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We prove the following uniqueness result for the buckling plate: Assume there exists 
a smooth domain that minimizes the first buckling eigenvalue for a plate among all 
smooth domains of given volume and connected boundary. Then the domain must be 
a ball. The proof uses the second domain variation and an inequality by L.E. Payne 
to establish this result.
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1. Introduction

We consider the following variational problem. Let Ω ⊂ R
n be a bounded domain and let

R(u,Ω) :=

∫
Ω
|Δu|2 dx

∫
Ω
|∇u|2 dx

for u ∈ H2,2
0 (Ω). We set R(u, Ω) = ∞ if the denominator vanishes. We define

Λ(Ω) := inf
{
R(u,Ω) : u ∈ H2,2

0 (Ω)
}
. (1.1)

The infimum is attained by the first eigenfunction u, which solves the Euler Lagrange equation

Δ2u + Λ(Ω)Δu = 0 in Ω (1.2)

u = ∂νu = 0 in ∂Ω. (1.3)

If we normalize u by ‖∇u‖L2(Ω) = 1, the first eigenfunction is uniquely determined. Otherwise any multiple 
of u is an eigenfunction as well. The sign of the first eigenfunction may change depending on Ω.
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The quantity Λ(Ω) is called the buckling eigenvalue of Ω. It is well known that there is a discrete spectrum 
of positive eigenvalues of finite multiplicity and their only accumulation point is ∞. The corresponding 
eigenfunctions form an orthonormal basis of H2,2

0 (Ω).
In the sequel, we will assume that u is normalized. If we multiply (1.2) with x · ∇u and integrate by 

parts, we obtain

Λ(Ω) = 1
2

∫

∂Ω

|Δu|2 x · ν dS. (1.4)

In 1951, G. Polya and G. Szegö formulated the following conjecture (see [8]).

Among all domains Ω of given volume, the ball minimizes Λ(Ω).

This conjecture is still open. However, partial results are known. In [9] Szegö proved the conjecture for 
all smooth plane domains under the additional assumption that u > 0 in Ω. M.S. Ashbaugh and D. Bucur 
proved that among simply connected plane domains of prescribed volume there exists an optimal domain [1]. 
In [10] H. Weinberger and B. Willms proved the following uniqueness result for n = 2. If an optimal simply 
connected bounded plane domain Ω exists and if ∂Ω is smooth (at least C2,α), then Ω is a disc.

There also exist bounds for Λ(Ω). We mention only Payne’s inequality (see [7]), which states that

Λ(Ω) ≥ λ2(Ω), (1.5)

where λ2 denotes the second Dirichlet eigenvalue for the Laplacian. Equality holds if and only if Ω is a ball. 
This result holds for any dimension.

In this paper, we assume that there exists an optimal domain Ω ⊂ R
n, which is smooth and such that 

the boundary ∂Ω is connected. For planar domains this is the assumption of simply connectedness of Ω. We 
then prove that Ω must be a ball. Thus we generalize the result of H. Weinberger and B. Willms in [10] to 
higher dimensions.

Considering the second domain variation for Λ(Ω) is motivated by the work of E. Mohr in [6]. He was 
interested in the clamped plate eigenvalue, where

R(u,Ω) =

∫
Ω
|Δu|2 dx
∫
Ω
u2 dx

and Ω is a smoothly bounded domain in R2. For the corresponding eigenvalue he computed the second 
domain variation. The explicit computation of the kernel of the second domain variation then implies that 
the disc is a unique minimizer among smooth domains of equal volume.

Our strategy will be as follows. In Section 2 we introduce a smooth family (Ωt)t of perturbations of 
Ω of equal volume. We denote by Λ(t) := Λ(Ωt) the corresponding first buckling eigenvalue of Ωt. As 
a consequence of the optimality of Ω, the eigenfunction u satisfies the overdetermined boundary value 
problem

Δ2u + Λ(Ω)Δu = 0 in Ω (1.6)

u = ∂νu = 0 in ∂Ω (1.7)

Δu = c0 in ∂Ω, where c0 = 2Λ(Ω) by (1.4). (1.8)
|Ω|
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This follows from the fact that the first domain variation of Λ(Ω) – computed in Section 3 – for an optimal 
domain necessarily vanishes. The equations (1.6)–(1.8) are the starting point for the proof of Weinberger 
and Willms. In a first step they substitute v(x, y) = Δu(x, y) and w(x, y) = x∂yv − y∂xv (for n = 2). For 
w they derive the equation

Δw + Λ(Ω)w = 0 in Ω w = 0 in ∂Ω.

This implies that Λ(Ω) is equal to an eigenvalue λk(Ω) of the Dirichlet Laplace operator for some k ∈ N. 
Clearly w ≡ 0 implies radial symmetry of u and the conjecture is proved. To exclude w 	= 0 they apply 
more involved arguments. In particular the authors show that in the case w 	= 0 the ball of equal volume 
as Ω has a strictly smaller first buckling eigenvalue. This contradicts the assumed minimality of Ω. A good 
reference is Chapter 11.3.4 in [3].

It is not immediate how to deduce Λ(Ω) = λk(Ω) in higher dimensions. Even if one could show this, the 
discussion of the case w 	= 0 would need completely new ideas.

This is why we use (1.6)–(1.8) to get more information about the nonnegative second domain variation 
of Λ(Ω). The main result of this paper is the derivation of the inequality Λ(Ω) ≤ λ2(Ω). Payne’s inequality 
(1.5) gives us the reverse inequality. Thus we are in the case of equality in (1.5). This implies Ω is a 
ball.

