with IntLf,g = ∅
is isomorphic with a countable and dense subsemigroup of Sem(f, g).

Proof. Let us note that Gf,g ⊂ A, since A is a saturated Abelian semigroup. Hence, by Theorem 1 and
Theorem 8,

(Z + sZ) ∩ R+ ⊂ ind[Gf,g] ⊂ ind[A] ⊂ Sem(f, g).

Thus, by Lemma 12, the semigroup A is isomorphic with the countable dense semigroup ind[A]. �
Corollary 7. Every Abelian saturated disjoint semigroup A ⊂ C∗(I, I) containing f and g with IntLf,g = ∅
is a refinement iteration semigroup.

Proof. Define T := ind[A] and

f t := ind−1(t), t ∈ T.

By Theorem 10 the family {f t: t ∈ T} is a refinement iteration semigroup such that f1 = f and fs = g,
where s = s(f, g). �

Let Iα, α ∈ A be the intervals defined by the decomposition (13) and {F t : I → cc[I], t � 0} be the
set-value iteration semigroup defined by (4). Now we prove a fundamental property of these semigroups,
namely that semigroup Sem(f, g) is the maximal support, where the set-valued functions F t do not degen-
erate on the intervals Iα, α ∈ A, and moreover, they are surjective on this family of intervals. This means
that {F t : I → cc[I], t ∈ Sem(f, g)} is the “best” set valued T -iteration semigroup.

Theorem 11. Sem(f, g) is the set of all t � 0 such that for every α ∈ A, F t[Iα] is a proper interval and for
every Iβ ⊂ F t[I] there exists an Iα such that cl Iβ = F t[Iα].

Proof. Put T := {t � 0: for every α ∈ A, IntF t[Iα] �= ∅ and for every β ∈ A such that Iβ ⊂
F t[I] there exists an α ∈ A such that cl Iβ = F t[Iα]}.

Let t ∈ T and y ∈ Kf,g. Then there exists an α ∈ A such that {y} = ϕ[Iα]. By (4), ϕ[F t(x)] = ϕ(x) + t

for x ∈ Int I, so for every α ∈ A, ϕ[F t[Iα]] = ϕ[Iα] + t. Since IntF t[Iα] �= ∅ it follows, by Theorem 5 and
Lemma 7, that there exists a β ∈ A such that F t[Iα] = cl Iβ . Thus ϕ[F t[Iα]] = ϕ[Iβ ] = {z} for a z ∈ Kf,g

and z = y + t. In a consequence, Kf,g + t ⊂ Kf,g. Since Kf,g ⊂ [0,∞) we get

Kf,g + t ⊂ Kf,g ∩ [t,∞).

Note that for t � 0, ϕ[F t[I]] = [t,∞). In fact, by (4), ϕ[F t[I]] = ϕ[ϕ−1[ϕ[I] + t]] = ϕ[(0, b]] + t = [t,∞),
since ϕ(b) = 0.

Now, let x ∈ Kf,g ∩ [t,∞). Then there exists a β ∈ A such that {x} = ϕ[Iβ ] and x ∈ ϕ[F t[I]]. Hence
ϕ[Iβ ] ∈ ϕ[F t[I]] and, consequently, Iβ ⊂ F t[I], since ϕ is monotonic and constant only in the intervals cl Iω,
ω ∈ A. Since t ∈ T , cl Iβ = F t[Iα] for an α ∈ A. Hence {x} = ϕ[Iβ ] = ϕ[F t[Iα]] = ϕ[Iα] + t ∈ Kf,g + t, so

Kf,g ∩ [t,∞) ⊂ Kf,g + t.

