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In this paper, we consider the following one dimensional lattices consisting of
infinitely many particles with nearest neighbor interaction

q̈i(t) = Φ′
i−1

(
t, qi−1(t) − qi(t)

)
− Φ′

i

(
t, qi(t) − qi+1(t)

)
, i ∈ Z,

where Φi(t, x) = −(αi/2)|x|2 + Vi(t, x) is T -periodic in t for T > 0 and satisfies
Φi+N = Φi for some N ∈ N, qi(t) is the state of the i-th particle. Assume that
αi = 0 for some i ∈ Z and V ′

i (t, x) denoting the derivative of Vi respect to x is
asymptotically linear with x both at origin and at infinity. We would like to point
out that this system is resonant both at origin and at infinity and not studied up to
now. Based on some new results concerning the precise computations of the critical
groups, for a given m ∈ Z, we obtain the existence of nontrivial periodic solutions
satisfying qi+mN (t + T ) = qi(t) for all t ∈ R and i ∈ Z under some additional
conditions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, we consider one dimensional lattices consisting of infinitely many particles with nearest
neighbor interaction. We represent the state of the non-autonomous dynamical system at time t by a
sequence of functions q(t) = {qi(t)}, i ∈ Z, where qi(t) is the state of the i-th particle. Let Φi(t, ·) denote the
potential of the interaction between the i-th and the (i+1)-th particle (whose displacement is qi(t)−qi+1(t)),
then the equation governing the state of qi(t) reads

q̈i(t) = Φ′
i−1

(
t, qi−1(t) − qi(t)

)
− Φ′

i

(
t, qi(t) − qi+1(t)

)
, i ∈ Z, (1.1)
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where t ∈ R. Here and in the sequel Φ′
i(t, x) denotes the derivative of Φi respect to x. We define the potential

Φ : R× R∞ → R by

Φ
(
t, q(t)

)
=

+∞∑
i=−∞

Φi

(
t, qi(t) − qi+1(t)

)
, t ∈ R.

Then infinitely many equations (1.1) can be written in a vectorial form

q̈(t) = −Φ′(t, q(t)), t ∈ R. (1.2)

We first recall some historical comments on related work. After the pioneering numerical experiment of
Fermi, Pasta and Ulam [9] on finite lattices, an autonomous dynamical system with finitely or infinitely
many degrees of freedom whose dynamics is described by the equations

q̈i = Φ′
i−1(qi−1 − qi) − Φ′

i(qi − qi+1), i ∈ Z, (1.3)

has been widely studied under different kinds of potentials [19]. Let us now briefly recall the main results
obtained before. Due to the implementation of variational methods, a number of rigorous results was ob-
tained in the case of the general equations (1.3) in the 1990s. In [10,16,18], travelling waves, i.e. solutions
of the form qi(t) = u(i − ct) were studied by using a constrained minimization approach, Nehari manifold
approach and mountain pass theorem, respectively. We would like to point out the paper [17] considering
the existence of infinitely many travelling waves of multibump type for the non-autonomous case.

The existence and multiplicity of periodic motions for system (1.3) have been studied, restricting the
system to periodic potentials, that is Φi = Φi+N for some integer N . In [2] a nontrivial solution is obtained
as a mountain pass point for the corresponding Lagrangian functional, under the assumption that Φi(x) :=
−αix

2+Vi(x), satisfying αi > 0 and Vi(x) � 0 for all i ∈ Z, is quadratically repulsive for small displacements
and superquadratically attractive for large displacements; note that αi > 0 implies the minimum of the
spectrum of the quadratic part of the Lagrangian functional is strictly positive. In [1], Arioli and Gazzola
extended the result to the purely attractive potentials (αi = 0 for all i ∈ Z) which are strictly superquadratic
at both the origin and the infinity; in this case the minimum of the spectrum is 0. In [4] the existence
of infinitely many periodic non-constant solutions of multibump type has been proved, with the same
assumptions taken in [2]. In [3], a nonzero periodic solutions of finite energy has been obtain with to the
potentials quadratically attractive and the coefficients αi take both signs.

We assume that the potentials Φi are given by

Φi(t, x) = −αi

2 |x|2 + Vi(t, x),

where Vi(t, x) is C2 in x and T -periodic in t for some T > 0. Similar to [3] (also [1]), if αi = 0 for some i, it
is easy to check that 0 lies in the spectrum of the quadratic part of the Lagrangian functional corresponding
to system (1.2) (see Remark 2.1 below for more details). Thus a nature question is whether system (1.2) has
nonzero periodic solutions when V ′

i (t, x) is asymptotically linear respect to x both at origin and at infinity;
in other words, this problem is resonant both at origin and at infinity. To the best of our knowledge, resonant
type asymptotically linear lattice dynamical systems have not been studied up to now. Furthermore αi = 0
for some i is “necessary” if one wants to study resonant type problem (1.2) in some sense, since the properties
of the spectrum except 0 are not very clear. In this paper, we give a positive answer to this question. It is
worth mentioning that the autonomous case can be treated similarly.

Before we state our main results, we give some assumptions on the potentials Φi.

(Φ) There exists N ∈ N such that Φi+N = Φi;
(Φ0) There exists constant β ∈ [1,+∞) such that lim|x|→0

|V ′
i (t,x)|

β = 0 uniformly for t ∈ [0, T ];
|x|
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(Φ0
±) For every i, there exists function h0

i ∈ C([0, T ],R) satisfying
∫ T

0 h0
i (t) dt < 0, such that

lim sup|x|→0 ±
V ′
i (t,x)x
|x|2β � h0

i (t) � 0 uniformly for t ∈ [0, T ];

(Φ∞) There exists constant α ∈ (0, 1] such that lim|x|→∞
|V ′

i (t,x)|
|x|α = 0 uniformly for t ∈ [0, T ];

(Φ∞
± ) For every i, there exists function h∞

i ∈ C([0, T ],R) satisfying
∫ T

0 h∞
i (t) dt < 0, such that

lim sup|x|→∞ ±V ′
i (t,x)x
|x|2α � h∞

i (t) � 0 uniformly for t ∈ [0, T ].

