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In this paper we study the existence of ground states for the asymptotically periodic 
Kirchhoff type problems with critical growth and three times growth. The proof is 
based on the method of Nehari manifold and concentration compactness principle. In 
particular, we improve the method of Nehari manifold for Kirchhoff type equations 
with three times growth.
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1. Introduction and statement of the main result

The following Kirchhoff type problem

−
(
a + b

∫
|∇u|2

)
Δu + V (x)u = l(x, u), u ∈ H1(

R
3), (1.1)

has been widely investigated, where a, b are positive constants, V : R3 �→ R and l : R3×R �→ R. Problem (1.1)
is related to the stationary analogue of the equation

ρ
∂2u

∂t2
−

(
P0

h
+ E

2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣
2

dx

)
∂2u

∂x2 = 0, (1.2)

which was presented by Kirchhoff [7], where L is the length of the string, h is the area of cross-section, 
E is the Young modulus of the material, ρ is the mass density and P0 is the initial tension. For some early 
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researches of Eq. (1.2) we refer to [2,16]. In [11], J.L. Lions introduced an abstract variational framework 
for Eq. (1.2). After that, the problem (1.2) received much attention, see [1,3,12].

There are many results about the existence of nontrivial solutions, sign-changing solutions, ground states, 
multiplicity of solutions and concentration of solutions. See [4–10,13–15,18–21,23,25,26]. Some of them are 
based on the bounded domain Ω of R3. Then Eq. (1.1) turns out to be

⎧⎪⎨
⎪⎩

−
(
a + b

∫
Ω

|∇u|2
)

Δu + V (x)u = l(x, u), in Ω,

u = 0, on ∂Ω.

(1.3)

In [15], Perera and Zhang showed that the problem (1.3) possesses a nontrivial solution by using the Yang 
index and critical groups. Later, using Nehari manifold and fibering map, in [4] the authors considered 
the existence of multiple positive solutions of Eq. (1.3) involving sign-changing weight functions. Recently, 
most papers are researched on the whole space R3. He and Zou [6] studied the existence, multiplicity and 
concentration behavior of positive solutions for the problem (1.1) where the nonlinearity l is differential 
and of subcritical growth. Later, Wang et al. [20] treated with Eq. (1.1) when l is merely continuous and of 
critical growth, namely

−
(
ε2a + bε

∫
|∇u|2

)
Δu + V (x)u = |u|4u + λf(u), u ∈ H1(

R
3). (1.4)

Using the method of Nehari manifold and minimax methods, they obtained the multiplicity and con-
centration of positive solutions and the existence of ground states of the problem (1.4) when ε is small 
enough and λ is sufficiently large. More recently, Li and Ye [8] considered Eq. (1.1) with the nonlinearity 
l(x, u) = |u|p−1u, where p ∈ (2, 5). Assuming that V is continuous and weakly differentiable and satisfies a 
certain conditions, they proved that the problem (1.1) has a positive ground state by using a monotonicity 
trick and a new version of global compactness lemma. However, the nonlinearity l of (1.1) in [6,8,20] is 
autonomous. Concerning the non-autonomous nonlinearity l, with the use of some parameters, the authors 
in [9] and [14] studied that the existence and multiplicity of nontrivial solutions for Eq. (1.1); Sun and Wu 
[18] considered the existence and the nonexistence of nontrivial solutions, the existence of ground states of 
Eq. (1.1) with indefinite nonlinearity and steep potential well.

Motivated by the above works, without use of any parameter, we want to look for ground states of Eq.
(1.1) when the nonlinearity l is non-autonomous. Furthermore, inspired by [17], where the authors con-
sidered the existence of nontrivial solutions of asymptotically periodic quasilinear Schrödinger equations, 
we shall study the case where V and l in Eq. (1.1) are asymptotically periodic. In addition, as we know, 
the results of the problem (1.1) with three times growth are few since there is no higher-order term in the 
nonlinearity. Then there is no Mountain-Pass structure and the standard variational methods cannot be 
used. So some techniques or a new variational framework are needed. In [8], by the virtue of the Pohožaev 
type identity, Li and Ye obtained ground states for Eq. (1.1) with the pure nonlinearity u3. We shall discuss 
the existence of ground states for two cases where the nonlinearity l is with critical growth and three times 
growth respectively.

Firstly, we consider Eq. (1.1) with l(x, u) = K(x)|u|4u + f(x, u), namely:

−
(
a + b

∫
|∇u|2

)
Δu + V (x)u = K(x)|u|4u + f(x, u), u ∈ H1(

R
3). (KH)

Let F be the class of functions h ∈ L∞(R3) such that, for every ε > 0 the set {x ∈ R
3 : |h(x)| ≥ ε} has 

finite Lebesgue measure. Suppose that:
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(V1) V ∈ L∞(R3), and there exists a function Vp ∈ L∞(R3), 1-periodic in xi, 1 ≤ i ≤ 3, such that 
V − Vp ∈ F .

(V2) There exists a constant a0 > 0 such that a0 < V (x) ≤ Vp(x), x ∈ R
3, where Vp is given in (V1).

(K) K ∈ L∞(R3), and there exist a constant b0 > 0, a function Kp ∈ L∞(R3), 1-periodic in xj , 1 ≤ j ≤ 3, 
and a point x0 ∈ R

3 such that K −Kp ∈ F and:
(i) K(x) ≥ Kp(x) > b0 for all x ∈ R

3,
(ii) K(x) = |K|∞ + O(|x − x0|), as x → x0.

We also suppose that f ∈ C(R3 × R, R) satisfies the following conditions:

(H1) |f(x, u)| ≤ a1(1 + |u|q−1) for some a1 > 0 and 2 < q < 6,
(H2) f(x, u) = o(u3) uniformly in x as u → 0,
(H3) u �→ f(x,u)

|u|3 is nondecreasing on (−∞, 0) and (0, ∞),
(H4) there exists a function fp ∈ C(R3 × R, R), 1-periodic in xj , 1 ≤ j ≤ 3, such that:

(i) |f(x, u)| ≥ |fp(x, u)|, (x, u) ∈ R
3 × R,

(ii) |f(x, u) − fp(x, u)| ≤ |h(x)|(|u| + |u|q−1), (x, u) ∈ R
3 × R, h ∈ F , q is given by (H1),

(iii) u �→ fp(x,u)
|u|3 is nondecreasing on (−∞, 0) and (0, ∞).

(H5) F (x,u)
|u|4 → ∞ uniformly in x as |u| → ∞, where F (x, u) =

∫ u

0 f(x, s)ds.

In order to obtain positive ground states of (KH), we still assume that:

(H6) F (x, u) ≤ F (x, |u|), u ∈ R.

Theorem 1.1. If (V1), (V2), (K) and (H1)–(H6) are satisfied, then the problem (KH) has a positive ground 
state.

Remark 1.1. (1) A typical example of the assumption (H6) with F (x, u) = F (u) is the condition that: 
f(t) > 0 for t > 0 and f(t) = 0 for t ≤ 0, which was considered in [20].

(2) In order to restrict the functional level in a certain interval and then overcome the difficulties brought 
about by the critical growth term, Wang et al. [20] made use of the sufficiently large λ in (1.4). Here we 
take advantage of the condition (H5) that F is 4-superlinear at infinity.