Thus T ⊂ Sem(f, g).
Now, let t ∈ Sem(f, g) and fix an α ∈ A. Then ϕ[Iα] + t = ϕ[Iβ ] for a β ∈ A. On the other hand

ϕ[F t[Iα]] = ϕ[Iα] + t = ϕ[Iβ ] = ϕ[cl Iβ ]. In a view of Theorem 5 and Lemma 6 F t[Iα] = [f t
−(x0), f t

+(x0)] for



876 D. Krassowska, M.C. Zdun / J. Math. Anal. Appl. 416 (2014) 862–880
an x0 ∈ Iα. Suppose f t
−(x0) = f t

+(x0) =: dt. Then, by Lemma 7, dt ∈ L∗∗
f,g. Obviously inf Iβ =: uβ ∈ L∗−

f,g

and ϕ(uβ) = ϕ(dt). In a view of Corollary 1 ϕ restricted to the set L∗∗
f,g ∪ L∗−

f,g is invertible. Thus dt = uα

and, consequently, L∗∗
f,g ∩ L∗−

f,g �= ∅ but this is a contradiction. Hence F t[Iα] is a proper interval.
Now, let Iβ ⊂ F t[I]. Then {xβ} := ϕ[Iβ ] ∈ ϕ[F t[I]] = [t,∞), so xβ ∈ Kf,g ∩ [t,∞) = Kf,g + t. Hence

there exists an α ∈ A such that ϕ[Iβ ] = {xβ} = ϕ[Iα]+t = ϕ[F t[Iα]]. Since F t[Iα] is a closed proper interval
and ϕ is monotonic and constant only in the intervals cl Iω, ω ∈ A we get the equality cl Iβ = F t[Iα] and
this means that t ∈ T , so Sem(f, g) ⊂ T . �

As a direct consequence of the above theorem and Lemmas 6 and 7 we get the following.

Corollary 8. For every x ∈ L∗∗
f,g and t ∈ Sem(f, g) the set F t(x) is a singleton i.e. f t

−(x) = f t
+(x).

As an application of Theorem 11 we get also the following.

Lemma 13. Let b ∈ Lf,g. Then there exists a unique piecewise linear T -iteration semigroup {pt: t ∈
Sem(f, g)} on I for which pt|cl Iα for α ∈ A are the linear increasing functions such that pt[cl Iα] = F t[cl Iα].
Moreover, pt ∈ Realm(f, g) and ind pt = t for t ∈ Sem(f, g).

Proof. For every t ∈ Sem(f, g) and α ∈ A denote by ptα the linear increasing bijection mapping cl Iα onto
the interval F t[cl Iα]. All such the mappings are unique. Define

p̃ t :
⋃
α∈A

cl Iα →
⋃
α∈A

F t[cl Iα]

such that p̃ t
|cl Iα = ptα. The functions p̃ t are strictly increasing and have a unique continuous extension pt

on I. In fact, the set
⋃

α∈A Iα is dense in I and, by Theorem 11,
⋃

α∈A F t[Iα] is dense in the interval F t[I]
and, in a consequence, limu→x− p̃ t(u) = limu→x+ p̃ t(u) =: pt(x) for x ∈ L∗∗

f,g = I \
⋃

α∈A Iα. For every
t, s ∈ Sem(f, g) and α ∈ A the functions pt ◦ ps and pt+s are linear in cl Iα and

pt ◦ ps[cl Iα] = pt
[
F s[cl Iα]

]
= F t

[
F s[cl Iα]

]
= F t+s[cl Iα] = pt+s[cl Iα].

Hence pt ◦ ps = pt+s on cl Iα for t, s ∈ Sem(f, g) and α ∈ A and, in a consequence, by the continuity of pt,
{pt: t ∈ Sem(f, g)} is a T -iteration semigroup. The uniqueness is obvious.

Since pt[cl Iα] = F t[cl Iα], by Theorem 5 and Corollary 8, we get

f t
−(x) � pt(x) � f t

+(x), t ∈ Sem(f, g), x ∈ I.

Let ϕ be a continuous solution of (1). Since ϕ is decreasing, by Lemma 8, ϕ(x)+ t = ϕ(f t
+(x)) � ϕ(pt(x)) �

ϕ(f t
−(x)) = ϕ(x) + t, so

ϕ
(
pt(x)

)
= ϕ(x) + t, t ∈ Sem(f, g), x ∈ I. (15)

Thus pt ∈ Realm(f, g) and ind pt = t for t ∈ Sem(f, g). �
Remind that G+

f = {ht: t ∈ V +}, where V + = {n− sm � 0: n,m ∈ N+} and

ht := g−m ◦ fn for t = n− sm, (16)

is a semigroup in which every element commutes with f and g.
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Lemma 14. If b ∈ Lf,g and t ∈ V + then for every α ∈ A, ht[cl Iα] = cl Iβ for a β ∈ A and for every
Iβ ⊂ ht[I] there exists an α ∈ A such that cl Iβ = ht[cl Iα].