We shall prove the following theorem.

Theorem 1.1. Assume that (Φ), (Φ0), (Φ∞) and αi = 0 for some i. If one of the following conditions holds:

(a) (Φ0
+) and (Φ∞

− );
(b) (Φ0

−) and (Φ∞
+ ),

then for any positive integer m, system (1.2) admits a nontrivial T -periodic solution q∗ satisfying

q∗i+mN (t + T ) = q∗i (t) for all t ∈ R and i ∈ Z.

Moreover, if the nullity of q∗|[−n,n−1] (in the sense, q∗|[−n,n−1] ∈ H, see Section 2 for H) is ν∗ with ν∗ � ν

(see Section 2 for the definition of ν), where 2n = mN , then system (1.2) has another nontrivial T -periodic
solution q �= q∗.

Remark 1.1. Here we give an example to illustrate our main result. Let ρ(t) ∈ C1(R,R) satisfy ρ(t) � 0,
ρ(t) �≡ 0 and ρ(t) = ρ(t + T ) for any t ∈ R. Consider

V ′
i (t, x) =

⎧⎪⎨
⎪⎩

x2β−1ρ(t), for |x| < 1,

−x2α−1ρ(t)(2 + sin 2πt
T ), for |x| > M � 2,

smooth, for 1 � |x| � M,

where α ∈ (0, 1) and β > 1. Then

lim
|x|→0

|V ′
i (t, x)|
|x|β = 0 = lim

|x|→∞

|V ′
i (t, x)|
|x|α , uniformly for t ∈ [0, T ],

and

lim
|x|→0

V ′
i (t, x)x
|x|2β = ρ(t), lim sup

|x|→∞

V ′
i (t, x)x
|x|2α = −ρ(t), uniformly for t ∈ [0, T ].

Hence the corresponding system has at least one nontrivial solution by Theorem 1.1 (b) with h0
i (t) =

h∞
i (t) = ρ(t). Case (a) can be treated similarly.

Corollary 1. The conclusion in Theorem 1.1 holds true if (Φ0), (Φ∞), (Φ0
±) and (Φ∞

± ) are replaced respectively
by the following corresponding conditions:

(AΦ0) There exist β ∈ (1,+∞) and Mβ > 0 such that lim|x|→0
|V ′

i (t,x)|
|x|β � Mβ uniformly for t ∈ [0, T ];

(CΦ0
±) For every i, there exist ξ ∈ [1 + β, 2β) and function h0

i ∈ C([0, T ],R) satisfying
∫ T

0 h0
i (t) dt < 0,

such that lim sup|x|→0 ±
V ′
i (t,x)x
|x|ξ � h0

i (t) � 0 uniformly for t ∈ [0, T ];

(AΦ∞) There exist α ∈ (0, 1) and Mα > 0 such that lim|x|→∞
|V ′

i (t,x)|
α � Mα uniformly for t ∈ [0, T ];
|x|
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(CΦ∞
± ) For every i, there exist η ∈ (2α, 1 + α] and function h∞

i ∈ C([0, T ],R) satisfying
∫ T

0 h∞
i (t) dt < 0,

such that lim sup|x|→∞ ±V ′
i (t,x)x
|x|η � h∞

i (t) � 0 uniformly for t ∈ [0, T ].

Remark 1.2. We point out that the above corollary is a consequence of Theorem 1.1. Indeed, we set α′ = η/2
and β′ = ξ/2, then α′ > α, β′ < β and it is easy to check that all the conditions of Theorem 1.1 hold true
with α and β replaced by α′ and β′, respectively.

Moreover, we can obtain the following result.

Theorem 1.2. The conclusion of Theorem 1.1 remains valid if the assumptions (Φ0), (Φ∞), (Φ0
±) and (Φ∞

± )
are replaced by (AΦ0), (AΦ∞) and the following corresponding conditions, respectively.

(AΦ0
±) For every i, lim sup|x|→0 ±

V ′
i (t,x)x
|x|2β � Mβ uniformly for t ∈ [0, T ], and lim|x|→0 ±V ′

i (t,x)x
|x|2β = −∞ on

some positive measure subset E±
β ⊂ [0, T ];

(AΦ∞
± ) For every i, lim sup|x|→∞ ±V ′

i (t,x)x
|x|2α � Mα uniformly for t ∈ [0, T ], and lim|x|→∞ ±V ′

i (t,x)x
|x|2α = −∞

on some positive measure subset E±
α ⊂ [0, T ].

This paper is organized as follows. In Section 2, we study the variational structure of system (1.2) and
recall some abstract results concerning the precise computations of the critical groups. In Section 3, we
compute the critical groups of the functional corresponding to (1.2) at origin and at infinity. We prove our
main results in Section 4.

2. Variational setting and preliminary lemmas

We look for solution q of (1.2) satisfying qi+mN (t + T ) = qi(t) for all t ∈ R and i ∈ Z. To this end, we
reduce the non-autonomous dynamical system with infinitely many degrees of freedom to the finite system,
whose motion is described by

q̈i(t) = Φ′
i−1

(
t, qi−1(t) − qi(t)

)
− Φ′

i

(
t, qi(t) − qi+1(t)

)
, t ∈ [0, T ], (2.1)

where i ∈ {−n, . . . , n − 1}. Here, without loss of generality, we set 2n := mN . Obviously, any solution of
the finite system is periodic, that is q−n = qn. We can also define the potential Ψ : R× R2n → R by

Ψ
(
t, q(t)

)
=

n−1∑
i=−n

Φi

(
t, qi(t) − qi+1(t)

)
, t ∈ [0, T ].