We also consider that Eq. (1.1) with l(x, u) = Q(x)u3, that is:

−
(
a + b

∫
|∇u|2

)
Δu + V (x)u = Q(x)u3, u ∈ H1(

R
3). (QH)

Assume that:

(Q1) Q ∈ L∞(R3), and there exists a function Qp ∈ L∞(R3), 1-periodic in xi, 1 ≤ i ≤ 3, such that 
Q −Qp ∈ F .

(Q2) There exists a constant q0 > 0 such that q0 < Qp(x) ≤ Q(x), where Qp is given in (Q1).

Theorem 1.2. Let (V1), (V2), (Q1) and (Q2) hold. Then Eq. (QH) has a positive ground state.

The outline for the proof . We shall use the method of Nehari manifold and concentration compactness 
principle to prove the main results.
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For Theorem 1.1, as in [20], we reduce the problem of looking for a ground state into that of finding 
a minimizer on the Nehari manifold. Then we use the concentration compactness lemma to solve the 
minimizing problem. Comparing with the existence result of ground states in [20], the main difficulties are 
as follows: firstly, the nonlinearity is non-autonomous and not including any parameter, which causes the 
estimation of the least energy is difficult. We shall give a more accurate estimation to restrict the least 
energy into a wider interval. Secondly, in the process of looking for the minimizer, since our problem is 
generalized asymptotically periodic, the weak limit of the minimizing sequence of the functional on Nehari 
manifold may be trivial, we will make use of the periodicity of the limit equation of (KH) and the relation 
of the functionals and derivatives of (KH) and its limit equation to find the minimizer.

For Theorem 1.2, the absence of higher-order term of the nonlinearity and the competing effect of the 
nonlocal term −(

∫
|∇u|2)Δu with the nonlinearity Q(x)u3 of our problem (QH) prevent us from using the 

standard method of Nehari manifold [19]. Partially inspired by [5], where the authors considered the existence 
of infinitely many nontrivial solutions of quasilinear Schrödinger equations with three times growth, we find 
that, although the Nehari manifold is not homeomorphic to the unit sphere, it is homeomorphic to an open 
set of the unit sphere. So we can still reduce the problem of looking for a ground state into that of finding 
a minimizer of the functional on Nehari manifold. Then we use concentration compactness principle to deal 
with the minimizing problem.

The paper is organized as follows. In Section 2 we give some preliminaries. In Section 3 we study Eq. (KH)
and prove Theorem 1.1. In Section 4 we study the problem (QH) and prove Theorem 1.2.

2. Preliminaries

In this paper we use the following notation. For 1 ≤ p ≤ ∞, the norm in Lp(R3) is denoted by | · |p. For 
any r > 0 and x ∈ R

3, Br(x) denotes the ball centered at x with the radius r. 
∫
R3 f(x)dx is represented 

by 
∫
f(x). Let E be a Banach space and Φ : E → R be a functional of class C1, the Fréchet derivative 

of Φ at u, Φ′(u), is an element of the dual space E∗ and we denote Φ′(u) evaluated at v ∈ E by 〈Φ′(u), v〉. 
A solution ũ ∈ H1(R3) of the equation Φ′(u) = 0 is called a ground state if

Φ(ũ) = min
{
Φ(u) : u ∈ H1(

R
3)\{0}, Φ′(u) = 0

}
.

The best constant for the Sobolev embedding D1,2(R3) ↪→ L6(R3) is given by

S = inf
u∈D1,2(R3)\{0}

|∇u|22
|u|26

.

We consider the Sobolev space H1(R3) endowed with one of the following norms

‖u‖2 =
∫ (

a|∇u|2 + V (x)u2), ‖u‖2
p =

∫ (
a|∇u|2 + Vp(x)u2).

In view of (V2), the norms ‖ · ‖ and ‖ · ‖p are equivalent to the standard norm in H1(R3). S1 = {u ∈
H1(R3) : ‖u‖2 = 1}.

The functional corresponding to the problem (KH) is

I(u) = 1
2‖u‖

2 + b

4

(∫
|∇u|2

)2

− 1
6

∫
K(x)u6 −

∫
F (x, u), u ∈ H1(

R
3).

By our assumptions, I is differentiable and its critical points are solutions of (KH).
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In the process of looking for ground states of (KH), its corresponding periodic equation is very important 
and defined by

−
(
a + b

∫
|∇u|2

)
Δu + Vp(x)u = Kp(x)|u|4u + fp(x, u), u ∈ H1(

R
3), (KH)p

and the functional is

Ip(u) = 1
2‖u‖

2
p + b

4

(∫
|∇u|2

)2

− 1
6

∫
Kp(x)u6 −

∫
Fp(x, u), u ∈ H1(

R
3).

Set

g(x, u) = K(x)|u|4u + f(x, u), gp(x, u) = Kp(x)|u|4u + fp(x, u),

G(x, u) :=
u∫

0

g(x, s)ds, Gp(x, u) :=
u∫

0

gp(x, s)ds. (2.1)

Below we give some properties of f , fp, F , Fp and above functions.

Lemma 2.1. If (H1) and (H2) are satisfied, then for all ε > 0 there exist aε > 0 such that∣∣f(x, u)
∣∣ ≤ ε|u| + aε|u|q−1, u ∈ R. (2.2)

If (H2) and (H3) are satisfied, then

0 ≤ 4G(x, u) ≤ g(x, u)u, u ∈ R, (2.3)

s �→ 1
4g(x, su)su−G(x, su) is nondecreasing in (0,∞). (2.4)

If (H2), (H4)-(i) and (iii) are satisfied, then

0 ≤ 4Gp(x, u) ≤ gp(x, u)u, u ∈ R, (2.5)

s �→ 1
4gp(x, su)su−Gp(x, su) is nondecreasing in (0,∞). (2.6)

Moreover, if (H3) is also satisfied, then

F (x, u) ≥ Fp(x, u), u ∈ R. (2.7)

Proof. We only prove (2.4) and (2.6), the others we can see [24, Lemma 2.1]. By (H2) and (H3) one easily 
has that g(x, u)u ≥ 0 for all u, and

s �→ g(x, su)u
s3 is nondecreasing in (0,∞).

Then for 0 < s1 < s2, we get

G(x, s2u) −G(x, s1u) =
s2∫

s1

s3 g(x, su)u
s3 ds

≤ g(x, s2u)u
4s3

2

(
s4
2 − s4

1
)
≤ 1

4g(x, s2u)s2u− 1
4g(x, s1u)s1u.

Therefore, (2.4) yields. Similarly, (2.6) yields. �
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In addition, one easily has that the functional

J(u) = 1
2‖u‖

2 + b

4

(∫
|∇u|2

)2

− 1
4

∫
Q(x)u4

is of class C1 and its critical points are solutions of (QH). The corresponding periodic equation is defined 
by

−
(
a + b

∫
|∇u|2

)
Δu + Vp(x)u = Qp(x)u3, u ∈ H1(

R
3). (QH)p

Moreover, the functional of (QH)p is given by

Jp(u) = 1
2‖u‖

2
p + b

4

(∫
|∇u|2

)2

− 1
4

∫
Qp(x)u4.