We now describe how we get the inequality Λ(Ω) ≤ λ2(Ω). In Section 4 we compute the second domain 
variation of Λ(Ω). It turns out that

Λ̈(0) = d2

dt2
Λ(t)

∣∣∣∣
t=0

= 2
∫

Ω

|Δu′|2 − 2Λ(Ω)
∫

Ω

|∇u′|2 dx, (1.9)

where u′ is the so-called shape derivative of u. It solves

Δ2u′ + Λ(Ω)Δu′ = 0 in Ω (1.10)

u′ = 0 in ∂Ω (1.11)

∂νu
′ = −c0v.ν in ∂Ω (1.12)

and
∫

Ω

∇u.∇u′ dx = 0. (1.13)

The vector field v is the first order approximation of Ωt in the sense that for y ∈ Ωt there exists an x ∈ Ω
such that

y = x + tv(x) + o(t).

Thus, Λ̈(0) is equal to a quadratic functional in the shape derivative u′ which we denote by E(u′) and E(u′)
is given by the right hand side of (1.9). Since we assumed the optimality of Ω, we have E(u′) ≥ 0. It turns 
out that the kernel of E(u′) contains the directional derivatives ∂1u, . . . , ∂nu of u. Each directional derivative 
is a shape derivative, which corresponds to a domain perturbation given by translations.

The key idea is to enlarge the class of shape derivatives on which E is defined. This new class will be 
denoted by Z and contains the shape derivatives as a true subset. Nevertheless we can show that E is still 
bounded from below and even nonnegative on Z. Moreover minZ E = 0 since the directional derivatives of 



K. Stollenwerk, A. Wagner / J. Math. Anal. Appl. 432 (2015) 254–273 257
u are in Z. This is done in Section 5. In Section 6 we construct a function ψ ∈ Z for which we will show

0 ≤ E(ψ) ≤ (λ2(Ω) − Λ(Ω))λ2(Ω).

This implies Λ(Ω) ≤ λ2(Ω).
Some of these results were obtained in the Diploma thesis of the first author [5].

2. Domain variations

Let Ω be a bounded smooth (at least C2,α) domain in Rn for which ∂Ω is connected. We denote by ν
the unit normal vector field on ∂Ω. Let δ be the distance function to the boundary, i.e. for x ∈ Ω we have

δ(x) := inf{|x− z| : z ∈ ∂Ω}.

Then, for smooth ∂Ω, ν := ∇δ defines a smooth extension of ν into a sufficiently small tubular neighborhood
of ∂Ω. With this the following identities hold.

ν · ν = 1, ν ·Dν = 0 and Dν · ν = 0 (2.1)

on ∂Ω. See e.g. Proposition 5.4.14 in [4] for a proof.
Moreover, the mean curvature of ∂Ω is bounded since Ω is smooth, i.e. for each x ∈ ∂Ω there holds

|H∂Ω(x)| ≤ max
∂Ω

|H∂Ω| < ∞. (2.2)

We will frequently use integration by parts on ∂Ω. Let f ∈ C1(∂Ω) and v ∈ C0,1(∂Ω, Rn). The next formula 
is often called the Gauss theorem on surfaces.

∮

∂Ω

f div∂Ω v dS = −
∮

∂Ω

v · ∇τf dS + (n− 1)
∮

∂Ω

f(v · ν) H∂Ω dS, (2.3)

where

∇τf = ∇f − (∇f · ν)ν (2.4)

denotes the tangential gradient of f .
In this section, we describe the class of admissible variations for the domain functional Λ(Ω). For given 

t0 > 0 and t ∈ (−t0, t0) let (Ωt)t be a family of perturbations of the domain Ω ⊂ R
n of the form

Ωt = Φt(Ω)

where

Φt : Ω → R
n

is a diffeomorphism which is smooth in t and x. Thus we may write

Ωt := {y = x + tv(x) + t2

2 w(x) + o(t2) : x ∈ Ω, t small},

where
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v = (v1(x), v2(x), . . . , vn(x)) = ∂tΦt(x)|t=0

and

w = (w1(x), w2(x), . . . , wn(x)) = ∂2
t Φt(x)|t=0

are smooth vector fields and where o(t2) collects terms such that o(t
2)

t2 → 0 as t → 0. For small t0 the sets 
Ωt and Ω are diffeomorphic. We will frequently use the notation y := Φt(x). Consider the functional

Λ(Ωt) := inf
{
R(u,Ωt) : u ∈ H2,2

0 (Ωt)
}
,

which only depends on Ωt. Let u(t, y) ∈ H2,2
0 (Ωt) be the minimizer. For short we will write

ũ(t) := u(t, y). (2.5)

Then ũ(t) solves

Δ2ũ(t) + Λ(Ωt)Δũ(t) = 0 in Ωt (2.6)

ũ(t) = |∇ũ(t)| = 0 in ∂Ωt (2.7)

for each t ∈ (−t0, t0). With this notation we define

Λ(t) := R(ũ(t),Ωt).

Since we assume smoothness of Ω and Φt, the eigenfunction ũ is also smooth in t and x. This has several 
consequences, which we list as remarks.

Remark 1. Since ∂Ωt is smooth and since ũ(t) = 0 on ∂Ωt, then necessarily

Δũ = ∂2
ν ũ + (n− 1)∂ν ũ H∂Ωt

in ∂Ωt, (2.8)

where H∂Ωt
denotes the mean curvature of ∂Ωt. Clearly, if ũ = |∇ũ| = 0 on ∂Ωt, then necessarily

Δũ = ∂2
ν ũ in ∂Ωt. (2.9)

Remark 2. Since (2.7) holds for all t ∈ (−t0, t0), we also have

˙̃u(t) = |∇ ˙̃u(t)| = 0 in ∂Ωt (2.10)

for all t ∈ (−t0, t0).