Then finitely many equations (2.1) can be written in a vectorial form

q̈(t) = −Ψ ′(t, q(t)), t ∈ [0, T ]. (2.2)

In order to obtain the periodic motions of the finite system, we consider the following space

H =
{
q ∈ H1(S1,R

)2n:
T∫
q0(t) dt = 0

}
,

0
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which is a Hilbert space when endowed with the scalar product

(q, p) :=
n−1∑
i=−n

T∫
0

[
q̇i(t)ṗi(t) +

(
qi(t) − qi+1(t)

)(
pi(t) − pi+1(t)

)]
dt. (2.3)

Note that qn = q−n. We need to set
∫ T

0 q0(t) dt = 0 in the definition of H in order to have (2.3) defining
a scalar product; this causes no loss of generality as the following observation: if q = {qi} is a solution of
the system (2.2), then so is q̂ = {qi + σ} for any constant σ. Here H1(S1,R) is the usual Hilbert space
equipped with the norm ‖qi‖H1 = (

∫ T

0 |q̇i(t)|2 + |qi(t)|2)1/2. We denote by ‖ · ‖ the norm induced by (2.3)
and Lp

n := Lp(S1,R)2n with 1 � p � +∞. It is easy to see that H is compactly embedded in Lp
n with

1 � p � +∞. We define a self-adjoint linear operator L : H → H by

(Lq, p) =
n−1∑
i=−n

T∫
0

[
q̇i(t)ṗi(t) + αi

(
qi(t) − qi+1(t)

)(
pi(t) − pi+1(t)

)]
dt

and a functional ψ : H → R by

ψ(q) =
n−1∑
i=−n

T∫
0

Vi

(
t, qi(t) − qi+1(t)

)
dt.

It is easy to check that the functional ϕ : H → R defined by

ϕ(q) = 1
2(Lq, q) − ψ(q) (2.4)

is C2 on H. By a standard procedure one shows that critical points of ϕ are periodic motions of the periodic
lattice.

Before we state our main result, we firstly study the spectrum of the linear operator L (we denote it
by σ(L)). We split the space H into H = H− ⊕ H0 ⊕ H+, where H−, H0 and H+ denote the negative,
the kernel and the positive subspaces of L, respectively. Note that the negative subspace H− is empty if
αi � 0 for all i. If there exists αj < 0 for some integer j, let 
 := −mini∈Z{αi} > 0; otherwise we set 
 := 0.
The following lemma, which is a slight modification of Lemma 6.1 in [3], describes some properties of the
spectrum.

Lemma 2.1. If 0 < T < π/
√

, then there exists λ > 0, such that (Lq, q) � −λ‖q‖2 for all q ∈ H− and

(Lq, q) � λ‖q‖2 for all q ∈ H+. Furthermore dimH0 = �{αi: αi = 0} − 1 and dimH− = �{αi: αi < 0}.

Remark 2.1. The kernel H0 is never empty if we assume that αi = 0 for some integer i. In fact, without loss
of generality, we assume αi = 0 for some integer i � 0, and we define the nonzero vector q ∈ H by qk = 0
if k � i; and qk = 2 if k > i. Then it is easy to check that Lq = 0 which implies q ∈ H0 and 0 ∈ σ(L). In
the following, we set ν = dimH0 and μ = dimH−, then by Lemma 2.1, ν is positive and finite; μ � 0 is
finite. As a T/l (l ∈ N) periodic solution is T periodic as well, we only consider the existence of T -periodic
solution of system (2.2) for T < π/

√

.

Now we recall some new results concerning the precise computations of the critical groups [12]. Let H

be a real Hilbert space and I ∈ C1(H,R). Denote K = {u ∈ H | I ′(u) = 0} and Ic := {u ∈ H | I(u) � c}.
Suppose u0 is an isolated critical point of I with I(u0) = c, then the critical groups of I at u0 are defined as
Ck(I, u0) := Hk(Ic, Ic \ {u0}, G), k ∈ Z, where H∗(−, G) denotes the singular homology with coefficients in
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a field G. Moreover, if u0 is nondegenerate with Morse index μ0, then from the Morse lemma (see [8,15]),
Ck(I, u0) ∼= δk,μ0G = G if k = μ0, or = 0, if k �= μ0. To compute the critical groups at a degenerate critical
point, we have the following result (see Gromoll and Meyer [11]).

Proposition 2.1. Suppose

(A0) I has an isolated critical point u0 and is of class C2 near u0. In addition, 0 is isolated in the spectrum
of A0 := I ′′(u0) and ν0 := dim kerA0 < ∞,

holds, then Ck(I, u0) ∼= 0 for k /∈ [μ0, μ0 + ν0], where μ0 is the Morse index of u0. If ν0 = 0 and μ0 < ∞,
then Ck(I, u0) ∼= δk,μ0G, k ∈ Z.

Assume (A0) holds. Set V0 = kerA0 and W0 = (V0)⊥ and split W0 = W+
0 ⊕W−

0 such that these subspaces
are invariant under A0, A0|W+

0
is positive definite and A0|W−

0
is negative definite. The following proposition

plays an important role in the computations of Ck(ϕ, 0) (see (2.4) for ϕ).

Proposition 2.2. (See [12, Theorem 2.1].) Let I satisfy (A0) and V0 = V10 ⊕ V20. If for some β � 1,
‖I ′(u0 +u)−A0u‖ = o(‖u‖β) as ‖u‖ → 0, and there exist η > 0, � < 1 and θ ∈ (0, 1) such that 〈I ′(u0 +u),
v1 − v2〉 + �‖I ′(u0 + u)‖ · ‖v‖ � 0, for any u = v + w ∈ H = V10 ⊕ V20 ⊕W+

0 ⊕W−
0 , where v = v1 + v2,

v1 ∈ V10, v2 ∈ V20, w ∈ W+
0 ⊕W−

0 , ‖u‖ � η and ‖w‖ � θ‖u‖β, then Ck(I, u0) ∼= δk,μ0+dim V20G for k ∈ Z,
where μ0 = dimW−

0 .