3. Eq. (KH)

This section is devoted to describing the variational framework for the study of ground states of (KH)
and giving the proof of Theorem 1.1.

3.1. The method of Nehari manifold

The Nehari manifold corresponding to Eq. (KH) is

M =
{
u ∈ H1(

R
3)\{0} :

〈
I ′(u), u

〉
= 0

}
,

where

〈
I ′(u), u

〉
= ‖u‖2 + b

(∫
|∇u|2

)2

−
∫

K(x)u6 −
∫

f(x, u)u, (3.1)

and the least energy on M is defined by c := infM I.
Similar to [20, Lemma 2.2], we have the following two lemmas:

Lemma 3.1. Let V, K ∈ L∞(R3) be such that infR3 V > 0 and infR3 K > 0. Under the conditions (H1)–(H4), 
then:

(i) For all u ∈ S1, there exists a unique tu > 0 such that tuu ∈ M and I(tuu) = maxt>0 I(tu).
(ii) M is bounded away from 0. Furthermore, M is closed in H1(R3).
(iii) There is α > 0 such that tu ≥ α for each u ∈ S1; and for each compact subset W ⊂ S1, there exists 

CW > 0 such that tu ≤ CW , for all u ∈ W .

Lemma 3.2. Under the assumptions of Lemma 3.1, then there exists ρ > 0 such that infSρ
I > 0 and then 

c = infM I ≥ infSρ
I > 0.

Define the mapping m : S1 → M by setting m(w) := tww, where tw is as in Lemma 3.1 (i) and as 
[19, Proposition 3.1] we have:

Lemma 3.3. The mapping m is a homeomorphism between S1 and M .
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Considering the functional Ψ : S1 → R given by Ψ(w) := I(m(w)), and similar to [19, Corollary 3.3] and 
[24, Lemma 3.2], we have:

Lemma 3.4. Under the assumptions of Lemma 3.1, then:

(1) If {wn} is a PS sequence for Ψ , then {m(wn)} is a PS sequence for I. If {un} ⊂ M is a bounded PS 
sequence for I, then {m−1(un)} is a PS sequence for Ψ .

(2) w is a critical point of Ψ if and only if m(w) is a nontrivial critical point of I. Moreover, infM I =
infS1Ψ .

(3) A minimizer of I|M is a ground state of Eq. (KH).

From Lemma 3.4 (3), we know that the problem of seeking for a ground state for (KH) can be transformed 
into that of finding a minimizer of I|M . Comparing with [20], we will overcome the difficulties which brought 
by the asymptotically periodicity of (KH) and give a wider interval. First we deal with the difficulty brought 
by the asymptotically periodicity of (KH).

By (2.7), one easily has the following lemma:

Lemma 3.5. Let (V1), (V2), (K) and (H1)–(H4) hold. Then I(u) ≤ Ip(u), for all u ∈ H1(R3).

By Lemma 3.1 (i), we easily obtain that the infimum of I on M has the following minimax characteriza-
tion:

c = inf
M

I = inf
w∈S1

max
t>0

I(tw).

Define Mp and cp as follows:

Mp :=
{
u ∈ H1(

R
3)\{0} :

〈
I ′p(u), u

〉
= 0

}
, cp := inf

Mp

Ip. (3.2)

Similarly, the infimum of Ip on Mp has the following minimax characterization:

cp = inf
w∈S1

max
t>0

Ip(tw).

Combining with Lemma 3.5, we have that:

Lemma 3.6. Let (V1), (V2), (K) and (H1)–(H4) hold. Then c ≤ cp.

As in the proof of [10, Lemma 5.1] and [24, Lemma 3.6, Remark 3.1], we have the following lemmas 
respectively:

Lemma 3.7. Let (K) hold. Assume that {un} ⊂ H1(R3) is bounded and ϕn(x) = ϕ(x −xn), where ϕ ∈ H1(R3)
and xn ∈ R

3. If |xn| → ∞, then

∫ (
K(x) −Kp(x)

)
|un|4unϕn → 0.

Lemma 3.8. Let (V1), (H1) and (H4)-(ii) hold. Assume that un ⇀ 0 in H1(R3) and {ϕn} ⊂ H1(R3) is 
bounded. Then
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∫ [
V (x) − Vp(x)

]
unϕn → 0,

∫ [
f(x, un) − fp(x, un)

]
ϕn → 0,

∫ [
F (x, un) − Fp(x, un)

]
→ 0.

Define

c0 := ab|K|−1
∞ S3

4 + |K|−2
∞ S6

24
[(
b2 + 4a|K|∞S−3) 3

2 + b3
]
, (3.3)

where S is the best constant for the Sobolev embedding D1,2(R3) ↪→ L6(R3).

Lemma 3.9. Let (V1), (V2), (K) and (H1)–(H4) hold. Then the minimizing sequence of c is bounded. 
Moreover, if c ∈ (0, c0), then the minimizing sequence of c is non-vanishing.

Proof. Let {un} be a minimizing sequence of I on M . Namely,

I(un) → c,
〈
I ′(un), un

〉
= 0. (3.4)

We firstly prove that {un} is bounded. Indeed, noting that

c + on(1) = I(un) − 1
4
〈
I ′(un), un

〉
= 1

4‖un‖2 +
∫ [

1
4g(x, un)un −G(x, un)

]

≥ 1
4‖un‖2,

where we used (2.3). Then {un} is bounded in H1(R3).
Now we show that {un} is non-vanishing. We argue by contradiction. Suppose {un} is vanishing. Namely

lim
n→∞

sup
y∈R3

∫
B1(y)

u2
n(x) dx = 0.

Then P.L. Lions Compactness Lemma implies that un → 0 in Lq(R3). By (2.2), we easily have ∫
F (x, un) → 0 and 

∫
f(x, un)un → 0. With the use of (3.4), we get

c = 1
2

∫ (
a|∇un|2 + V (x)u2

n

)
+ b

4

(∫
|∇un|2

)2

− 1
6

∫
K(x)|un|6 + on(1),

∫ (
a|∇un|2 + V (x)u2

n

)
+ b

(∫
|∇un|2

)2

=
∫

K(x)|un|6 + on(1). (3.5)

If 
∫
|∇un|2 → 0, then

∫
K(x)|un|6 ≤ |K|∞

(∫
|∇un|2

)3

S−3 → 0.
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Then it follows from (3.5) that c = 0. This contradicts with the condition c > 0. Then 
∫
|∇un|2 � 0. 

By (3.5) we have

a + b

∫
|∇un|2 ≤ |K|∞S−3

(∫
|∇un|2

)2

+ on(1). (3.6)

So
∫

|∇un|2 ≥ |K|−1
∞ S3

2
(
b +

√
b2 + 4a|K|∞S−3

)
+ on(1). (3.7)

Then by (3.6) we infer

(∫
|∇un|2

)2

≥ a|K|−1
∞ S3 + b|K|−2

∞ S6

2
(
b +

√
b2 + 4a|K|∞S−3

)
+ on(1). (3.8)

From (3.5) we deduce

c ≥ a

3

∫
|∇un|2 + b

12

(∫
|∇un|2

)2

+ on(1).

