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A bounded sequence (xn) in a Banach space is called ε-weak Cauchy, for some ε > 0, 
if for all x∗ ∈ BX∗ there exists some n0 ∈ N such that |x∗(xn) − x∗(xm)| < ε for all 
n ≥ n0 and m ≥ n0. It is shown that given ε > 0 and a bounded sequence (xn) in 
a Banach space then either (xn) admits an ε-weak Cauchy subsequence or, for all 
δ > 0, there exists a subsequence (xmn ) with the following property. If I is a finite 
subset of N and φ : I → N \ I is any map then

∥∥∥∥
∑

n∈I

λn(xmn − xmφ(n) )
∥∥∥∥ ≥ (

ε

π
− δ)

∑

n∈I

|λn|

for every sequence of complex scalars (λn)n∈I . This provides an alternative proof for 
Rosenthal’s �1-theorem and strengthens its quantitative version due to Behrends. 
As a corollary we obtain that for any uniformly bounded sequence (fn) of complex-
valued functions, continuous on the compact Hausdorff space K and satisfying 
lim supn,m→∞|fn(t) − fm(t)| ≤ ε, for some ε > 0 and all t ∈ K, there exists a 
subsequence (fjn ) satisfying lim supn,m→∞| 

∫
K

(fjn − fjm )dμ| ≤ 2ε, for every Radon 
measure μ on K.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

One of the most important results in Banach space theory is Rosenthal’s �1-theorem [16]:

Theorem 1.1. Every bounded sequence in a (real or complex) Banach space admits a subsequence which is 
either weak Cauchy, or equivalent to the usual �1-basis.
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Rosenthal proved his result for real Banach spaces and subsequently Dor [5] settled the complex case. 
Most proofs of the �1-theorem (see [7,14,4,10]) rely on the infinite Ramsey theorem [6] which states that 
every analytic subset of [N] is Ramsey (see also [8]). A proof of the �1-theorem that avoids the use of Ramsey 
theory is given in [2]. We recall here that for an infinite subset L of N, [L] stands for the set of all of its 
infinite subsets. [N] is endowed with the topology of pointwise convergence. A subset A of [N] is a Ramsey 
set if for every N ∈ [N] there exists M ∈ [N ] such that either [M ] ⊂ A, or [M ] ∩ A = ∅.

The purpose of this article is to provide a quantified version of the �1-theorem in the spirit of Behrends [4]. 
To explain our results, we first fix a compact Hausdorff space K and a bounded sequence (fn) of complex-
valued functions, continuous on K. Given ε > 0, let us call (fn) ε-weak Cauchy on K provided that for 
every t ∈ K there exists n0 ∈ N such that |fn(t) − fm(t)| < ε for all n ≥ n0 and m ≥ n0. We note that the 
concept of an ε-weak Cauchy sequence is implicit in [4]. Behrends’ result may be restated as follows.

Theorem 1.2. Let (fn) be a bounded sequence in a complex C(K) space and let ε > 0. Then either (fn) admits 
a subsequence which is ε-weak Cauchy on K or, for every δ > 0, there is a subsequence (fmn

) satisfying

∥∥∥∥
∑

n

λnfmn

∥∥∥∥ ≥
(ε
√

2
8 − δ

)∑

n

|λn|

for every finitely supported sequence of complex scalars (λn).

Our main result is as follows.

Theorem 1.3. Let (fn) be a bounded sequence in a complex C(K) space and let ε > 0. Then either (fn)
admits a subsequence which is ε-weak Cauchy on K or, for every δ > 0, there is a subsequence (fmn

) with 
the following property. If I is a finite subset of N and φ : I → N \ I is any map then

∥∥∥∥
∑

n∈I

λn(fmn
− fmφ(n))

∥∥∥∥ ≥
( ε
π
− δ

)∑

n∈I

|λn|

for every sequence of complex scalars (λn)n∈I .

Two obvious choices of the map φ yield the next corollary.

Corollary 1.4. Let (fn) be a bounded sequence in a complex C(K) space and let ε > 0. Assume that none of 
the subsequences of (fn) is ε-weak Cauchy on K. Then for every δ > 0, there is a subsequence (fmn

) with 
the following properties.

∥∥∥∥
∞∑

n=2
λn(fmn

− fm1)
∥∥∥∥ ≥

( ε
π
− δ

) ∞∑

n=2
|λn| (1.1)

for all finitely supported sequences of complex scalars (λn)∞n=2.
∥∥∥∥
∑

n

λn(fl2n − fl2n−1)
∥∥∥∥ ≥

( ε
π
− δ

)∑

n

|λn| (1.2)

for all finitely supported sequences of complex scalars (λn) and every infinite subset L = (ln) of M = (mn).