Recall that I satisfies (C)c condition if any sequence {uj} ⊂ H with I(uj) → c and (1+‖uj‖)‖I ′(uj)‖ → 0
as j → ∞ have a convergent subsequence [7]. Suppose that I(K) is bounded from below by a ∈ R and
I satisfies the compactness condition (C)c for all c � a, then denote Ck(I,∞) := Hk(H, Ia), k ∈ Z the k-th
critical groups of I at infinity [6]. To state the abstract result about the computations of the critical groups
at infinity, we need the following assumption.

(A∞) I(u) = 1
2 〈A∞u, u〉+ J(u), where A∞ : H → H is a self-adjoint linear operator such that 0 is isolated

in the spectrum of A∞. The map J ∈ C1(H,R) is of class C2 in a neighborhood of infinity and
satisfies ‖J ′(u)‖/‖u‖ → 0 as ‖u‖ → ∞. Moreover, J and J ′ map bounded sets to bounded sets.
Finally, the critical values of I are bounded from below and I satisfies (C)c for c � 0.

Denote V := kerA∞ and W := V ⊥ with W = W+ ⊕W− where W± is invariant under A∞ and A∞|W+

is positive definite, A∞|W− is negative definite. Let μ∞ := dimW− be the Morse index of I at infinity
and ν∞ := dimV the nullity of I at infinity. The following proposition will play an important part in the
computations of Ck(ϕ,∞).

Proposition 2.3. (See [12, Theorem 2.4].) Suppose that (A∞) holds. If ‖J ′(u)‖ = o(‖u‖α) as ‖u‖ → ∞, for
some α ∈ (0, 1], then:

(a) Ck(I,∞) ∼= δk,μ∞G, k ∈ Z, if there exist R > 0 and θ ∈ (0, 1) such that 〈I ′(u), v〉 � 0 for any
u = v+w ∈ C∞(R, θ, α) with v ∈ V , w ∈ W , and 〈u, J ′(u)〉 � 0 for any u ∈ C∞(R, θ, α+1

2 )\C∞(R, θ, α),
where for R > 0, ϑ > 0 and ρ > 0, C∞(R, ϑ, ρ) := {u ∈ H | u = v+w ∈ V ⊕W, v ∈ V, w ∈ W, ‖u‖ � R,

‖w‖ � ϑ‖u‖ρ}.
(b) Ck(I,∞) ∼= δk,μ∞+ν∞G, k ∈ Z, if there exist R > 0 and θ ∈ (0, 1) such that 〈I ′(u), v〉 � 0 for any

u = v+w ∈ C∞(R, θ, α) with v ∈ V , w ∈ W , and 〈u, J ′(u)〉 � 0 for any u ∈ C∞(R, θ, α+1
2 )\C∞(R, θ, α).
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Suppose that K is finite and all critical points have finite Morse index and finite nullity. Let βk(I, u) :=
dimCk(I, u) for u ∈ K ∪{∞} be the Betti numbers of I at u ∈ K respectively at infinity. If I satisfies (C)c
condition for all c ∈ R, then we have the following Morse inequalities (see [6] or [15]).

Proposition 2.4. Let P (I, u) :=
∑∞

k=0 βk(I, u)tk be the Morse polynomial for I at u ∈ K ∪ {∞}. Then there
exists a polynomial Q(t) with nonnegative integer coefficients such that

P (I,∞) + (1 + t)Q(t) =
∑
u∈K

P (I, u).

3. The computations of the critical groups

In this section, we will prove that the functional ϕ satisfies (C)c condition for every c ∈ R and compute
precisely the critical groups of ϕ at origin and at infinity. Throughout this section, we denote di := qi− qi+1
for q ∈ H. In the sequel, for simplicity, “if (Φi

±) then ±A” means (Φi
+) ((Φi

−) resp.) implies +A (−A resp.).

Lemma 3.1. Assume (Φ) and (Φ0
±). Let H0 := {q ∈ H: ‖q+ + q−‖ = o(‖q‖) as ‖q‖ → 0}, then

lim sup
q∈H0, ‖q‖→0

±
n−1∑
i=−n

T∫
0

V ′
i (t, di(t))di(t)

‖q‖2β dt < 0.

Proof. The proof is standard (see [12,13]). For the convenience of the reader, we sketch the proof here
briefly. We only consider the case that (Φ0

+) holds. The other case can be treated similarly. Note that

n−1∑
i=−n

‖di‖2
2 � ‖q‖2, and sup

−n�i�n−1
‖di‖∞ � ‖q‖. (3.1)

For any small ε > 0, by using an argument as used in the proof of Lemma 3.2 in [5] and (Φ), it is not hard
to show that there exist small γ(ε) ∈ (0, 1) and large Γ (ε) > 1, such that for all q0 ∈ H0 \ {0},

sup
−n�i�n−1

meas
{
t ∈ [0, T ]

∣∣ ∣∣d0
i (t)

∣∣ < γ(ε)
∥∥q0∥∥} < ε,

and for all q+ + q− ∈ H+ + H−,

sup
−n�i�n−1

meas
{
t ∈ [0, T ]

∣∣ ∣∣d+
i (t) + d−i (t)

∣∣ > Γ (ε)
∥∥q+ + q−

∥∥} < γ2β(ε)ε � ε.