Then combining with (3.7) and (3.8) we easily conclude that c ≥ c0, given in (3.3), contradicting with the 
assumption c < c0. Hence {un} is non-vanishing. The proof is completed. �
Remark 3.1. In [20, Lemma 3.7], the authors obtained that when

c ∈
(

0, 1
3(aS) 3

2 + 1
12b

3S6
)
, (3.9)

the minimizing sequence of c is non-vanishing. Here we give a wider interval for c, since if we assume that 
|K|∞ = 1, then c0 in (3.3) turns out to be

abS3

4 + S6

24
[(

4aS−3 + b2
) 3

2 + b3
]
,

which is larger than 1
3 (aS) 3

2 + 1
12b

3S6.

3.2. Estimates

Now we devote to estimating the least energy c and proving that c ∈ (0, c0). By Lemma 3.2, it suffices to 
show that c < c0. We shall choose a function u ∈ M and show that I(u) < c0. The construct of u is based 
on a test function in H1(R3). The test function is standard, see [22].

Without loss of generality, in the condition (K), we assume that x0 = 0. For ε > 0, the function 
wε : R3 → R defined by

wε(x) = 3 1
4

ε
1
4

(ε + |x|2) 1
2
,

is a family of functions on which S is attained. Let φ ∈ C∞
0 (R3, [0, 1]), φ ≡ 1 in B ρ

2
(0), φ ≡ 0 in R3\Bρ(0). 

Then define the test function by
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vε = uε

(
∫
K(x)u6

ε)
1
6
,

where uε = φwε.
We give some properties for vε and uε, which is given in [10].

Lemma 3.10. If (K) is satisfied, then:∫
|∇vε|2 ≤ |K|−

1
3∞ S + O

(
ε

1
2
)
, as ε → 0+,

|vε|22 = O
(
ε

1
2
)
, as ε → 0+. (3.10)

Moreover, there exist positive constants k1, k2 and ε0 such that

k1 <

∫
K(x)u6

ε < k2, for all 0 < ε < ε0. (3.11)

Lemma 3.11. Let V ∈ L∞(R3) be such that infR3 V > 0. Suppose (K) and (H1)–(H5) are satisfied. Then 
c < c0.

Proof. By the definition of c, we just need to verify that there exists v ∈ M such that

I(v) < c0. (3.12)

We first claim that for ε > 0 small enough, there exist constants tε, A1 and A2 independent of ε such that

I(tεvε) = max
t>0

I(tvε)

and

0 < A1 < tε < A2 < ∞. (3.13)

In fact, by Lemma 3.1 (i), there exists tε > 0 such that

tεvε ∈ M, I(tεvε) = max
t≥0

I(tvε). (3.14)

Then I(tεvε) ≥ c > 0. By (2.3), we get

t2ε
2 ‖vε‖2 + b

4 t
4
ε

(∫
|∇vε|2

)2

≥ c.

Then t2ε‖vε‖2 ≥ C1. Moreover, since ‖vε‖ is bounded for ε small enough by (3.10), then there exists 
A1 > 0 such that tε ≥ A1, for every ε > 0 sufficiently small. On the other hand, since tεvε ∈ M , we 
get 〈I ′(tεvε), tεvε〉 = 0. Noting that 

∫
K(x)v6

ε = 1, we have

t2ε‖vε‖2 + bt4ε‖vε‖4 ≥ t6ε +
∫

f(x, tεvε)tεvε.

By (2.2) we find that

t6ε ≤ t2ε‖vε‖2 + bt4ε‖vε‖4 + εt2ε |vε|22 + Cεt
q
ε |vε|qq

≤ (1 + ε)t2ε‖vε‖2 + CCεt
q
ε‖vε‖q + bt4ε‖vε‖4.

Noting that q < 6, then there exists A2 > 0 such that tε ≤ A2 since ‖vε‖ is bounded for small ε.
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Now we estimate I(tεvε). Note that

I(tεvε) ≤
(
at2ε
2 Bε + t2ε

2 |V |∞|vε|22
)

+ bt4ε
4 B2

ε − t6ε
6 −

∫
F (x, tεvε)

=
(
at2ε
2 Bε + bt4ε

4 B2
ε − t6ε

6

)
+

(
t2ε
2 |V |∞|vε|22 −

∫
F (x, tεvε)

)

:= I1 + I2, (3.15)

where Bε :=
∫
|∇vε|2. For I1, considering the function θ : [0, ∞) → R, θ(t) = a

2Bεt
2 + b

4B
2
ε t

4 − 1
6 t

6, we have 

that t0 = ( bB
2
ε+

√
b2B4

ε+4aBε

2 ) 1
2 is a maximum point of θ and

θ(t0) =
(
aBε

3 + b2B4
ε

12

)
bB2

ε +
√

b2B4
ε + 4aBε

2 + ab

12B
3
ε .

Then

I1 ≤
(
aBε

3 + b2B4
ε

12

)
bB2

ε +
√
b2B4

ε + 4aBε

2 + ab

12B
3
ε .

Combining with (3.10) we have

I1 ≤ ab|K|−1
∞ S3

4 + |K|−2
∞ S6

24
[(
b2 + 4a|K|∞S−3) 3

2 + b3
]
+ O

(
ε

1
2
)
, (3.16)

where we applying the inequality

(a1 + a2)ζ ≤ aζ1 + ζ(a1 + a2)ζ−1a2, a1, a2 ≥ 0, ζ ≥ 1.

It suffices to estimate I2. For |x| < ε
1
2 < ρ

2 , noting that φ ≡ 1 in B ρ
2
(0), by the definition of vε and (3.11), 

we find a constant α > 0 such that

tεvε(x) ≥ A1

(k2)
1
6
uε(x) ≥ A1

(k2)
1
6
wε(x) = A13

1
4

(k2)
1
6

ε
1
4

(ε + |x|2) 1
2
≥ αε−

1
4 , (3.17)

here A1 is given by (3.13). Given A0 > 0, we invoke (H5) to obtain R = R(A0) > 0 such that, for x ∈ R
3, 

s ≥ R,

F (x, s) ≥ A0s
4.

Then we may choose ε1 > 0 such that

tεvε(x) ≥ αε−
1
4 ≥ R,

for |x| < ε
1
2 , 0 < ε < ε1. So

F
(
x, tεvε(x)

)
≥ A0t

4
εv

4
ε ,

for |x| < ε
1
2 , 0 < ε < ε1. Then for any 0 < ε < ε1, by (3.17) we infer
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∫
B

ε
1
2

(0)

F (x, tεvε)dx ≥ A0

∫
B

ε
1
2

(0)

t4εv
4
εdx ≥ A0α

4
∫

B
ε
1
2

(0)

ε−1dx

≥ A0α
4ε−1ω3

ε
1
2∫

0

r2dr = A0α
4ω3

3 ε
1
2 , (3.18)

where ω3 is the surface area of the unit sphere in R3.
For |x| > ε

1
2 , by (H2) and (H3), we get

F (x, s) ≥ 0, s ∈ R.

Combining with (3.10) and (3.18), we have

I2 ≤ Cε
1
2 −A0α

4ω3

3 ε
1
2 .