Remark 3. Straightforward computations yield

˙̃u(t) = d

dt
u(t, y) = ∂tu(t,Φt(Φ−1

t (y)) + ∂tΦt(Φ−1
t (y)) · ∇u(t, y)

for all t ∈ (−t0, t0). Let y ∈ ∂Ωt. Then (2.10) and (2.7) imply

0 = ˙̃u(t) = ∂tu(t, y) for y in ∂Ωt (2.11)

for all t ∈ (−t0, t0).
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In particular for t = 0 we compute ũ(0) = u(x) and

˙̃u(0) = ∂tu(0, x) + v(x) ·Du(0, x)
¨̃u(0) = ∂2

t u(0, x) + 2v(x) ·D∂tu(0, x) + w(x) ·Du(0, x) + v(x) ·D (v(x) ·Du(0, x)) .

We will use the notation

u′(x) := ∂tu(0, x) and u′′(x) := ∂2
t u(0, x).

Hence,

˙̃u(0) = u′(x) + v(x) ·Du(x) (2.12)
¨̃u(0) = u′′(x) + 2v(x) ·Du′(x) + w(x) ·Du(x) + v(x) ·D (v(x) ·Du(x)) . (2.13)

Note that all these quantities are defined for x ∈ Ω. For x ∈ ∂Ω we thus get

0 = ˙̃u(0) = u′(x) and 0 = ∇ ˙̃u(0) = ∇u′(x) + v(x) ·D2u(x),

where (v(x) ·D2u(x))j =
∑n

i=1 vi(x)∂i∂ju(x) for j = 1, . . . , n. Thus, we get the following boundary conditions 
for u′.

u′(x) = 0 and ∂νu
′(x) = −v(x) ·D2u(x) · ν(x) for x ∈ ∂Ω. (2.14)

Here we used the notation v(x) ·D2u(x) · ν(x) =
∑n

i,j=1 vi(x)∂i∂ju(x)νj(x).
Let νt(y) be the unit normal vector in y ∈ ∂Ωt. We also write this as

νt(y) = ν(t,Φt(x)) ∀ t ∈ (−t0, t0) x ∈ ∂Ω. (2.15)

Then we have

ν′ = −∇τ (v · ν), ν · ν′ = 0. (2.16)

This follows from direct calculations (see e.g. (5.64) in [4]).

Lemma 1. With the notation from above the following equality holds.

νt · ∇(∂tu(t, y)) = −Δu(t, y) νt · ∂tΦt(Φ−1
t (y)) for y in ∂Ωt (2.17)

for all t ∈ (−t0, t0). Alternatively, we write this for all t ∈ (−t0, t0) and x ∈ ∂Ω as

ν(t,Φt(x)) · ∇{∂tu(t,Φt(x))} = −Δu(t,Φt(x)) ν(t,Φt(x)) · ∂tΦt(x). (2.18)

Proof. Since ∇u(t, Φt(x)) = 0 for all |t| < t0 and all x ∈ ∂Ω, we have

0 = d

dt
∇u(t,Φt(x)) = ∇∂tu(t,Φt(x)) + D2u(t,Φt(x)) · ∂tΦt(x).

This implies

0 = νt · ∇(∂tu(t, y)) + νt ·D2u(t, y) · ∂tΦt(Φ−1
t (y)) for y in ∂Ωt
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for all t ∈ (−t0, t0). Here we used the notation

νt ·D2u(t, y) · ∂tΦt(Φ−1
t (y)) =

n∑
ij=1

νt,i · ∂i∂ju(t, y) · ∂tΦt(Φ−1
t (y))j .

Since ∇ũ(t) = 0 in ∂Ωt, we get

νt ·D2u(t, y) · ∂tΦt(Φ−1
t (y)) = νt ·D2u(t, y) · νt νt · ∂tΦt(Φ−1

t (y)).

Thus,

νt · ∇(∂tu(t, y)) = −νt ·D2u(t, y) · νt νt · ∂tΦt(Φ−1
t (y)) for y in ∂Ωt.

Formula (2.9) simplifies to

νt · ∇(∂tu(t, y)) = −Δu(t, y) νt · ∂tΦt(Φ−1
t (y)) for y in ∂Ωt.

This proves the lemma. �
The first derivative of Λ(t) with respect to the parameter t is called the first domain variation and the 

second derivative is called the second domain variation.
Our domain variations will be chosen within the class of volume preserving perturbations up to order 2. 

Hence, they are chosen such that

Ln(Ωt) = Ln(Ω) + o(t2) (2.19)

holds. This puts constraints on the vector fields v and w. They were discussed e.g. in [2], formula (2.13) and 
Lemma 1.

Lemma 2. Let v, w ∈ C0,1(Ω, Rn) be such that (2.19) holds. Then

∫

Ω

div v dx = 0 (2.20)

and

∫

Ω

(
(div v)2 −Dv : Dv + divw

)
dx = 0,

where Dv : Dv =
∑n

i,j=1 ∂ivj ∂jvi. The second equality is equivalent to

∫

∂Ω

(v · ν) div v dS −
∫

∂Ω

v ·Dv · ν dS +
∫

∂Ω

(w · ν) dS = 0. (2.21)

Note that rotations do not satisfy these conditions (see e.g. Remark 1 in [2]).



K. Stollenwerk, A. Wagner / J. Math. Anal. Appl. 432 (2015) 254–273 261
3. The first domain variation

We will use the following formula for the computations of the first domain variation of Λ. It is well known 
as Reynold’s transport theorem and is analyzed in detail in Chapter 5.2.3 in [4].

Theorem 1. Let t ∈ (−t0, t0) for some t0 > 0. Let Φt ∈ C0,1(Rn) be differentiable in t and let t → f(t) ∈
L1(Rn) be a function which is differentiable in t. Moreover, let f(t) ∈ W 1,1(Rn). Then t → I(t) :=

∫
Ωt

f(t) dy

is differentiable in t and we have the formula

İ(t) =
∫

Ωt

∂tf(t) + div
(
f(t) ∂tΦt(Φ−1

t (y))
)
dy.