It follows now that, under the assumptions of Corollary 1.4, the resulting subsequence (fmn
) has the 

property that (fmn
− fm1)∞n=2 C-dominates the usual �1-basis, where C = ε − δ for sufficiently small δ > 0, 
π
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and therefore (fmn
− fm1)∞n=2 is an �1-sequence (i.e., equivalent to the usual �1-basis). It is not hard to see 

that any translate of an �1-sequence admits a tail subsequence which is an �1-sequence too. We conclude 
that if (fn) is a bounded sequence in C(K) admitting no �1-subsequence, then every subsequence of (fn)
admits, for all ε > 0, a subsequence which is ε-weak Cauchy on K and thus, by an easy diagonalization 
argument, a weak Cauchy subsequence. We have thus recaptured the �1-theorem.

Moreover, if (fmn
) satisfies the conclusion of Corollary 1.4 for a sufficiently small δ then it follows, by 

a result of Knaust and Odell (Proposition 4.2 of [11] which holds for complex Banach spaces as well), 
that there is some k ≥ 2 so that (fmn

)∞n=k C-dominates the usual �1-basis, where C = ε
π − δ. We deduce 

from this that if (fn) lacks subsequences which are ε-weak Cauchy on K for some fixed ε > 0, then the 
subsequence (fmn

) resulting from Corollary 1.4 for a given δ > 0, admits a further subsequence satisfying 
the conclusion of Theorem 1.2 with the constant 

√
2/8 being replaced by 1/π. We have thus obtained a 

modest strengthening of Behrends’ quantified version of the �1-theorem for complex Banach spaces.
We note here that in [4] it is shown that for real C(K) spaces Theorem 1.2 holds with the constant 

√
2/8

being replaced by 1/2. Direct modifications of our arguments show that for real C(K) spaces, the constant 
1/π which appears in Theorem 1.3 may also be replaced by 1/2.

Our final result may be viewed as a Rainwater type of result [15] about ε-weak Cauchy sequences. Let X
be a Banach space and endow BX∗ with the w∗-topology. We naturally identify X with a closed subspace 
of C(BX∗). Call a bounded sequence (xn) in X ε-weak Cauchy, for some fixed ε > 0, if (xn) is ε-weak 
Cauchy on BX∗ . By combining results from the theory of Schreier families [1] and transfinite averages [3]
with Corollary 1.4, we obtain the following.

Corollary 1.5. Let X be a Banach space and K a w∗-compact subset of BX∗ which norms X isometrically 
(i.e., ‖x‖ = supx∗∈K |x∗(x)| for all x ∈ X). Let (xn) be a bounded sequence in X which is ε-weak Cauchy 
on K for some ε > 0. Then (xn) admits, for all δ > 0, a (2ε + δ)-weak Cauchy subsequence.

We use standard Banach space facts and terminology as may be found in [12]. If M ∈ [N] then [M ]<∞

stands for the set of all finite subsets of M .

2. Proofs of the results

We fix a compact Hausdorff space K and a bounded sequence (fn) in C(K).

Notation. Let E be a closed subset of C2 and P ∈ [N]. Define

D(P,E) = {L ∈ [P ], L = (ln) : ∃ t ∈ K, (fl2n−1(t), fl2n(t)) ∈ E, ∀n ∈ N}.

Notation. For ε > 0 we set Fε = {(z1, z2) ∈ C
2 : |z1 − z2| ≥ ε}.

Lemma 2.1. D(P, E) is pointwise closed in [N].

Proof. Let (Lm) be a sequence in D(P, E) converging pointwise to some L ∈ [P ], L = (ln). Fix n ∈ N

and choose mn ∈ N such that {lk : k ≤ 2n} is an initial segment of Lmn
. Next choose tn ∈ K so that 

(fl2j−1(tn), fl2j (tn)) ∈ E for all j ≤ n. Let t ∈ K be a cluster point of the sequence (tn). Since the fj ’s 
are continuous and E is closed, we obtain that (fl2n−1(t), fl2n(t)) ∈ E for all n ∈ N and so L ∈ D(P, E)
completing the proof of the lemma. �
Remark 1. Assume that D(P, Fε) is a proper subset of [P ] for all P ∈ [N] and ε > 0. Since D(P, Fε) is 
Ramsey, an easy diagonalization argument shows that (fn) admits a weak Cauchy subsequence.
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Lemma 2.2. Assume that [N] = D(N, Fε) for some ε > 0. Let δ1 > 0 and choose an integer multiple A of δ1, 
A > δ1, so that ‖fn‖ ≤ A for all n ∈ N. Then there exist M ∈ [N] and two squares Δ1 and Δ2 contained in 
[−A, A]2 with sides parallel to the axes and equal to δ1 so that