Set Ei
1(q, ε) = {t ∈ [0, T ] | |d0

i (t)| � γ(ε)‖q0‖}, and Ei
2(q, ε) = {t ∈ [0, T ] | |d+

i (t)+d−i (t)| � Γ (ε)‖q+ +q−‖}.
Obviously,

meas
(
[0, T ] \ Ei

1(q, ε)
)
< ε, and meas

(
[0, T ] \ Ei

2(q, ε)
)
< γ2β(ε)ε � ε, (3.2)

uniformly for i ∈ {−n, . . . , n− 1}. Then, for all q ∈ H, one has

meas
(
[0, T ]

)
� meas

(
Ei

1(q, ε)
)
− meas

(
[0, T ] \ Ei

2(q, ε)
)

� T − 2ε.

For any q ∈ H0 and any t ∈ Ei
1(q, ε) ∩ Ei

2(q, ε), we have

|di(t)| � |d0
i (t)| − |d+

i (t) + d−i (t)| � γ(ε)‖q
0‖ − Γ (ε)‖q

+ + q−‖ → γ(ε), (3.3)
‖q‖ ‖q‖n ‖q‖ ‖q‖ ‖q‖
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as ‖q‖ → 0. For any q ∈ H0 and t ∈ Ei
2(q, ε) \ Ei

1(q, ε), we have

|di(t)|
‖q‖ � γ(ε)‖q

0‖
‖q‖ + Γ (ε)‖q

+ + q−‖
‖q‖ → γ(ε), as ‖q‖ → 0. (3.4)

By virtue of (Φ) and (Φ0
+), there exists small η1 > 0 such that for i ∈ {−n, . . . , n− 1}

V ′
i (t, x)x
|x|2β � h0

i (t) + γ2β(ε)ε, uniformly for t ∈ [0, T ] and |x| � η1. (3.5)

It follows from (3.1) and (3.3) that for q ∈ Hn with ‖q‖n small enough, Ei
1(q, ε) ∩ Ei

2(q, ε) ⊂ Ei
3(q) :=

{t ∈ [0, T ] | |di(t)| � η1}, and |di(t)|/‖q‖ � γ(ε)/2 for all t ∈ E1(q, ε) ∩ Ei
2(q, ε) and all i. Hence, it follows

from (3.1), (3.5) and the fact that h0
i (t) � 0 that

n−1∑
i=−n

∫
Ei

1(q,ε)∩Ei
2(q,ε)

V ′
i (t, di(t))di(t)

‖q‖2β dt � c(n)γ2β(ε)ε + γ2β(ε)
4β

n−1∑
i=−n

∫
Ei

1(q,ε)∩Ei
2(q,ε)

h0
i (t) dt, (3.6)

here and in what follows, c(n) denotes a positive constant depending on n. Again, by (Φ) and (Φ0
+), we can

find a large number η′ > 0 such that for every i ∈ {−n, . . . , n− 1}

V ′
i (t, x)x � |x|2β , uniformly for t ∈ [0, T ] and |x| � η′. (3.7)

Set Ei
4(q) = {t ∈ [0, T ] | |di(t)| � η′}, then for q ∈ H0 with ‖q‖ small enough, Ei

4(q) = [0, T ] for all i and
hence, by (3.2), (3.4) and (3.7), it follows that

n−1∑
i=−n

∫
Ei

2(q,ε)\Ei
1(q,ε)

V ′
i (t, di(t))di(t)

‖q‖2β dt �
n−1∑
i=−n

∫
Ei

2(q,ε)\Ei
1(q,ε)

|di(t)|2β
‖q‖2β dt � cγ2β(ε)ε, (3.8)

and

n−1∑
i=−n

∫
[0,T ]\Ei

2(q,ε)

V ′
i (t, di(t))di(t)

‖q‖2β dt �
n−1∑
i=−n

∫
[0,T ]\Ei

2(q,ε)

|di(t)|2β
‖q‖2β dt � c(n)γ2β(ε)ε. (3.9)

Therefore, for any q ∈ H0 with ‖q‖ sufficiently small, it follows from (3.6), (3.8) and (3.9) that

n−1∑
i=−n

T∫
0

V ′
i (t, di(t))di(t)

‖q‖2β dt � c(n)γ2β(ε)ε + γ2β(ε)
4β

n−1∑
i=−n

∫
Ei

1(q,ε)∩Ei
2(q,ε)

h0
i (t) dt,

which together with the fact that limε→0
∫
Ei

1(q,ε)∩Ei
2(q,ε)

h0
i (t) dt =

∫ T

0 h0
i (t) dt < 0 yields

lim sup
q∈H0, ‖q‖→0

n−1∑
i=−n

T∫
0

V ′
i (t, di(t))di(t)

‖q‖2β dt < 0,

ending the proof. �
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Lemma 3.2. Assume (Φ) and (Φ∞
± ). Let H∞ := {q ∈ H: ‖q+ + q−‖ = o(‖q‖) as ‖q‖ → ∞}, then

lim sup
q∈H∞, ‖q‖→∞

±
n−1∑
i=−n

T∫
0

V ′
i (t, di(t))di(t)

‖q‖2α dt < 0.