If ∂Ω is sufficiently smooth (at least Lipschitz continuous), this is equivalent to

İ(t) =
∫

Ωt

∂tf(t) dy +
∫

∂Ωt

f(t) ∂tΦt(Φ−1
t (y)) · ν(y) dS(y).

In particular, for t = 0 we get

İ(0) =
∫

Ω

∂tf(t)|t=0 + div (f(0) v(x)) dx.

Again, if ∂Ω is sufficiently smooth, this is equivalent to

İ(0) =
∫

Ω

∂tf(t)|t=0 dx +
∫

∂Ω

f(0) v(x) · ν(x) dS(x).

We apply this formula to Λ(t) = D(t)
N(t) where

D(t) :=
∫

Ωt

|Δũ(t)|2 dy and N(t) :=
∫

Ωt

|∇ũ(t)|2 dy

and we assume the normalization

N(t) =
∫

Ωt

|∇ũ(t)|2 dy = 1 ∀ t ∈ (−t0, t0). (3.1)

We then obtain

Λ̇(t) = 2
∫

Ωt

Δũ(t) Δ∂tũ(t) dy − 2 Λ(t)
∫

Ωt

∇ũ(t) · ∇∂tũ(t) dy (3.2)

+
∫

∂Ωt

|Δũ(t)|2 ∂tΦt(Φ−1
t (y)) · νt(y) dS(y),

where νt(y) denotes the unit normal vector in y ∈ ∂Ωt. We integrate by parts and use (2.10). Then
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Λ̇(t) = 2
∫

Ωt

{
Δ2ũ(t) + Λ(t) Δũ(t)

}
∂tũ(t) dy + 2

∫

∂Ωt

Δũ(t) ∂νt
∂tũ(t) dS(y)

− 2
∫

∂Ωt

∂νt
Δũ(t)∂tũ(t) dS(y) +

∫

∂Ωt

|Δũ(t)|2 ∂tΦt(Φ−1
t (y)) · νt(y) dS(y).

The first integral vanishes since ũ(t) solves (2.6). The third integral vanishes since (2.11) holds. Finally we 
use (2.17). This proves the following lemma.

Lemma 3. Let ũ(t) be an eigenfunction (i.e. a solution of (2.6)–(2.7)) and assume (3.1) holds. Let

Λ(t) =
∫

Ωt

|Δũ(t)|2 dy.

Then

Λ̇(t) = −
∫

∂Ωt

|Δũ(t)|2 ∂tΦt(Φ−1
t (y)) · νt(y) dS(y). (3.3)

Remark 4. Note that if ∂tΦt(Φ−1
t (y)) · νt(y) > 0, this implies Ln(Ωt) > Ln(Ω) for small t. Thus, Λ̇(t) is 

negative in this case. We conclude, that the first buckling eigenvalue is decreasing under set inclusion.

From Lemma 3 we get in particular

Λ̇(0) = −
∫

∂Ω

|Δu|2 v(x) · ν(x) dS(x).

From Lemma 2 and (2.20) we deduce |Δu| = const. if Ω is a critical point of Λ(t). Due to formula (1.4), 
this constant is equal to

c0 := 2Λ(0)
|Ω| . (3.4)

We summarize this result as a theorem.

Theorem 2. Let Ωt be a family of volume preserving perturbations of Ω as described in Section 2. Then Ω
is a critical point of the energy Λ(t), i.e. Λ̇(0) = 0, if and only if

Δu = c0 on ∂Ω. (3.5)

In particular, u is a solution of the overdetermined boundary value problem

Δ2u + Λ(Ω)Δu = 0 in Ω (3.6)

u = ∂ν∇u = 0 in ∂Ω (3.7)

Δu = c0 > 0 in ∂Ω. (3.8)

Note that if we set U := Δu + Λ(Ω)u (3.6)–(3.8) imply

ΔU = 0 in Ω and U = c0 in ∂Ω.
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Hence,

U = Δu + Λ(Ω)u = c0 in Ω. (3.9)

From [10] we know that for n = 2 this implies that Ω is a ball. In particular,

∂νΔu = 0 in ∂Ω. (3.10)

These considerations are only valid if we assume that ∂Ω consists of one connected component only.

4. The second domain variation

Throughout this section we assume that Ω is an optimal domain, i.e. Λ̇(0) = 0 and Λ̈(0) ≥ 0. This implies 
that u solves (3.6)–(3.8) and (3.9). As a consequence (2.14) reads as

u′(x) = 0 and ∂νu
′(x) = −c0 v(x) · ν(x) for x ∈ ∂Ω. (4.1)

Note that if we differentiate (2.6)–(2.7) in t = 0 and use the fact that Λ̇(0) = 0, we obtain an equation 
for u′:

Δ2u′(x) + Λ(Ω)Δu′(x) = 0 in Ω. (4.2)

The boundary conditions for u′ are given by (4.1). Furthermore, the normalization (3.1) implies

∫

Ω

∇u · ∇u′ dx = 0. (4.3)

We recall formula (3.3). Before we differentiate with respect to t again we state the following consequence 
of Reynold’s theorem (see e.g. Chapter 5.4.2 in [4]).

Theorem 3. Let Ω be a bounded smooth domain of class C3. Let t ∈ (−t0, t0) and let Φt ∈ C0,1(Rn)
be differentiable in t. Let t → g(t) ∈ L1(Rn) be a function which is differentiable in t. Moreover, let 
g(t) ∈ W 1,1(Rn). Then t → J(t) :=

∫
∂Ωt

g(t) dS(y) is differentiable in t. For t = 0 we have the formula

J̇(0) =
∫

∂Ω

∂tg(0) + (v(x) · ν(x)) {∂νg(0) + (n− 1)g(0) H∂Ω(x)} dS(x),

where H∂Ω denotes the mean curvature of ∂Ω in x.