Proof. Let t ∈ V +. In a view of Theorem 1 ht commutes with f and g thus, by Lemma 10, ht[Lf,g] =
Lf,g ∩ ht[I], so ht[I \ Lf,g] = ht[I] \ Lf,g = (0, ht(b)] \ Lf,g and ht(b) ∈ Lf,g. Hence we get the equality⋃

α∈A ht[Iα] =
⋃

α∈A′ Iα, where A′ = {α: Iα ⊂ (0, ht(b))}, which gives our assertion since ht are continuous
injections. �
Lemma 15. If b ∈ Lf,g then for every t ∈ V + and α ∈ A, ht[cl Iα] = F t[cl Iα] and V + ⊂ Sem(f, g).

Proof. Let t ∈ V +. Then ht ∈ Gf,g and, by Theorem 6, f t
− � ht � f t

+, what together with Theorem 5 and
Lemma 6 implies that ht[cl Iα] ⊂ F t[cl Iα]. We know by Lemma 14 that ht[cl Iα] = cl Iβ for a β ∈ A. On
the other hand, by Lemmas 7 and 6, we see that F t[cl Iα] is either one of intervals Iγ or a singleton. Hence
ht[cl Iα] = F t[cl Iα]. This relation together with Theorem 11 and Lemma 14 implies that t ∈ Sem(f, g). �

The above properties let us to prove the main result of the paper: Sem(f, g) is the maximal support
of refinement iteration semigroups as well as the maximal semigroup of indices of Abelian semigroups
A ⊂ C∗(I, I) containing f and g.

Theorem 12. There exist the disjoint refinement iteration semigroups {f t: t ∈ T} such that f1 = f ,
fs(f,g) = g and T = Sem(f, g).

Proof. In a view of Proposition 6 we may restrict our considerations to the case where b ∈ Lf,g. Firstly we
shall show that there exists a homeomorphic solution γ of the system of equations{

γ
(
p1(x)

)
= f

(
γ(x)

)
γ
(
ps(x)

)
= g

(
γ(x)

) , x ∈ I, (17)

where p1, ps are determine in Lemma 13. In the decomposition (13) we can assume that Iα < Iβ if and only
if α < β.

Define on the set of indices A the following equivalence relation α ∼ β if and only if there exist u, v ∈ V +

such that Fu[Iα] = F v[Iβ ].
Note that if α ∼ β then there exists a t ∈ V + such that either F t[cl Iα] = cl Iβ or F t[cl Iβ ] = cl Iα.

Denote by S a selector of the relation ∼ and define α := [α]∩S, where [α] is the equivalent class of α. Now
we can define the mapping A � α → tα ∈ V + by the following way.

(i) If α � α then there exists a unique tα ∈ V + such that

F tα [cl Iα] = cl Iα

and (ii) if α > α there exists a unique tα ∈ V + such that

F tα [cl Iα] = cl Iα.

For every α ∈ A define α′ and α′′ by

F 1[cl Iα] = cl Iα′ and F s[cl Iα] = cl Iα′′ .

Note that α′ < α and α′′ < α. They have also the following properties:
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(P1) tα′ = tα + 1 for α � α,
(P2) tα′ = tα − 1 for α > α and α′ > α,
(P3) tα′ + tα = 1 for α > α and α′ � α,
(P4) tα′′ = tα + s for α � α,
(P5) tα′′ = tα − s for α > α and α′′ > α,
(P6) tα′′ + tα = s for α > α and α′′ � α.

In fact, note that α′′ = α′ = α and α′ < α, α′′ < α.
Suppose α � α, then α′ < α, α′′ < α and by (i)

F tα+1[cl Iα′ ] = F tα+1[cl Iα] = F 1[F tα [cl Iα]
]

= F 1[cl Iα] = cl Iα′ = F tα′ [cl Iα′ ].