Proof. We only consider the case that (Φ∞
+ ) holds. The other case can be treated similarly. As in the proof

of Lemma 3.1, using the same notation, one obtains

meas
(
[0, T ] \ Ei

1(q, ε)
)
< ε, and meas

(
[0, T ] \ Ei

2(q, ε)
)
< γ2α(ε)ε, (3.10)

and for any q ∈ H∞, t ∈ Ei
1(q, ε) ∩Ei

2(q, ε),

|di(t)|
‖q‖ � γ(ε)‖q

0‖
‖q‖ − Γ (ε)‖q

+ + q−‖
‖q‖ → γ(ε), as ‖q‖ → ∞. (3.11)

Also for any q ∈ H∞ and t ∈ Ei
2(q, ε) \ Ei

1(q, ε), we can show that

|di(t)|
‖q‖ � γ(ε)‖q

0‖
‖q‖ + Γ (ε)‖q

+ + q−‖
‖q‖ → γ(ε), as ‖q‖ → ∞. (3.12)

It follows from (Φ) and (Φ∞
+ ) that, there exists small R1 > 0 such that for every i ∈ {−n, . . . , n− 1}

V ′
i (t, x)x
|x|2α � h∞

i (t) + γ2α(ε)ε, uniformly for t ∈ [0, T ] and |x| � R1. (3.13)

It follows from (3.11) that for q ∈ H∞ with ‖q‖ large enough, Ei
1(q, ε) ∩ Ei

2(q, ε) ⊂ Ei
5(q) := {t ∈ [0, T ] |

|di(t)| � R1}, and |di(t)|/‖q‖ � γ(ε)/2 for all t ∈ Ei
1(q, ε) ∩ Ei

2(q, ε) and all i. Then, it follows from (3.1),
(3.13) and the fact that h∞

i (t) � 0 that

n−1∑
i=−n

∫
Ei

1(q,ε)∩Ei
2(q,ε)

V ′
i (t, di(t))di(t)

‖q‖2α � c(n)γ2α(ε)ε + γ2α(ε)
4α

n−1∑
i=−n

∫
Ei

1(q,ε)∩Ei
2(q,ε)

h∞
i (t) dt. (3.14)

Again, by (Φ) and (Φ∞
+ ), we can find a large number R′ > 0 such that V ′

i (t, x)x � |x|2α, uniformly
for every i ∈ {−n, . . . , n − 1}, t ∈ [0, T ] and |x| � R′. Set Ei

6(q) = {t ∈ [0, T ] | |di(t)| � R′} and
C = max−n�i�n−1{|V ′

i (t, x)x: t ∈ [0, T ], |x| � R′}. It follows (3.10) and (3.12) that

n−1∑
i=−n

∫
Ei

2(q,ε)\Ei
1(q,ε)

V ′
i (t, di(t))di(t)

‖q‖2α dt

�
n−1∑
i=−n

∫
(Ei

2(q,ε)\Ei
1(q,ε))∩Ei

6(q)

|di(t)|2α
‖q‖2α dt +

n−1∑
i=−n

∫
(Ei

2(q,ε)\Ei
1(q,ε))\Ei

6(q)

C

‖q‖2α dt � c(n)γ2α(ε)ε,

and

n−1∑
i=−n

∫
[0,T ]\Ei

2(q,ε)

V ′
i (t, di(t))di(t)

‖q‖2α dt

�
n−1∑
i=−n

∫
i i

|di(t)|2α
‖q‖2α dt +

n−1∑
i=−n

∫
i i

C

‖q‖2α dt � c(n)γ2α(ε)ε,

([0,T ]\E2(q,ε))∩E6(q) ([0,T ]\E2(q,ε))\E6(q)
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which, jointly with (3.14), imply that, for any q ∈ H∞ with ‖q‖ sufficiently large,

n−1∑
i=−n

T∫
0

V ′
i (t, di(t))di(t)

‖q‖2α dt � c(n)γ2α(ε)ε + γ2α(ε)
4α

n−1∑
i=−n

∫
Ei

1(q,ε)∩Ei
2(q,ε)

h∞
i (t) dt.

Noting that limε→0
∫
Ei

1(q,ε)∩Ei
2(q,ε)

h∞
i (t) dt =

∫ T

0 h∞
i (t) dt < 0, the last inequality and the arbitrariness of ε

yield that

lim sup
q∈H∞, ‖q‖→∞

n−1∑
i=−n

T∫
0

V ′
i (t, di(t))di(t)

‖q‖2α dt < 0.

The proof is complete. �
Lemma 3.3. Assume (Φ), (Φ0) and (Φ0

−). Then Ck(ϕ, 0) ∼= δk,μ+νG, k ∈ Z.

Proof. For any ε > 0, it follows from (Φ), (Φ0), (3.1) and Hölder inequality that for ‖q‖ sufficiently small,

∣∣(ϕ′(q) − Lq, p
)∣∣ �

n−1∑
i=−n

T∫
0

ε
∣∣di(t)∣∣β∣∣pi(t) − pi+1(t)

∣∣ dt � ε‖q‖β‖p‖

for any p ∈ H, hence ‖ϕ′(q) − Lq‖ = o(‖q‖β) as ‖q‖ → 0. By virtue of Proposition 2.2, it suffices to show
that there exist η > 0 and θ ∈ (0, 1) such that (ϕ′(q), q0) � 0, for all q ∈ C0(η, θ, β) := {q ∈ H | ‖q‖ � η,

‖q+ + q−‖ � θ‖q‖β}. Arguing indirectly, assume by contradiction that for any η = θ = 1/m, there exists
qm ∈ H such that ‖qm‖ � 1/m and ‖q+

m + q−m‖ � 1
m‖qm‖β , but (ϕ′(qm), q0

m) > 0. Clearly, ‖qm‖ → 0,
‖q+

m + q−m‖/‖qm‖β → 0, and (ϕ′(qm), q0
m) = −

∑n−1
i=−n

∫ T

0 V ′
i (t, dm,i(t))d0

m,i(t) dt > 0, which implies

lim sup
m→∞

n−1∑
i=−n

T∫
0

V ′
i (t, dm,i(t))d0

m,i(t)
‖qm‖2β � 0, (3.15)

where dm,i := qm,i − qm,i+1. On the other hand, for any ε > 0, by (Φ), (Φ0) and (3.1), for ‖qm‖ small
enough, we have

∣∣∣∣∣
n−1∑
i=−n

T∫
0

V ′
i (t, dm,i(t))(d+

m,i(t) + d−m,i(t))
‖qm‖2β dt

∣∣∣∣∣ �
n−1∑
i=−n

T∫
0

ε|dm,i|β |d+
m,i + d−m,i|

‖qm‖2β � ε
‖q+

m + q−m‖
‖qm‖β → 0.