We apply this theorem to (3.3). It is convenient to apply (2.17) and to rewrite (3.3) as

Λ̇(t) =
∫

∂Ωt

Δũ(t) νt · ∇(∂tu(t, y)) dS(y).

Let

g(t) := Δũ(t) νt · ∇(∂tu(t, y)).
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An application of Theorem 3 yields

Λ̈(0) =
∫

∂Ω

Δu′ ∂νu
′ dS +

∫

∂Ω

Δu ν′ · ∇u′ dS +
∫

∂Ω

Δu ∂νu
′′ dS

+
∫

∂Ω

(v · ν) ∂ν(Δu ∂νu
′) dS + (n− 1)

∫

∂Ω

(v · ν) Δu ∂νu
′ H∂Ω dS. (4.4)

Note that

νt · νt = 1 in ∂Ωt =⇒ ν · ν′ = 0 in ∂Ω,

where

ν′(x) = ∂tν(t,Φt(x))|t=0 for x ∈ ∂Ω.

Since (4.1) implies ∇u′ = ∂νu
′ ν, this implies

∫

∂Ω

Δu ν′ · ∇u′ dS = 0.

For the fourth integral we apply (3.5) and (3.10).
∫

∂Ω

(v · ν) ∂ν(Δu ∂νu
′) dS =

∫

∂Ω

(v · ν) ∂νΔu ∂νu
′ dS +

∫

∂Ω

(v · ν) Δu ∂2
νu

′ dS

= 0 + c0

∫

∂Ω

(v · ν) ∂2
νu

′ dS.

With the help of (4.1) and (2.8) we write

∂2
νu

′ = Δu′ − (n− 1)∂νu′ H∂Ω.

Hence,
∫

∂Ω

(v · ν) ∂ν(Δu ∂νu
′) dS = c0

∫

∂Ω

(v · ν) Δu′ dS − c0(n− 1)
∫

∂Ω

(v · ν) ∂νu′ H∂Ω dS.

Our computations yield a first simplification of (4.4):

Λ̈(0) =
∫

∂Ω

Δu′ ∂νu
′ dS +

∫

∂Ω

Δu ∂νu
′′ dS + c0

∫

∂Ω

(v · ν) Δu′ dS.

In the first integral on the right hand side we use (4.1) again. Thus, we get

Λ̈(0) = c0

∫

∂Ω

∂νu
′′ dS (4.5)

In order to find a lower bound for Λ̈(0), we analyze the integral in (4.5). Recall (2.18). We differentiate this 
equation with respect to t in t = 0. Then (3.10) and (3.5) yield
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ν′ · ∇u′ + v ·Dν · ∇u′ + ∂νu
′′ + ν ·D2u′ · v

= −Δu′ (v · ν) − c0 (v · ν′) − c0v ·Dν · v − c0 (w · ν).

As before, ν′ · ∇u′ = 0 on ∂Ω. Moreover, by (4.1)

v ·Dν · ∇u′ = −c0v ·Dν · ν (v · ν) = 0,

where the last equality follows from (2.1). Thus,

Λ̈(0) = −c0

∫

∂Ω

(v · ν) Δu′ dS − c0

∫

∂Ω

ν ·D2u′ · v dS

− c20

∫

∂Ω

(v · ν′) dS − c20

∫

∂Ω

v ·Dν · v dS − c20

∫

∂Ω

(w · ν) dS. (4.6)

For the first integral we use (4.1) and we observe that Gauß theorem, partial integration and equation (4.2)
for u′ give

−c0

∫

∂Ω

(v · ν) Δu′ dS =
∫

∂Ω

Δu′ ∂νu
′ dS =

∫

Ω

|Δu′|2 dx− Λ(Ω)
∫

Ω

|∇u′|2 dx. (4.7)

The second integral is slightly more involved. We set vτ = v− (v · ν)ν. Since ∇u′ = (∂νu′)ν and since (2.8)
can be applied to u′, we get

−c0

∫

∂Ω

v ·D2u′ · ν dS = −c0

∫

∂Ω

vτ ·D2u′ · ν dS − c0

∫

∂Ω

(v · ν) (Δu′ − (n− 1)∂νu′ H∂Ω) dS

= −c0

∫

∂Ω

vτ ·D (∂νu′ ν) · ν dS − c0

∫

∂Ω

(v · ν) Δu′ dS

− c20 (n− 1)
∫

∂Ω

(v · ν)2 H∂Ω dS.

For the last equality we also used

vτ ·Dν · ν = vτ ·Dτν · ν = 0 in ∂Ω.

Next we note that with (4.1) we have

−c0

∫

∂Ω

vτ ·D (∂νu′ ν) · ν dS = −c0

∫

∂Ω

vτ ·Dτ (∂νu′ ν) · ν dS = c20

∫

∂Ω

vτ ·Dτ ((v · ν) ν) · ν dS

= c20

∫

∂Ω

vτ · ∇τ (v · ν) dS,

where the last equality uses (2.1).
For the third integral in (4.6) we apply formula (2.16):

−c20

∫
(v · ν′) dS = c20

∫
v · ∇τ (v · ν) dS = c20

∫
vτ · ∇τ (v · ν) dS.
∂Ω ∂Ω ∂Ω
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These computations simplify (4.6) and we obtain

Λ̈(0) = 2
∫

∂Ω

∂νu
′ Δu′ dS + 2c20

∫

∂Ω

vτ · ∇τ (v · ν) dS − c20 (n− 1)
∫

∂Ω

(v · ν)2 H∂Ω dS

− c20

∫

∂Ω

v ·Dν · v dS − c20

∫

∂Ω

(w · ν) dS. (4.8)

Next we use the volume constraint (2.21).