Inserting the above inequality and (3.16) into (3.15), we find

I(tεvε) ≤
ab|K|−1

∞ S3

4 + |K|−2
∞ S6

24
[(
b2 + 4a|K|∞S−3) 3

2 + b3
]
+

(
C −A0α

4ω3

3

)
ε

1
2 ,

where C may denote different constant. Since A0 > 0 is arbitrary, we choose large enough A0 such that 
C −A0α

4 ω3
3 < 0. Then for small ε > 0 we have

I(tεvε) <
ab|K|−1

∞ S3

4 + |K|−2
∞ S6

24
[(
b2 + 4a|K|∞S−3) 3

2 + b3
]
.

Namely I(tεvε) < c0, where c0 is given in (3.3). Noting that tεvε ∈ M by (3.14), then (3.12) establishes. 
This ends the proof. �
Remark 3.2. In [20, Lemma 3.5], for Eq. (1.4), with the use of the sufficient large λ, it is easy to restrict the 
least energy c in the interval (3.9). Here we do not use any parameter, and then the estimation of c turns 
out to be difficult. We make use of the condition (H5) that F is 4-superlinear at infinity to restrict c into 
(0, c0).

3.3. Proof of Theorem 1.1

We are now in a position to give the proof of Theorem 1.1. By Lemma 3.4 (3), it suffices to show that the 
infimum c is attained. By differentiability of S1, we easily obtain a minimizing sequence of c. If the weak limit 
of the minimizing sequence is nontrivial, then we show the weak limit is the desired ground state. Noting 
that the nonlocal term −(

∫
|∇u|2)Δu causes that I ′ may not be weakly sequentially continuous, then we 

cannot prove that the weak limit is a ground state as the previous papers dealing with other variational 
problems, for example, see [19]. Partially inspired by [21, Lemma 4.1], we use some techniques to show the 
weak limit is in fact a ground state. Otherwise, if the weak limit is trivial, by concentration compactness 
principle and the periodicity of (KH)p, we can still find a minimizer. Moreover, in this process, we still 
do not know whether I ′ and I ′p are weakly sequentially continuous. Since our problem is asymptotically 
periodic, using only the idea in [21] is not enough to find the new minimizer. With some new skills we 
realize this process.
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Proof of Theorem 1.1. Assume that {wn} ⊂ S1 is a minimizing sequence satisfying Ψ(wn) → infS1 Ψ . By the 
Ekeland variational principle, we suppose Ψ ′(wn) → 0. Then, from Lemma 3.4 (1) it follows that I ′(un) → 0, 
where un = m(wn) ∈ M . Moreover, by Lemma 3.4 (2), we have I(un) = Ψ(wn) → c. Applying Lemma 3.9, 
we get that {un} is bounded in H1(R3). Up to a subsequence, we assume that un ⇀ ũ in H1(R3), un → ũ

in L2
loc(R3) and un → ũ a.e. on R3. Below we distinguish two cases where ũ �= 0 and ũ = 0.

Case 1: ũ �= 0.
We first claim that I ′(ũ) = 0. Since {un} is bounded in H1(R3), passing to a subsequence, we may assume 

that there exists l ≥ 0 such that 
∫
|∇un|2 → l2. Note that I ′(un) → 0, then ũ is a solution of the following 

equation

−
(
a + bl2

)
�u + V (x)u = K(x)u5 + f(x, u), u ∈ H1(

R
3).

It suffices to show that l2 =
∫
|∇ũ|2. From the weakly lower semi-continuous of the norm it follows that 

l2 ≥
∫
|∇ũ|2. Then

(
a + b

∫
|∇ũ|2

)∫
|∇ũ|2 +

∫
V (x)ũ2

≤
(
a + bl2

) ∫
|∇ũ|2 +

∫
V (x)ũ2 =

∫
f(x, ũ)ũ +

∫
K(x)ũ6. (3.19)

So 〈I ′(ũ), ̃u〉 ≤ 0. By Lemma 3.1 (i), we get that there exists t1 > 0 such that t1ũ ∈ M . Then we claim that 
t1 ≤ 1. Otherwise, t1 > 1. Noting that 〈I ′(t1ũ), t1ũ〉 = 0, then we infer that

∫ (
a|∇ũ|2 + V (x)ũ2) + b

(∫
|∇ũ|2

)2

>
1
t21

∫ (
a|∇ũ|2 + V (x)ũ2) + b

(∫
|∇ũ|2

)2

=
∫

f(x, t1ũ)t1ũ
t41

+ t21

∫
K(x)ũ6

>

∫
f(x, ũ)ũ +

∫
K(x)ũ6,

where the last inequality follows from the condition (H3). This contradicts with (3.19). So t1 ≤ 1. Let

G̃(x, u) = 1
4
(
a|∇u|2 + V (x)u2) + 1

4g(x, u)u−G(x, u). (3.20)

By (2.4) we have

∫
G̃(x, t1ũ) ≤

∫
G̃(x, ũ).

Then

c ≤ I(t1ũ) − 1
4
〈
I ′(t1ũ), t1ũ

〉
=

∫
G̃(x, t1ũ) ≤

∫
G̃(x, ũ)

≤
∫

G̃(x, un) + on(1) = I(un) − 1
4
〈
I ′(un), un

〉
+ on(1) = c + on(1), (3.21)

where we used (2.3) and Fatou Lemma. So t1 = 1, 
∫
G̃(x, un) →

∫
G̃(x, ̃u), and then 

∫
|∇un|2 →

∫
|∇ũ|2

by (2.3). Therefore, l2 =
∫
|∇ũ|2. Then, I ′(ũ) = 0.
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Note that

I(ũ) − 1
4
〈
I ′(ũ), ũ

〉
=

∫
G̃(x, ũ) = c,

by (3.21). Moreover, I ′(ũ) = 0. Therefore, I(ũ) = c.
Case 2: ũ = 0.
This case is more complicated. We discuss that {un} is vanishing or non-vanishing. It is easy to see that 

the case of vanishing does not happen since the energy c ∈ (0, c0).
Suppose {un} is vanishing. By Lemmas 3.2, 3.11 and 3.9, then we infer that {un} is non-vanishing. Then 

there exist xn ∈ R
3 and δ0 > 0 such that ∫

B1(xn)

u2
n(x)dx > δ0. (3.22)

Without loss of generality, we assume that xn ∈ Z
3. Since un → ũ in L2

loc(R3) and ũ = 0, we may suppose 
that |xn| → ∞ up to a subsequence. Denote ūn by ūn(·) = un(· + xn). Similarly, passing to a subsequence, 
we assume that ūn ⇀ ū in H1(R3), ūn → ū in L2

loc(R3), and ūn → ū a.e. on R3. By (3.22) one easily has 
that ū �= 0.

For all ψ ∈ H1(R3), set ψn(·) := ψ(· +xn). From Lemmas 3.7 and 3.8, replacing ϕn by ψn it follows that∫ (
V (x) − Vp(x)

)
unψn → 0,∫ (

K(x) −Kp(x)
)
|un|4unψn → 0,∫ [

f(x, un) − fp(x, un)
]
ψn → 0.