(1) (Δ1 × Δ2) ∩ Fε 
= ∅.
(2) For every choice J1 and J2 of pairwise disjoint subsets of M there exists t ∈ K so that fn(t) ∈ Δs for 

all n ∈ Js and s ≤ 2.

Proof. Let Π be a finite partition of [−A, A]2 into pairwise non-overlapping squares having sides parallel to 
the axes and equal to δ1. Define

D = ∪(Δ1,Δ2)∈Π2 D[N, (Δ1 × Δ2) ∩ Fε].

This is a pointwise closed subset of [N], thanks to Lemma 2.1, and therefore it is Ramsey. Let L ∈ [N], 
L = (ln). Since L ∈ D(N, Fε) there exist t ∈ K, I ∈ [N] and (Δ1, Δ2) ∈ Π2 so that (fl2j−1(t), fl2j (t)) ∈
(Δ1×Δ2) ∩Fε for all j ∈ I. It follows that L1 ∈ [L] ∩D, where L1 = ∪j∈I{l2j−1, l2j}. Hence, [L] ∩D 
= ∅ for 
all L ∈ [N]. The infinite Ramsey theorem now yields N ∈ [N] so that [N ] ⊂ D. A second application of the 
infinite Ramsey theorem provides us some P ∈ [N ] and (Δ1, Δ2) ∈ Π2 so that [P ] ⊂ D[N, (Δ1 × Δ2) ∩ Fε]. 
Finally, if P = (pn), let M = {p3n−1 : n ∈ N}. Clearly, M , Δ1 and Δ2 satisfy (1) and (2). �
Lemma 2.3. Let ε > 0, δ > 0 and 0 < δ1 < δ/4. Let Δ1, Δ2 be subsets of C of diameter at most equal to δ1
with 0 ∈ Δ1. Assume that the following conditions are fulfilled:

(1) (Δ1 × Δ2) ∩ Fε 
= ∅.
(2) For every choice J1 and J2 of pairwise disjoint subsets of N there exists t ∈ K so that fn(t) ∈ Δs for 

all n ∈ Js and s ≤ 2.

Then for every I ∈ [N]<∞, every map φ : I → N \ I and every sequence of complex scalars (λn)n∈I the 
following inequality holds.

∥∥∥∥
∑

n∈I

λn(fn − fφ(n))
∥∥∥∥ ≥ ( ε

π
− δ)

∑

n∈I

|λn|.

Proof. Since (Δ1 × Δ2) ∩ Fε 
= ∅ there exists z2 ∈ Δ2 so that |z2| ≥ ε − δ1. Fix I ∈ [N]<∞ and a map 
φ : I → N \ I. Let (λn)n∈I be a sequence of complex scalars. By applying Lemma 6.3 in [17] we may choose 
J2 ⊂ I such that

∣∣∣∣
∑

n∈J2

λn

∣∣∣∣ ≥
1
π

∑

n∈I

|λn|.

Let J1 = (I \ J2) ∪ φ(I). By our hypothesis, there is some t ∈ K such that fn(t) ∈ Δ1 for all n ∈ J1, while 
fn(t) ∈ Δ2 for all n ∈ J2. Note that

∥∥∥∥
∑

n∈I

λn(fn − fφ(n))
∥∥∥∥ ≥

∣∣∣∣
∑

n∈J2

λnfn(t)
∣∣∣∣−

∑

n∈I\J2

|λn||fn(t)| −
∑

n∈I

|λn||fφ(n)(t)|

≥
∣∣∣∣
∑

λnfn(t)
∣∣∣∣− 2δ1

∑
|λn|
n∈J2 n∈I
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≥
∣∣∣∣
∑

n∈J2

λnz2

∣∣∣∣−
∑

n∈J2

|λn||fn(t) − z2| − 2δ1
∑

n∈I

|λn|

≥
∣∣∣∣
∑

n∈J2

λn

∣∣∣∣|z2| − 3δ1
∑

n∈I

|λn|

≥ ε− δ1
π

∑

n∈I

|λn| − 3δ1
∑

n∈I

|λn| ≥ ( ε
π
− δ)