−c20

∫

∂Ω

(w · ν) dS = c20

∫

∂Ω

(v · ν) div v dS − c20

∫

∂Ω

v ·Dv · ν dS

= c20

∫

∂Ω

(v · ν) div∂Ω v dS − c20

∫

∂Ω

vτ ·Dτv · ν dS.

We integrate by parts in the first integral (see formula (2.3) and (2.4)).

−c20

∫

∂Ω

(w · ν) dS = −c20

∫

∂Ω

vτ ·Dτ (v · ν) dS + c20(n− 1)
∫

∂Ω

(v · ν)2 H∂Ω dS

− c20

∫

∂Ω

vτ ·Dτv · ν dS.

Thus, (4.8) becomes

Λ̈(0) = 2
∫

∂Ω

∂νu
′ Δu′ dS + c20

∫

∂Ω

vτ · ∇τ (v · ν) dS − c20

∫

∂Ω

vτ ·Dτv · ν dS

− c20

∫

∂Ω

v ·Dν · v dS.

An application of (2.1) and (2.16) yields

vτ · ∇τ (v · ν) − vτ ·Dτv · ν − v ·Dν · v = vτ ·Dτν · v − v ·Dν · v

= −(v · ν)ν ·Dν · v = 0.

Thus, with (4.8) we proved the following lemma.

Lemma 4. Let u′ be the shape derivative of u resulting from a volume preserving perturbation of Ω. Then 
there holds

Λ̈(0) = 2E(u′),

where

E(u′) =
∫

Ω

|Δu′|2 dx− Λ(Ω)
∫

Ω

|∇u′|2 dx.
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5. Minimization of the second domain variation

In this section we consider the quadratic functional

E(ϕ) :=
∫

Ω

|Δϕ|2 dx− Λ(Ω)
∫

Ω

|∇ϕ|2 dx (5.1)

for ϕ ∈ H1,2
0 ∩ H2,2(Ω). It will be convenient to work with an alternative representation of E . For ϕ ∈

H1,2
0 ∩H2,2(Ω) there holds

E(ϕ) =
∫

Ω

|D2ϕ|2 − Λ(Ω)|∇ϕ|2 dx +
∫

∂Ω

Δϕ∂νϕ− ϕ ·D2ϕ · ν dS.

We apply (2.8) and (2.1).

Δϕ∂νϕ− ϕ ·D2ϕ · ν = ∂2
νϕ∂νϕ + (n− 1)(∂νϕ)2 H∂Ω − ϕ ·D2ϕ · ν

= ν ·D2ϕ · ν (ν · ∇ϕ) + (n− 1)(∂νϕ)2 H∂Ω − ϕ ·D2ϕ · ν
= (n− 1)(∂νϕ)2 H∂Ω.

Consequently, we get

E(ϕ) =
∫

Ω

|D2ϕ|2 dx− Λ(Ω)
∫

Ω

|∇ϕ|2 dx + (n− 1)
∫

∂Ω

(∂νϕ)2H∂Ω dS. (5.2)

Remark 5. The functional E is lower semicontinuous with respect to weak convergence in H1,2
0 ∩H2,2(Ω).

Since Ω is optimal, we know from Lemma 4 that

E(ϕ) ≥ 0

for all ϕ which are shape derivatives of u. Recall that ϕ is a shape derivative, if it solves (1.10)–(1.13) for 
some vector field v in the class described in Section 2 (Lemma 2).

The following remark shows a property of shape derivatives we have not yet mentioned.

Remark 6. Let ϕ be a shape derivative and assume that ∂νϕ ≡ 0 in ∂Ω. Then ϕ ∈ H2,2
0 (Ω) and, since ϕ

satisfies equation (4.2), ϕ is a buckling eigenfunction in Ω. Thus by uniqueness of u we get ϕ = αu for any 
α ∈ R. Then formula (1.4) yields

Λ(Ω) =
∫

∂Ω

|Δϕ|2 x · ν dS = α2c2o

∫

∂Ω

x · ν dS = α2
∫

∂Ω

|Δu|2 x · ν dS = α2Λ(Ω).

Thus, α2 = 1 and there holds
∣∣∣∣∣∣
∫

Ω

∇u · ∇ϕdx

∣∣∣∣∣∣ = 1.

This is contradictory to (4.3) and thus ∂νϕ cannot vanish identically on ∂Ω.
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This motivates the following definition.

Z :=

⎧⎨
⎩ϕ ∈ H1,2

0 ∩H2,2(Ω) :
∫

∂Ω

∂νϕdS = 0,
∫

∂Ω

(∂νϕ)2 dS > 0,
∫

Ω

∇u · ∇ϕdx = 0

⎫⎬
⎭ .

Note that Z contains elements which are not shape derivatives. Nevertheless we will show that

E
∣∣
Z ≥ 0.

The next lemma ensures that Z is not empty and that at least for a specific shape derivative E is equal to 
zero.

Lemma 5. For each 1 ≤ k ≤ n the directional derivative ∂ku satisfies ∂ku ∈ Z. Furthermore, E(∂ku) = 0.

Proof. Let 1 ≤ k ≤ n. Due to (1.2) and (1.3) ∂ku satisfies

Δ2∂ku + Λ(Ω)Δ∂ku = 0 in Ω

∂ku = 0 in ∂Ω. (5.3)

According to (2.9) there holds ∂ν∂ku = c0νk on ∂Ω. Hence,
∫

∂Ω

∂ν∂ku dS = c0

∫

∂Ω

νk dS = 0.

In addition, we find that
∫

Ω

∇u · ∇∂ku dx = 1
2

∫

∂Ω

|∇u|2νk dS = 0.