Consequently
〈
I ′(un), ψn

〉
−
〈
I ′p(un), ψn

〉
→ 0.

Noting that I ′(un) → 0 and ‖ψn‖H1 = ‖ψ‖H1 , we have 〈I ′(un), ψn〉 → 0. So
〈
I ′p(un), ψn

〉
→ 0.

Moreover, by the periodicity of Vp, Kp and fp in the variable x and xn ∈ Z
3, we get

〈
I ′p(ūn), ψ

〉
=

〈
I ′p(un), ψn

〉
.

Then 〈I ′p(ūn), ψ〉 → 0. By the arbitrary of ψ, I ′p(ūn) ⇀ 0 in (H1(R3))∗. Since {ūn} is bounded in H1(R3), 
passing to a subsequence, we may assume that there exists l0 ≥ 0 such that 

∫
|∇ūn|2 → l20. Note that 

I ′p(ūn) ⇀ 0, then ū is a solution of the following equation

−
(
a + bl20

)
�u + Vp(x)u = Kp(x)u5 + fp(x, u), u ∈ H1(

R
3).

From the weakly lower semi-continuous of the norm it follows that l20 ≥
∫
|∇ū|2. Then

(
a + b

∫
|∇ū|2

)∫
|∇ū|2 +

∫
Vp(x)ū2 ≤

(
a + bl20

) ∫
|∇ū|2 +

∫
Vp(x)ū2

=
∫

fp(x, ū)ū + Kp(x)ū6. (3.23)
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Now we prove that

Ip(ū) − 1
4
〈
I ′p(ū), ū

〉
≤ c. (3.24)

Replacing ϕn by un, Lemma 3.8 yields∫ (
V (x) − Vp(x)

)
u2
n → 0,

∫ [
F (x, un) − Fp(x, un)

]
→ 0,∫ [

f(x, un)un − fp(x, un)un

]
→ 0. (3.25)

Similar to (3.20), set

G̃p(x, u) = 1
4
(
a|∇u|2 + Vp(x)u2) + 1

4gp(x, u)u−Gp(x, u).

By the condition K ≥ Kp in (K) and (3.25), we get∫
G̃p(x, un) = 1

4

(
a|∇un|22 +

∫
Vp(x)u2

n

)
+ 1

12

∫
Kp(x)|un|6 +

∫ (
1
4fp(x, un)un − Fp(x, un)

)

≤ 1
4

(
a|∇un|22 +

∫
V (x)u2

n

)
+ 1

12

∫
K(x)|un|6 +

∫ (
1
4f(x, un)un − F (x, un)

)
+ on(1)

=
∫

G̃(x, un) + on(1).

Noting that G̃p is 1-periodic in x, we have∫
G̃p(x, ūn) =

∫
G̃p(x, un).

Therefore, ∫
G̃p(x, ūn) ≤

∫
G̃(x, un) + on(1).

Note that ūn → ū a.e. on R3. Then from (2.5) and Fatou Lemma it follows that∫
G̃p(x, ū) + on(1) ≤

∫
G̃p(x, ūn).

So ∫
G̃p(x, ū) ≤

∫
G̃(x, un) + on(1).

Note that ∫
G̃(x, u) = I(u) − 1

4
〈
I ′(u), u

〉
,

∫
G̃p(x, u) = Ip(u) − 1

4
〈
I ′p(u), u

〉
,

we infer that

c + on(1) =
∫

G̃(x, un) ≥
∫

G̃p(x, ū) + on(1)

= Ip(ū) − 1
4
〈
I ′p(ū), ū

〉
+ on(1).

Then we have Ip(ū) − 1 〈I ′p(ū), ̄u〉 ≤ c.
4
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Similar to Lemma 3.1 (i), one easily has that there exists t2 > 0 such that t2ū ∈ Mp and Ip(t2ū) =
maxt>0 Ip(tū), where Mp is defined in (3.2). Moreover, we claim that t2 ≤ 1. Otherwise, t2 > 1. Noting that 
〈I ′p(t2ū), t2ū〉 = 0, then we infer that

∫ (
a|∇ū|2 + Vp(x)ū2) + b

(∫
|∇ū|2

)2

>
1
t22

∫ (
a|∇ū|2 + Vp(x)ū2) + b

(∫
|∇ū|2

)2

=
∫

fp(x, t2ū)t2ū
t42

+ t22

∫
Kp(x)ū6

>

∫
fp(x, ū)ū +

∫
Kp(x)ū6,

where we used the condition (H4)-(iii). This contradicts with (3.23). So t2 ≤ 1. Note that
∫

G̃p(x, t2ū) ≤
∫

G̃p(x, ū).

Then

cp ≤ Ip(t2ū) − 1
4
〈
I ′p(t2ū), t2ū

〉
=

∫
G̃p(x, t2ū)

≤
∫

G̃p(x, ū) = Ip(ū) − 1
4
〈
I ′p(ū), ū

〉
≤ c, (3.26)

since (3.24). With the use of Lemma 3.6, we get that c ≤ cp. Consequently, t2 = 1 and then

〈
I ′p(ū), ū

〉
= 0, cp = Ip(ū) = c. (3.27)

Using Lemma 3.1 (i), there exists t̃ > 0 such that t̃ū ∈ M . Then by Lemma 3.5 and (3.27) we infer

c ≤ I(t̃ū) ≤ Ip(t̃ū) ≤ Ip(ū) = c.

Then I(t̃ū) = c.
In a word, we deduce that c is attained, and then the corresponding minimizer is a ground state of (KH). 

Below we shall look for a positive ground state for (KH). Assume that the ground state we found is u0. 
Then u0 ∈ M and I(u0) = c. By Lemma 3.1 (i) there exists t0 > 0 such that t0|u0| ∈ M . Then I(t0|u0|) ≥ c. 
Noting that I(t0|u0|) ≤ I(t0u0) by (H6) and I(t0u0) ≤ I(u0), we get I(t0|u0|) ≤ c. So I(t0|u0|) = c. 
Then t0|u0| is also a ground state of (KH). Applying the maximum principle to (KH), we easily infer that 
t0|u0| > 0 by (2.3). Namely, we find a positive ground state for (KH). This ends the proof. �
4. Eq. (QH)

In this section we describe the variational framework for the problem (QH), and prove Theorem 1.2.

4.1. The new method of Nehari manifold

In order to find ground states, we usually use the method of Nehari manifold [19]. A very important condi-
tion using the method of Nehari manifold is that the functional has a unique maximum point along the direc-
tion of nontrivial u. However, the lack of the higher-order term in the nonlinearity and the competing effect 
of the nonlocal term −b(

∫
|∇u|2)Δu with the nonlinearity Q(x)u3 cause that J(tu) (t ≥ 0) may not have the 

maximum, and therefore the standard method of Nehari manifold cannot be used. Partially inspired by [5], 
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we find that if we restrict the functional J(tu) in a set, then the functional has a unique maximum. Then we 
can use the one-to-one correspondence of the functionals on the manifold and the intersection of the above 
set and the unit sphere to improve the method of Nehari manifold in [19], and therefore find ground states.