Hence tα + 1 = tα′ , i.e. (P1) holds. Similarly

F tα+s[cl Iα′′ ] = F tα+s[cl Iα] = F s
[
F tα [cl Iα]

]
= F s[cl Iα] = cl Iα′′ = F tα′′ [cl Iα′′ ].

Thus tα + s = tα′′ , i.e. (P4) holds. Suppose α < α′. Then α > α′ and

F tα′+1[cl Iα] = F tα′
[
F 1[cl Iα]

]
= F tα′ [cl Iα′ ] = cl Iα′ = cl Iα = F tα [cl Iα],

so tα′ + 1 = tα, i.e. (P2) holds.
Now, let α′ � α < α. Then by (ii) and (i)

F tα+tα′ [cl Iα] = F tα′
[
F tα [cl Iα]

]
= F tα′ [cl Iα] = F tα′ [cl Iα′ ] = cl Iα′ = F 1[cl Iα],

so tα + tα′ = 1 and (P3) is proved. The proof for the cases (P5) and (P6) is the same as for (P2)
and (P3).

Now we deal with the functions ht given by (16) and pt defined in Lemma 13. By Lemma 15 they are
defined simultaneously for t ∈ V +. Put h−t := (ht)−1 and p−t := (pt)−1 for t ∈ V +. It is easy to verify that
the relations

h1 ◦ ht−1 = ht, p−t ◦ p1 = p−t+1, h1 ◦ h−(t+1) = h−t, t ∈ V + (18)

and

hs ◦ ht−s = ht, p−t ◦ ps = p−t+s, hs ◦ h−(t+s) = h−t, t ∈ V + (19)

hold in this intervals Iα, where both sides of the equalities are correctly defined.
Let ωα : cl Iα → cl Iα for α ∈ S be an increasing bijection. Define the homeomorphisms γα : cl Iα → cl Iα

by the following way

γα = htα ◦ ωα ◦ p−tα , if α � α (20)

and

γα = h−tα ◦ ωα ◦ ptα , if α > α. (21)

Note that for α � α, p−tα is defined on cl Iα, because cl Iα = F tα [cl Iα] ⊂ F tα [I] = ptα [I]. Moreover,
p−tα [cl Iα] = cl Iα and htα [cl Iα] = F tα [cl Iα] = cl Itα , hence γα is an increasing bijection. Similarly is for
α > α, since htα [cl Iα] = F tα [cl Iα] = cl Iα and h−tα maps cl Iα onto cl Iα.
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Hence we get that the mapping

γ(x) :=
{
γα(x) x ∈ cl Iα
x x ∈ L∗∗

f,g

is a homeomorphism. We show that γ satisfies system (17).
Let x ∈ cl Iα. Then p1(x) ∈ cl Iα′ . If α � α, then α′ < α and by (P1), (18), (20)

γ ◦ p1(x) = γα′ ◦ p1(x) = htα′ ◦ ωα ◦ p−tα′ ◦ p1(x) = h1 ◦ h(tα′−1) ◦ ωα ◦ p(1−tα′ )(x)

= h1 ◦ htα ◦ ωα ◦ p−tα(x) = f ◦ γα(x),

since h1 = f . Let now α > α and α′ > α. Then by (21), (P2) and (18) we have

γ ◦ p1(x) = γα′ ◦ p1(x) = h−tα′ ◦ ωα ◦ ptα′ ◦ p1(x)

= h1 ◦ h−(tα′+1) ◦ ωα ◦ p(1+tα′ )(x) = h1 ◦ h−tα ◦ ωα ◦ ptα(x) = f ◦ γα(x).

Finally assume α > α and α′ � α. Then by (20), (P3), (18) and (21)

γ ◦ p1(x) = γα′ ◦ p1(x) = htα′ ◦ ωα ◦ p−tα′ ◦ p1(x)

= h1 ◦ h(tα′−1) ◦ ωα ◦ p(1−tα′ )(x) = h1 ◦ h−tα ◦ ωα ◦ ptα(x) = f ◦ γα(x).

Similarly, using (19), we verify that γ ◦ ps(x) = g ◦ γ(x) for x ∈ cl Iα. Since p1(x) = f(x) ∈ L∗∗
f,g and

ps(x) = g(x) ∈ L∗∗
f,g for x ∈ L∗∗

f,g we infer that γ satisfies system (17). Let us note that the homeomorphic
solution of (17) depends on an arbitrary function.