Following the idea of Remark 6, we obtain that ∂ν∂ku does not vanish identically on ∂Ω. Thus, ∂ku ∈ Z. 
Moreover, (3.10) and (5.3) imply

E(∂ku) =
∫

Ω

(Δ2∂ku + Λ(Ω)Δ∂ku)∂ku dx +
∫

∂Ω

∂kΔu ∂ν∂ku dS = 0.

This proves the lemma. �
Note that each directional derivative of u is a shape derivative resulting from translations of Ω.
We consider the functional

Ẽ(ϕ) := E(ϕ)∫
∂Ω

(∂νϕ)2 dS
, (5.4)

where ϕ ∈ Z and we set Ẽ = ∞ if 
∫
∂Ω

(∂νϕ)2 dS = 0. By scaling we may assume

∫

∂Ω

(∂νϕ)2 dS = 1

With this normalization we prove the following statement.
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Theorem 4. The infimum of the functional Ẽ in Z is finite.

Proof. We argue by contradiction. Let us assume that infZ Ẽ = −∞ and consider a sequence (ŵk)k ⊂ Z
such that

∫

∂Ω

(∂νŵk)2 dS = 1

and

lim
k→∞

Ẽ(ŵk) = −∞.

Assumption (2.2) gives

∣∣∣∣∣∣
∫

∂Ω

H∂Ω (∂νŵk)2 dS

∣∣∣∣∣∣ ≤ max
∂Ω

|H∂Ω| < ∞.

We use (5.2) and obtain

Ẽ(ŵk) ≥ −Λ(0)
∫

Ω

|∇ŵk| dx− (n− 1) max
∂Ω

|H∂Ω|. (5.5)

The assumption limk→∞ E(ŵk) = −∞ implies

∫

Ω

|∇ŵk|2 dx k→∞−→ ∞.

We define

wk := 1
‖∇ŵk‖L2(Ω)

ŵk.

Then there holds

‖∇wk‖L2(Ω) = 1 and
∫

∂Ω

(∂νwk)2 dS
k→∞−→ 0. (5.6)

Moreover, for each k ∈ N estimate (5.5) implies

Ẽ(wk) ≥ −Λ(0) − C

and the infimum of Ẽ in M := {wk : k ∈ N} is finite. Therefore, we can choose a subsequence of (wk)k, 
denote by (wk)k as well, such that

lim Ẽ(wk) = inf E .

k→∞ M
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Now Poincaré’s inequality and the previous estimates imply

‖wk‖2
H2,2(Ω) =

∫

Ω

|D2wk|2 + |∇wk|2 + w2
k dx

≤ Ẽ(wk) + C

∫

Ω

|∇wk|2 dx + (n− 1)
∫

∂Ω

|H∂Ω|(∂νwk)2 dS

≤ C.

Thus, the sequence (wk)k is uniformly bounded in H2,2(Ω) and there exists a w ∈ H2,2(Ω) such that (wk)k
weakly converges to w. In view of (5.6), the limit function w satisfies ‖∇w‖L2(Ω) = 1 and ∂νw = 0 on ∂Ω. 
Since wk = 0 in ∂Ω for each k ∈ N, we conclude that w ∈ H2,2

0 (Ω).
Now let us recall that Ẽ(ŵk) converges to −∞. Thus there exists a k0 ∈ N such that

Ẽ(wk) = 1
‖∇ŵk‖L2(Ω)

E(ŵk) < 0

for all k ≥ k0. Since the functional Ẽ is lower semicontinuous with respect to weak convergence in H2,2(Ω), 
we find that Ẽ(w) < 0. According to the definition of E in (5.1), this immediately leads to

∫
Ω
|Δw|2 dx

∫
Ω
|∇w|2 dx < Λ(Ω).

Since w ∈ H2,2
0 (Ω) this is contradictory to the minimum property of Λ(Ω). �

We now consider a minimizing sequence (ϕk)k ⊂ Z which satisfies
∫

∂Ω

(∂νϕk)2 dS = 1 (5.7)

for all k ∈ N. As before we obtain the inequality

‖ϕk‖2
H2,2(Ω) ≤ Ẽ(ϕk) + C

∫

Ω

|∇ϕk|2 dx.

Thus, (ϕk)k is uniformly bounded in H2,2(Ω) and ϕk converges weakly to a ϕ∗ ∈ H2,2(Ω). We find that 
ϕ∗ ∈ Z and Ẽ(ϕ∗) = infZ Ẽ . In addition, there holds

∫

∂Ω

(∂νϕ∗)2 dS = 1.

Hence, ϕ∗ minimizes Ẽ in Z. Suppose θ ∈ Z, then the minimality of ϕ∗ implies

d

dt

E(ϕ∗ + tθ)∫
∂Ω

(∂ν(ϕ∗ + tθ))2 dS)

∣∣∣∣
t=0

= 0

and we obtain
∫

[Δ2ϕ∗ + Λ(Ω)Δϕ] θ dx−
∫

[Δϕ∗ + ρ ∂νϕ
∗] ∂νθ dS = 0.
Ω ∂Ω
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Since θ ∈ Z was chosen arbitrary, ϕ∗ satisfies the Euler–Lagrange equalities

Δ2ϕ∗ + Λ(Ω)Δϕ∗ = 0 in Ω

Δϕ∗ + ρ∂νϕ
∗ = const. in ∂Ω,

where ρ := minZ Ẽ . The following theorem collects the previous results.

Theorem 5. There exists a function ϕ∗ ∈ Z such that Ẽ(ϕ∗) = minZ Ẽ. Furthermore, any minimizer ϕ∗ ∈ Z
satisfies

Δ2ϕ∗ + Λ(Ω)Δϕ∗ = 0 in Ω (5.8)

Δϕ∗ + ρ ∂νϕ
∗ = const. in ∂Ω (5.9)

ϕ∗ = 0 in ∂Ω,

where ρ := minZ Ẽ.

The next theorem shows that in fact ρ = 0.