Below we firstly give the Nehari manifold: the Nehari manifold N corresponding to J is

N =
{
u ∈ H1(

R
3)\{0} :

〈
J ′(u), u

〉
= 0

}
,

where

〈
J ′(u), u

〉
= ‖u‖2 + b

(∫
|∇u|2

)2

−
∫

Q(x)u4,

and the least energy on N is defined by d := infN J .

Lemma 4.1. Let V, Q ∈ L∞(R3) be such that infR3 V > 0 and infR3 Q > 0. Then J is coercive on N .

Proof. For all u ∈ N , we have

J(u) = J(u) − 1
4
〈
J ′(u), u

〉
= 1

4‖u‖
2. (4.1)

Then J |N is coercive. �
By the above statement, we need a new set to construct the variational framework. We define

Θ :=
{
u ∈ H1(

R
3) : b

(∫
|∇u|2

)2

<

∫
Q(x)u4

}
.

It is easy to see that Θ �= ∅ since b > 0 and Q > q0 > 0 by (Q2).
Set

h(t) := J(tu) = t2

2 ‖u‖2 + t4

4

[
b

(∫
|∇u|2

)2

−
∫

Q(x)u4
]
.

Lemma 4.2. Under the assumptions of Lemma 4.1, we have that:

(i) For all u ∈ Θ, there exists a unique tu > 0 such that h′(t) > 0 for 0 < t < tu, and h′(t) < 0 for t > tu. 
Moreover, tuu ∈ N and J(tuu) = maxt>0 J(tu).

(ii) For each compact subset W of Θ ∩ S1, there exists CW > 0 such that tw ≤ CW for all w ∈ W .

Proof. (i) For each u ∈ Θ, one easily has that h(t) > 0 when t is sufficiently small, and h(t) < 0 when t is 
large enough. Then h has a positive maximum point in (0, ∞). Moreover, the maximum point t satisfies 
that

‖u‖2 = t2
[∫

Q(x)u4 − b

(∫
|∇u|2

)2]
.

Then the maximum point is unique, and denoted by tu. Therefore the conclusion (i) yields.
(ii) Suppose that there exist a compact subset W ⊂ Θ ∩S1 and a sequence wn ∈ W such that twn

→ ∞. 
Assume w ∈ W satisfies wn → w in H1(R3). Without loss of generality, one easily has that

b

(∫
|∇wn|2

)2

−
∫

Q(x)w4
n → b

(∫
|∇w|2

)2

−
∫

Q(x)w4 < 0.
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So

J(twn
wn)

t2wn

= 1
2 +

t2wn

4

[
b

(∫
|∇wn|2

)2

−
∫

Q(x)w4
n

]
→ −∞.

However, by (4.1), we know that J(twn
wn) ≥ 0. This is a contradiction. This ends the proof. �

Lemma 4.3. Under the assumptions of Lemma 4.1,

(1) There exists ρ > 0 such that infSρ
J > 0 and then d = infN J ≥ infSρ

J > 0, where Sρ = {u ∈ H1(R3) :
‖u‖2 = ρ}.

(2) ‖u‖2 ≥ 4d for all u ∈ N .

Proof. One easily has that there exists ρ > 0 such that infSρ
J > 0. For any u ∈ N , there is t > 0 such that 

tu ∈ Sρ. As a consequence of Lemma 4.2 (i), J(u) ≥ J(tu), then infSρ
J ≤ infN J = d. Hence d > 0. Then 

the conclusion (1) yields. By (4.1), the conclusion (2) easily yields. �
From Lemma 4.3 (1), we define the mapping m̂ : Θ → N by m̂(u) = tuu. In addition, ∀v ∈ R

+u we have 
m̂(v) = m̂(u). Let U := Θ ∩ S1, we easily infer that U is an open subset of S1. Define m0 := m̂|U . Then 
m0 is a bijection from U to N . Moreover, by Lemmas 4.2 and 4.3, as in the proof of [19, Proposition 3.1], 
we have

Lemma 4.4. Under the assumptions of Lemma 4.1, the mapping m0 is a homeomorphism between U and N .

Considering the functional Φ : U → R given by Φ(w) := J(m0(w)), and we easily deduce that:

Lemma 4.5. Under the assumptions of Lemma 4.1, the following results hold:

(1) If {wn} is a PS sequence for Φ, then {m0(wn)} is a PS sequence for J . If {un} ⊂ N is a bounded PS 
sequence for J , then {m−1

0 (un)} is a PS sequence for Φ.
(2) w is a critical point of Φ if and only if m0(w) is a nontrivial critical point of J . Moreover, infN J =

infU Φ.
(3) A minimizer of J on N is a ground state of (QH).

From Lemma 4.5 (3), we know that the problem of seeking for a ground state of (QH) can be reduced 
into that of finding a minimizer of J |N . Since (QH) is non-periodic, similar to the proof of Theorem 1.1, we 
shall solve the above minimization problem by means of the periodicity of (QH)p, and the relationship of 
the functionals and derivatives of (QH) and (QH)p.

One easily has that:

Lemma 4.6. Let (V1), (V2), (Q1) and (Q2) hold. Then J(u) ≤ Jp(u), for all u ∈ H1(R3).

4.2. Proof of Theorem 1.2

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2. Assume that wn ∈ U satisfies Φ(wn) → infU Φ. By the Ekeland variational principle, 
we may suppose that Φ′(wn) → 0. Then from Lemma 4.5 (1) it follows that J ′(un) → 0, where un =
m0(wn) ∈ N . By Lemma 4.5 (2), we have J(un) = Φ(wn) → d. By Lemma 4.1, we get that {un} is bounded 
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in H1(R3). Up to a subsequence, we assume that un ⇀ ũ in H1(R3), un → ũ in L2
loc(R3) and un → ũ a.e. 

on R3. We discuss for two cases where ũ �= 0 and ũ = 0.
Case 1: ũ �= 0.
We first claim that J ′(ũ) = 0. Since {un} is bounded in H1(R3), passing to a subsequence, we may 

assume that there exists l ≥ 0 such that 
∫
|∇un|2 → l2. Note that J ′(un) → 0, then ũ is a solution of the 

following equation

−
(
a + bl2

)
�u + V (x)u = Q(x)u3, u ∈ H1(

R
3).

It suffices to show that l2 =
∫
|∇ũ|2. From the weakly lower semi-continuous of the norm it follows that 

l2 ≥
∫
|∇ũ|2. Then

(
a + b

∫
|∇ũ|2

)∫
|∇ũ|2 +

∫
V (x)ũ2 ≤

(
a + bl2

) ∫
|∇ũ|2 +

∫
V (x)ũ2 =

∫
Q(x)ũ4. (4.2)

So 〈J ′(ũ), ̃u〉 ≤ 0. By Lemma 4.2 (i), we get that there exists t1 > 0 such that t1ũ ∈ N . Then we claim that 
t1 ≤ 1. Otherwise, t1 > 1. Noting that 〈J ′(t1ũ), t1ũ〉 = 0, then we infer that

∫ (
a|∇ũ|2 + V (x)ũ2) + b

(∫
|∇ũ|2

)2

>
1
t21

∫ (
a|∇ũ|2 + V (x)ũ2) + b

(∫
|∇ũ|2

)2

=
∫

Q(x)ũ4.