∑

n∈I

|λn|. �

Proof of Theorem 1.3. Suppose that (fn) has no subsequence which is ε-weak Cauchy on K. It follows 
that [P ] ∩ D(N, Fε) = ∅ for no P ∈ [N]. Since D(N, Fε) is pointwise closed, by Lemma 2.1, the infinite 
Ramsey theorem implies that D(N, Fε) = [N ] for some N ∈ [N]. Without loss of generality, by relabeling if 
necessary, we may assume that N = N. Let δ > 0 and choose 0 < δ1 < δ

4
√

2 . Applying Lemma 2.2, passing 
to a subsequence and relabeling if necessary, we may also assume that there exist two squares Δ1 and Δ2
with sides parallel to the axes and equal to δ1 so that

(1) (Δ1 × Δ2) ∩ Fε 
= ∅.
(2) For every choice J1 and J2 of pairwise disjoint subsets of N there exists t ∈ K so that fn(t) ∈ Δs for 

all n ∈ Js and s ≤ 2.

By replacing (fn) by (gn), where for all n ∈ N gn = fn + z for a suitable choice of z ∈ C, we may assume 
that Δ1 = [0, δ1]2. The assertion of the theorem now follows by applying Lemma 2.3. �

We remark here that in case λn ∈ R for all n ∈ I then we may replace the constant 1/π by 1/2 in the 
conclusion of Theorem 1.3.

Proof of Corollary 1.5. Let (xn) be ε-weak Cauchy on K and let ρ > 0 be such that (xn) admits no ρ-weak 
Cauchy subsequence. It will suffice showing that ρ ≤ 2ε. Let δ > 0. By applying Corollary 1.4, passing to 
an appropriate subsequence and relabeling, there is no loss of generality in assuming that

∥∥∥∥
∑

n∈I

λn(x2n − x2n−1)
∥∥∥∥ ≥

(ρ
2 − δ

)∑

n∈I

|λn| (2.1)

for all I ∈ [N]<∞ and every sequence of real scalars (λn)n∈I .
We next define

F = {F ∈ [N]<∞ : ∃x∗ ∈ K with |x∗(x2n − x2n−1)| ≥ ε, ∀n ∈ F}.

Clearly, F is a hereditary family of finite subsets of N (i.e., G ∈ F whenever G ⊂ F and F ∈ F). Endow 
P(N) (i.e., the powerset of N) with the topology of pointwise convergence. By applying a compactness 
argument similar to the one in the proof of Lemma 2.1, based on the fact that K is w∗-compact and (xn)
is ε-weak Cauchy on K, we infer that F is pointwise closed in P(N).

It follows that F is a countable, compact metric space in the topology of pointwise convergence. A classical 
result [13] now yields a countable ordinal ξ such that F (ξ) = ∅. We next deduce from the dichotomy theorem 
of [9] that there exists M ∈ [N] so that F∩[M ]<∞ ⊂ Sξ, the latter denoting the Schreier family of order ξ [1]. 
It is shown in [3] that there exist F ∈ [M ]<∞ and positive scalars (λn)n∈F so that 

∑
n∈F λn = 1, while ∑

n∈G λn < δ for all G ⊂ F with G ∈ Sξ.
We apply (2.1) to obtain

∥∥∥∥
∑

λn(x2n − x2n−1)
∥∥∥∥ ≥ ρ

2 − δ. (2.2)

n∈F
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Let x∗ ∈ K and set G = {n ∈ F : |x∗(x2n−x2n−1)| ≥ ε}. Our preceding choices ensure that G ∈ F∩ [M ]<∞

and so G ∈ Sξ. Hence,
∣∣∣∣
∑

n∈G

λnx
∗(x2n − x2n−1)

∣∣∣∣ < 2δC, (2.3)

where C = supn ‖xn‖. It is also clear that
∣∣∣∣
∑

n∈F\G
λnx

∗(x2n − x2n−1)
∣∣∣∣ < ε. (2.4)

Since K isometrically norms X and x∗ ∈ K is arbitrary, we deduce from (2.3) and (2.4) that
∥∥∥∥
∑

n∈F

λn(x2n − x2n−1)
∥∥∥∥ ≤ ε + 2δC. (2.5)

We finally conclude, by combining (2.2) with (2.5), that

ρ

2 − δ ≤ ε + 2δC

for all δ > 0. Therefore, ρ ≤ 2ε. �
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