Therefore, by Lemma 3.2, we get

lim inf
m→∞

n−1∑
i=−n

T∫
0

V ′
i (t, dm,i(t))d0

m,i(t)
‖qm‖2β dt = lim inf

m→∞

n−1∑
i=−n

T∫
0

V ′
i (t, dm,i(t))dm,i(t)

‖qm‖2β dt > 0,

which contradicts with (3.15). Therefore, applying Proposition 2.2, we conclude that Ck(ϕ, 0) ∼= δk,μ+νG,
k ∈ Z. �
Lemma 3.4. Assume (Φ), (Φ0) and (Φ0

+). Then Ck(ϕ, 0) ∼= δk,μG, k ∈ Z.
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Proof. Since the proof is similar to that of Lemma 3.3, we omit the details. �
Now we are in a position to show the computations of the critical groups at infinity. The following lemma

plays an important part in proving the compactness conditions.

Lemma 3.5. Assume (Φ), (Φ∞) and (Φ∞
± ). Then there exist R > 0, δ > 0 and θ ∈ (0, 1) such that

±
(
ϕ′(q), q0) � δ,

for all q ∈ C∞(R, θ, α) := {q ∈ H | ‖q‖ � R, ‖q+ + q−‖ � θ‖q‖α}.

Proof. We assume that (Φ∞
+ ) holds. The other case can be treated similarly.

Suppose for the contrary that, for all m > 0 and δ = θ = 1/m, there exists qm ∈ H with ‖qm‖ � m and
‖q+

m + q−m‖ � θ‖qm‖α, but (ϕ′(qm), q0
m) < 1/m. It then follows that ‖qm‖ → ∞, ‖q+

m + q−m‖/‖qm‖α → 0, and
(ϕ′(qm), q0

m) = −
∑n−1

i=−n

∫ T

0 V ′
i (t, dm,i(t))d0

m,i(t) dt < 1
m , which implies

lim inf
m→∞

n−1∑
i=−n

T∫
0

V ′
i (t, dm,i(t))d0

m,i(t)
‖qm‖2α dt � 0, (3.16)

where dm,i := qm,i − qm,i+1. On the other hand, by (Φ) and (Φ∞), for any ε > 0, there exists a positive
constant D := D(ε) such that |V ′

i (t, x)| � ε|x|α +D for all x ∈ R, t ∈ [0, T ] and i ∈ {−n, . . . , n− 1}. Then,
we have

∣∣∣∣∣
n−1∑
i=−n

T∫
0

V ′
i (t, dm,i(t))(d+

m,i(t) + d−m,i(t))
‖qm‖2α dt

∣∣∣∣∣ �
n−1∑
i=−n

T∫
0

(ε|dm,i|α + D)|d+
m,i + d−m,i|

‖qm‖2α

� c(n)ε‖q
+
m + q−m‖
‖qm‖α + c(n)‖q

+
m + q−m‖
‖qm‖2α → 0.

Noting that ‖q+
m + q−m‖ = o(‖qm‖) as m → ∞, by Lemma 3.3, we get

lim sup
m→∞

n−1∑
i=−n

T∫
0

V ′
i (t, dm,i(t))d0

m,i(t)
‖qm‖2α dt = lim sup

m→∞

n−1∑
i=−n

T∫
0

V ′
i (t, dm,i(t))dm,i(t)

‖qm‖2α dt < 0,

which contradicts with (3.16). The lemma is proved. �
Lemma 3.6. Assume (Φ), (Φ∞) and either (Φ∞

+ ) or (Φ∞
− ) hold. Then ϕ satisfies the compactness condi-

tion (C)c for all c ∈ R.

Proof. We assume that (Φ∞
+ ) holds. The other case can be treated similarly.

Let {qm} ⊂ H be such that ϕ(qm) → c and ‖ϕ′(qm)‖(1 + ‖qm‖) → 0 as m → ∞. Firstly we show that
{qm} is bounded. Suppose for the contrary that ‖qm‖ → ∞ as m → ∞. Since there exists a positive constant
c0 > 0 such that ±(Lq±, q±) � c0‖q±‖2, for all q± ∈ H±, then for any ε > 0, by (Φ∞), we get

c0
∥∥q+

m

∥∥2 �
(
ϕ′(qm), q+

m

)
+

n−1∑
i=−n

T∫
0

V ′
i

(
t, dm,i(t)

)
d+
m,i(t) dt

� ε
∥∥q+

m

∥∥ +
n−1∑
i=−n

T∫ (
ε
∣∣dm,i(t)

∣∣α + D
)∣∣d+

m,i(t)
∣∣ dt � c(n)

∥∥q+
m

∥∥ + ε‖qm‖α
∥∥q+

m

∥∥,

0
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which implies limm→∞ ‖q+
m‖/‖qm‖α = 0. Similarly, we have limm→∞ ‖q−m‖/‖qm‖α = 0. Therefore, we get

limm→∞
‖q+

m+q−m‖
‖qm‖α = 0. Therefore, noting that ‖qm‖ → ∞ as m → ∞, it follows from Lemma 3.5 that there

exist R > 0, δ > 0 and θ ∈ (0, 1) such that qm ∈ C∞(R, θ, α) for m large enough and (ϕ′(qm), q0
m) � δ,

which contradicts to the fact that |(ϕ′(qm), q0
m)| � ‖ϕ′(qm)‖ · (1 + ‖qm‖) → 0 as m → ∞. Thus {qm} is

bounded.
By the boundedness of {qm} and the compact embedding H ↪→ L∞

n we infer that there exists q ∈ H such
that, up to a subsequence, qm ⇀ q in H and qm → q in L∞

n . Then it follows from (ϕ′(qm)−ϕ′(q), qm−q) → 0
that q̇m → q̇ in L2

n which implies qm → q in H. The proof is complete. �
Lemma 3.7. Assume (Φ) and (Φ∞). Then

Ck(ϕ,∞) ∼=
{
δk,μG, k ∈ Z, if (Φ∞

+ ) holds,

δk,μ+νG, k ∈ Z, if (Φ∞
− ) holds.