Theorem 6. Suppose ϕ∗ ∈ Z is a minimizer of Ẽ . Then there holds Ẽ(ϕ∗) = 0. In particular, E ≥ 0 in Z.

Proof. Let ϕ∗ ∈ Z be a minimizer of Ẽ . Since ϕ∗ satisfies equation (5.8) and ∂Ω is smooth, ϕ∗ is a smooth 
function on Ω. Hence, we may define a volume preserving perturbation Φt of Ω such that

∂νu
′(x) = ∂νϕ

∗(x) for x ∈ ∂Ω.

Note that this can be achieved by setting v = c−1
0 ∇ϕ∗ in ∂Ω. In this way, each minimizer ϕ∗ implies the 

existence of vector fields v and w in the sense of Section 2. We define ψ := u′ − ϕ∗, then ψ ∈ H2,2
0 (Ω) and

Δ2ψ + Λ(Ω)Δψ = 0 in Ω.

The uniqueness of u implies ψ = αu for an α ∈ R. Since ϕ∗ ∈ Z, equation (4.3) yields

0 =
∫

Ω

∇u · ∇u′ dx−
∫

Ω

∇u · ∇ϕ∗ dx =
∫

Ω

∇u · ∇ψ dx = α.

Consequently, u′ ≡ ϕ∗. Thus ϕ∗ is a shape derivative. Since Ω is optimal Ẽ(ϕ∗) ≥ 0. Finally we apply 
Lemma 5. This gives

0 ≤ Ẽ(ϕ∗) = min
Z

Ẽ ≤ Ẽ(∂ku) = 0. �
6. The optimal domain is a ball

We will use an inequality due to L.E. Payne to show that the optimal domain Ω is a ball. Payne’s 
inequality (see [7]) states that for each domain G there holds

λ2(G) ≤ Λ(G)

and equality holds if and only if G is a ball. Thereby λ2 denotes the second Dirichlet eigenfunction of the 
Laplacian. In the sequel, we construct a suitable function ψ ∈ Z such that the condition E(ψ) ≥ 0 (due to 
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Theorem 6) will imply that the optimal domain Ω is a ball. For this purpose, we denote by u1 and u2 the 
first and the second Dirichlet eigenfunction for the Laplacian in Ω. Thus, for k = 1, 2 there holds

Δuk + λk(Ω)uk = 0 in Ω

uk = 0 in ∂Ω,

where λk(Ω) is the k-th Dirichlet eigenvalue for the Laplacian in Ω. Note that 0 < λ1(Ω) < λ2(Ω). For 
the sake of brevity, we will write λk instead of λk(Ω) and Λ instead of Λ(Ω). In addition, we assume 
‖uk‖L2(Ω) = 1 and

∫

Ω

u1u2 dx = 0.

Without loss of generality, we may assume that
∫

Ω

u1 dx > 0 and
∫

Ω

u2 dx ≤ 0.

Consequently, there exists a t ∈ (0, 1] such that
∫

Ω

(1 − t) λ1 u1 + t λ2 u2 dx = 0. (6.1)

This fixes t. Next we define

ψ(x) := (1 − t) u1(x) + t u2(x) + c u(x) for x ∈ Ω,

where u is the first buckling eigenfunction in Ω. The constant c is given by

c := − 1
Λ

∫

Ω

(1 − t)λ1∇u.∇u1 + tλ2∇u.∇u2 dx.

In a first step we show that ψ ∈ Z. Note that ψ ∈ H1,2
0 ∩H2,2(Ω). Moreover the definition of ψ, the fact 

that ∂νu = 0 on ∂Ω, the equations for u1 and u2, and (6.1) imply
∫

∂Ω

∂νψ dS =
∫

Ω

(1 − t) Δu1 + t Δu2 dx = −
∫

Ω

(1 − t)λ1u1 + tλ2u2 dx = 0.

By the unique continuation principle ∂νψ does not vanish identically in ∂Ω. Thus, to show that ψ ∈ Z, it 
remains to prove that

∫

Ω

∇u.∇ψ dx = 0. (6.2)

We recall that Δu = c0 in ∂Ω. Hence

0 =
∫

Ω

(Δ2u + ΛΔu)ψ dx =
∫

Ω

ΔuΔψ dx− Λ
∫

Ω

∇u.∇ψ dx

= −
∫

[(1 − t)λ1u1 + tλ2u2]Δu dx + c

∫
|Δu|2 dx− Λ

∫
∇u.∇ψ dx.
Ω Ω Ω
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Since ‖∇u‖L2(Ω) = 1, the second integral is equal to Λ. Thus, the definition of c implies (6.2). Note that ψ
is not a shape derivative since it fails to satisfy (4.2) – unless t = 1 and Ω equals a ball. However, ψ ∈ Z
and, according to Theorem 6, there holds Ẽ(ψ) ≥ 0. Consequently, E(ψ) ≥ 0. Thus

E(ψ) =
∫

Ω

|Δψ|2 − Λ|∇ψ|2 dx

= (1 − t)2λ1(λ1 − Λ) + t2λ2(λ2 − Λ) + 2 c c0
∫

Ω

(1 − t)λ1u1 + tλ2u2 dx

(6.1)= (1 − t)2λ1(λ1 − Λ) + t2λ2(λ2 − Λ) ≥ 0.

Since λ1 − Λ < 0 and λ2 − Λ ≤ 0, both summands in E(ψ) have to vanish. Consequently t = 1 and 
λ2(Ω) = Λ(Ω). Payne’s inequality implies that Ω is a ball. This proves the main theorem of the paper.

Theorem 7. Let Ω be within the class of bounded, smooth domains in Rn for which the boundary ∂Ω is 
connected. Assume Ω minimizes the first buckling eigenvalue among all domains in Rn in this class with 
given measure. Then Ω is a ball.
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