This contradicts with (4.2). So t1 ≤ 1. Then

d ≤ J(t1ũ) − 1
4
〈
J ′(t1ũ), t1ũ

〉
= t21

4 ‖ũ‖2

≤ 1
4‖ũ‖

2 ≤ 1
4‖un‖2 + on(1)

= J(un) − 1
4
〈
J ′(un), un

〉
+ on(1) = d + on(1), (4.3)

where we used Fatou Lemma. So t1 = 1 and 
∫
|∇un|2 →

∫
|∇ũ|2. Then, l2 =

∫
|∇ũ|2. Therefore, J ′(ũ) = 0.

By (4.3), we get

d = J(ũ) − 1
4
〈
J ′(ũ), ũ

〉
.

Note that J ′(ũ) = 0, then J(ũ) = d.
Case 2: ũ = 0.
By d > 0 in Lemma 4.3, it is easy to see that {un} is non-vanishing. Then there exists xn ∈ R

3 and 
δ0 > 0 such that

∫
B1(xn)

u2
n(x)dx > δ0. (4.4)

Without loss of generality, we assume that xn ∈ Z
3. Since un → ũ in L2

loc(R3) and ũ = 0, we may suppose 
that |xn| → ∞ up to a subsequence. Denote ūn by ūn(·) = un(· + xn). Similarly, passing to a subsequence, 
we assume that ūn ⇀ ū in H1(R3), ūn → ū in L2

loc(R3), and ūn → ū a.e. on R3. By (4.4) we have ū �= 0.
For all ψ ∈ H1(R3), set ψn(·) := ψ(· + xn). With the use of |Q(x)u3| ≤ C(1 + |u|3), from Lemma 3.8, 

replacing ϕn by ψn it follows that



1690 H. Zhang, F. Zhang / J. Math. Anal. Appl. 423 (2015) 1671–1692
∫ (
V (x) − Vp(x)

)
unψn → 0,∫ (

Q(x) −Qp(x)
)
u3
nψn → 0.

Consequently
〈
J ′(un), ψn

〉
−
〈
J ′
p(un), ψn

〉
→ 0.

Noting that J ′(un) → 0 and ‖ψn‖ = ‖ψ‖, we have 〈J ′(un), ψn〉 → 0. So
〈
J ′
p(un), ψn

〉
→ 0.

Moreover, by the periodicity of Vp and Qp in the variable x and xn ∈ Z
3, we get

〈
J ′
p(ūn), ψ

〉
=

〈
J ′
p(un), ψn

〉
.

Then 〈J ′
p(ūn), ψ〉 → 0. By the arbitrary of ψ, J ′

p(ūn) ⇀ 0 in (H1(R3))∗.
Since {ūn} is bounded in H1(R3), passing to a subsequence, we may assume that there exists l0 ≥ 0 such 

that 
∫
|∇ūn|2 → l20. Note that J ′

p(ūn) ⇀ 0, then ū is a solution of the following equation

−
(
a + bl20

)
�u + Vp(x)u = Qp(x)u3, u ∈ H1(

R
3).

From the weakly lower semi-continuous of the norm it follows that l20 ≥
∫
|∇ū|2. Then

(
a + b

∫
|∇ū|2

)∫
|∇ū|2 +

∫
Vp(x)ū2 ≤

(
a + bl20

) ∫
|∇ū|2 +

∫
Vp(x)ū2 =

∫
Qp(x)ū4. (4.5)

Now we prove that

Jp(ū) − 1
4
〈
J ′
p(ū), ū

〉
≤ d. (4.6)

Replacing ϕn by un, Lemma 3.8 yields
∫ (

V (x) − Vp(x)
)
u2
n → 0.

Then

Jp(ū) − 1
4
〈
J ′
p(ū), ū

〉
= 1

4

∫ (
a|∇ū|2 + Vp(x)ū2) ≤ 1

4

∫ (
a|∇ūn|2 + Vp(x)ū2

n

)
+ on(1)

= 1
4

∫ (
a|∇un|2 + Vp(x)u2

n

)
+ on(1) = 1

4

∫ (
a|∇un|2 + V (x)u2

n

)
+ on(1)

= J(un) − 1
4
〈
J ′(un), un

〉
+ on(1) = d + on(1).

Hence Jp(ū) − 1
4 〈J ′

p(ū), ̄u〉 ≤ d.
Letting

Np :=
{
u ∈ H1(

R
3)\{0} :

〈
J ′
p(u), u

〉
= 0

}
,

Θp :=
{
u ∈ H1(

R
3) : b

(∫
|∇u|2

)2

<

∫
Qp(x)u4

}
, dp := inf Jp.
Np
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One easily has that ū ∈ Θp by (4.5). Similar to Lemma 4.2 (i), there exists t2 > 0 such that t2ū ∈ Np, and 
Jp(t2ū) = maxt>0 Jp(tū). Moreover, we claim that t2 ≤ 1. Otherwise, t2 > 1. Noting that 〈J ′

p(t2ū), t2ū〉 = 0, 
then we infer that

∫ (
a|∇ū|2 + Vp(x)ū2) + b

(∫
|∇ū|2

)2

>
1
t22

∫ (
a|∇ū|2 + Vp(x)ū2) + b

(∫
|∇ū|2

)2

=
∫

Qp(x)ū4.

This contradicts with (4.5). So t2 ≤ 1. Then by (4.6) we conclude that

dp ≤ Jp(t2ū) − 1
4
〈
J ′
p(t2ū), t2ū

〉
= t22

4 ‖ū‖2
p ≤ 1

4‖ū‖
2
p = Jp(ū) − 1

4
〈
J ′
p(ū), ū

〉
≤ d. (4.7)

With the use of Lemma 4.6, as Lemma 3.6, we infer that

d = inf
w∈U

max
t>0

J(tw) ≤ inf
w∈Θp∩S1

max
t>0

Jp(tw) = dp.

Then from (4.7) it follows that t2 = 1 and

dp = Jp(ū) = d. (4.8)

By (4.5) and Q ≥ Qp, we have ū ∈ Θ. Using Lemma 4.2 (i), there exists t̃ > 0 such that t̃ū ∈ N . Then 
by Lemma 4.6 and (4.8), we infer

d ≤ J(t̃ū) ≤ Jp(t̃ū) ≤ Jp(ū) = d.

Then J(t̃ū) = d.
In a word, we deduce that d is attained, and then the corresponding minimizer is a ground state of (QH). 

Below we shall look for a positive ground state for (QH). Assume that the ground state we found is u0. 
Then u0 ∈ N and J(u0) = d. We easily have that u0 ∈ Θ. Then |u0| ∈ Θ. By Lemma 4.2 (i) there exists 
t0 > 0 such that t0|u0| ∈ N . Then J(t0|u0|) ≥ d. Noting that J(t0|u0|) ≤ J(t0u0) and J(t0u0) ≤ J(u0), 
we get J(t0|u0|) ≤ d. So J(t0|u0|) = d. Then t0|u0| is also a ground state of (QH). Applying the maximum 
principle to (QH), we easily infer that t0|u0| > 0. Namely, we find a positive ground state for (QH). This 
ends the proof. �
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