Proof. We assume (Φ∞
+ ) holds. The other case can be treated similarly.

Recall that for any ε > 0, there exists a positive constant D > 0 such that |V ′(t, x)| � ε|x|α + D for all
t ∈ [0, T ], x ∈ R and i ∈ {−n, . . . , n− 1}, then

∣∣(ψ′(q), p
)∣∣ =

∣∣∣∣∣
n−1∑
i=−n

T∫
0

V ′
i

(
t, qi(t) − qi+1(t)

)(
pi(t) − pi+1(t)

)
dt

∣∣∣∣∣ � c(n)
(
ε‖q‖α + 1

)
‖p‖,

for any q, p ∈ H, and hence ‖ψ′(q)‖ = o(‖q‖α) as ‖q‖ → ∞. By Lemma 3.5, there exist R > 0, δ > 0 and
θ ∈ (0, 1) such that if q ∈ H satisfies ‖q‖ � R and ‖q+ + q−‖ � θ‖q‖α, there holds (ϕ′(q), q0) � δ > 0.

If α ∈ (0, 1), q ∈ H satisfies ‖q‖ � R and θ‖q‖α < ‖q+ + q−‖ � θ‖q‖α+1
2 , then ‖q+ + q−‖ = o(‖q‖), as

‖q‖ → ∞. Therefore, by Lemma 3.2, there exists R1 � R such that

(
ψ′(q), q

)
= −

n−1∑
i=−n

T∫
0

V ′
i

(
t, qi(t) − qi+1(t)

)(
qi(t) − qi+1(t)

)
dt > 0,

for q ∈ C∞(R1, θ,
α+1

2 ) \ C∞(R1, θ, α). By Lemma 3.6, the functional ϕ satisfies the compactness condi-
tion (C)c for all c ∈ R. It is also easy to check that other conditions of (A∞) in Section 2 are satisfied. So
by virtue of Proposition 2.3, we conclude that Ck(ϕ,∞) ∼= δk,μG, k ∈ Z. The proof is complete. �
4. Proofs of main results

Proof of Theorem 1.1. As mentioned in Section 2, we only consider the existence and multiplicity of
T -periodic solutions for system (2.2).

Existence. Assume (Φ) and (Φ0), then by Lemmas 3.3 and 3.4, we conclude that

Ck(ϕ, 0) ∼=
{
δk,μG, k ∈ Z, if (Φ0

+) holds,

δk,μ+νG, k ∈ Z, if (Φ0
−) holds.

Thus the existence of a nontrivial critical point of the functional ϕ follows from Lemma 3.7 and Proposi-
tion 2.1.

Multiplicity. Here we adapt a technique in the proof of Theorem 1 in [13] (see also in [20]). We only consider
the case that (a) holds, the another one is similar. As in the proof of Existence and by the (μ+ ν)-th Morse
inequality, ϕ has at least one nontrivial critical point q∗ satisfying Cμ+ν(ϕ, q∗) � 0.
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If the nullity of q∗ satisfies ν∗ = 0, then Ck(ϕ, q∗) ∼= δk,μ+νG, k ∈ Z. If ϕ does not have other critical
points, by Proposition 2.4, (−1)μ+ν = (−1)μ + (−1)μ+ν , it is impossible.

Now, we suppose that 0 < ν∗ � ν. Let μ∗ be the Morse index of q∗, by Proposition 2.1, one concludes
that Ck(ϕ, q∗) ∼= 0 for all k /∈ [μ∗, μ∗ + ν∗], which implies μ∗ � μ + ν � μ∗ + ν∗.

In order to prove the existence of the second nontrivial critical point of ϕ, arguing indirectly, we suppose
ϕ only has critical point 0 and q∗. We distinguish the following two cases.

Case 1: μ + ν = μ∗ or μ + ν = μ∗ + ν∗. In this case, by the splitting theorem and the characterization
of critical groups at the local minimum and the local maximum (see [8,15]), Ck(ϕ, q∗) ∼= δk,μ+νG, k ∈ Z.
Thus, from Proposition 2.4, we have (−1)μ+ν = (−1)μ + (−1)μ+ν . It is impossible.

Case 2: μ∗ < μ + ν < μ∗ + ν∗. Using again the splitting theorem and the critical group characterization
of the local minimum and local maximum, one has Cμ∗(ϕ, q∗) ∼= Cμ∗+ν∗(ϕ, q∗) ∼= 0. We claim that μ∗ � μ.
Otherwise, we have μ < μ∗ < μ+ν, and the μ∗-th and (μ∗−1)-th Morse inequalities read as (−1)μ∗(−1)μ � 0
and (−1)μ∗−1(−1)μ � 0. As a consequence, (−1)μ = 0, which leads to a contradiction. Therefore, we obtain
μ∗ � μ < μ + ν < μ∗ + ν∗, which jointly with the assumption ν∗ � ν yields μ + ν < μ∗ + ν∗ � μ + ν,
a contradiction. The proof is complete. �
Proof of Theorem 1.2. Similar to the proof of Lemmas 4.4 and 4.5 in [14], we can prove Theorem 1.2 by
using the similar argument as used in proof of Theorem 1.1. We omitted the details. �
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