Now we can define our T -iteration semigroup. Put

f t := γ ◦ pt ◦ γ−1, t ∈ Sem(f, g).

It is easy to see that {f t: t ∈ Sem(f, g)} is a T -iteration semigroup such that f1 = f and fs = g.
Let ϕ be a continuous solution of (1) and put ψ := ϕ ◦ γ−1. Since {pt: t ∈ Sem(f, g)} satisfies (15) we

have ψ ◦ f t = (ϕ ◦ γ−1) ◦ (γ ◦ pt ◦ γ−1) = ϕ ◦ pt ◦ γ−1 = ϕ ◦ γ−1 + t = ψ + t, for t ∈ Sem(f, g). Putting t = 1
and t = s(f, g) we see that ψ is a continuous solution of (1). Hence, by the uniqueness, we get ψ = ϕ + c

for a c ∈ R, so ϕ(γ−1(x)) = ϕ(x) + c. Since γ−1(x) = x for x ∈ L∗∗
f,g we get c = 0. Thus ϕ = ψ which gives

that ϕ ◦ f t = ϕ + t. Hence ind f t = t and T = Sem(f, g). �
References

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, San Francisco, London,
1966.

[2] G. Blanton, J.A. Baker, Iteration groups generated by Cn functions, Arch. Math. (Brno) 18 (3) (1982) 121–127.
[3] Hojjat Farzadfard, B. Khani Robati, Simultaneous Abel equations, Aequationes Math. 83 (3) (2012) 283–294.
[4] Hojjat Farzadfard, B. Khani Robati, The structure of disjoint groups of continuous functions, Abstr. Appl. Anal. 2012

(2012), http://dx.doi.org/10.1155/2012/790758, Article ID 790758.
[5] K. Gościcka, On commutable functions and Abel’s functional equations, Opuscula Math. 6 (1990) 59–76.
[6] D. Krassowska, M.C. Zdun, On limit sets of mixed iterates of commuting mappings, Aequationes Math. 78 (2009)

283–295.
[7] D. Krassowska, M.C. Zdun, On the embeddability of commuting continuous injections in iteration semigroups, Publ. Math.

Debrecen 75 (1–2) (2009) 179–190.
[8] M. Kuczma, Functional Equations in a Single Variable, Monogr. Math., vol. 46, PWN, Warszawa, 1968.
[9] M.C. Zdun, Note on commutable functions, Aequationes Math. 36 (1988) 153–164.

[10] M.C. Zdun, On simultaneous Abel equations, Aequationes Math. 38 (1989) 163–177.

http://refhub.elsevier.com/S0022-247X(14)00237-6/bib41s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib41s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib4242s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib667231s1
http://dx.doi.org/10.1155/2012/790758
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib47s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib4B5A61s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib4B5A61s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib4B5A70s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib4B5A70s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib4Bs1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib6D637A3838s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib6D637A3839s1


880 D. Krassowska, M.C. Zdun / J. Math. Anal. Appl. 416 (2014) 862–880
[11] M.C. Zdun, Some remarks on the iterates of commuting functions, in: European Conference on Iteration Theory, Lisboa,
Portugal, World Scientific Publ. Co., Singapore, New Jersey, London, Hongkong, 1991, pp. 363–369.

[12] M.C. Zdun, On the embeddability of commuting functions in a flow, in: Selected Topics in Functional Equations and
Iteration Theory, Proceedings of the Austrian–Polish Seminar, Graz, 1991, Grazer Math. Ber. 316 (1992) 201–212.

[13] M.C. Zdun, On set-valued iteration groups generated by commuting functions, J. Math. Anal. Appl. 398 (2013) 638–648.

http://refhub.elsevier.com/S0022-247X(14)00237-6/bib6D637A3931s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib6D637A3931s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib6D637A3932s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib6D637A3932s1
http://refhub.elsevier.com/S0022-247X(14)00237-6/bib6D637A32s1

	On one-parameter semigroups generated by commuting continuous injections
	1 Introduction
	2 Preliminaries
	3 Auxiliary results
	4 Main results
	References


