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Within the new concept of a local iterated function system (local IFS), we consider 
a class of attractors of such IFSs, namely those that are graphs of functions. These 
new functions are called local fractal functions and they extend and generalize those 
that are currently found in the fractal literature. For a class of local fractal functions, 
we derive explicit conditions for them to be elements of Besov and Triebel–Lizorkin 
spaces. These two scales of functions spaces play an important role in interpolation 
theory and for certain ranges of their defining parameters describe many classical 
function spaces (in the sense of equivalent norms). The conditions we derive provide 
immediate information about inclusion of local fractal functions in, for instance, 
Lebesgue, Sobolev, Slobodeckij, Hölder, Bessel potential, and local Hardy spaces.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Iterated function systems, for short IFSs, are a powerful means for describing fractal sets and for modeling 
or approximating natural objects. IFSs were first introduced in [2,12] and subsequently investigated by 
numerous authors. Within the fractal image compression community a generalization of IFSs was proposed 
in [4] whose main purpose was to obtain efficient algorithms for image coding. The power of IFSs lies in the 
fact that they are built around contractive operators acting on complete metric spaces or Banach spaces.

Contractive operators on function spaces are important for the development of both the theory and 
algorithms for the solution of integral and differential equations. For instance, they are used in the theory 
of elliptic partial differential equations, Fredholm integral equations of the second kind, Volterra integral 
equations, and in the theory of ordinary differential equations. For the development of iterative solvers, 
contractive operators play a fundamental role.
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One class of contractive operators is defined on the graphs of functions using a special kind of iterated 
function system. The fixed point of such an IFS is the graph of a fractal function. There is a vast literature 
on IFSs and the interested reader is referred to [5] for a recent review of the topic. Computationally, IFSs 
are used in areas such as computer graphics to obtain refinement methods that effectively compute points 
on curves and surfaces [6]. They are also employed for the computation of function values of piecewise 
polynomial functions and wavelets. In fact, it can be shown that these applications use a variant of IFSs 
where the iterated functions are defined locally [4]. For more details about these so-called local IFSs and, 
in particular, their computational applications, we refer to [3].

In [3], the generalization of an IFS to a local IFS was reconsidered from the viewpoint of approximation 
theory and from the standpoint of developing computationally efficient numerical methods based on fractal 
methodologies. In the current paper, we continue this former exploration of local IFSs and consider two very 
general classes of functions spaces onto which a certain class of contractive operator acts. In particular, we 
derive conditions under which such local fractal functions are elements of Besov and Triebel–Lizorkin func-
tion spaces. As these two scales of function spaces describe many classical function spaces such as Lebesgue, 
Sobolev, Slobodeckij, Hölder, Bessel potential, and local Hardy spaces, which are ubiquitous in numeri-
cal analysis, the theory of partial differential equations, and harmonic analysis, a deeper understanding of 
the interplay between contractive operators acting on local fractal functions and these function spaces is 
warranted.

The outline of this paper is as follows. In Section 2, we introduce the new concept of local IFS and 
summarize some of its properties. Local fractal functions are then defined in Section 3 together with the 
relevant class of contractive operators. A condition under which the fixed point of such contractive operators 
belongs to the Banach space of bounded functions is derived. In the next section, we consider the Lebesgue 
Spaces Lp, 0 < p ≤ ∞, as quasi-Banach spaces on Rn, and present a condition so that the fixed points of 
the contractive operators we investigate belongs to Lp. Section 5 gives a short introduction to Besov and 
Triebel–Lizorkin function spaces. The main results are presented in Section 6 where explicit conditions are 
derived for local fractal functions to belong to these two scales of function spaces.

Throughout this paper, we use the following notation. The set of positive integers is denoted by N :=
{1, 2, 3, . . .}, the set of nonnegative integers by N0 = N ∪ {0}, and the ring of integers by Z. We denote the 
closure of a set S by S. (Quasi-)Normed spaces will be denoted by (X, ‖ • ‖X) with (quasi-) norm ‖ • ‖•. 
As customary, we also do not distinguish notationally between a space and the set over which it is defined.

For a vector ξ := (ξ1, . . . , ξm)T ∈ Rm, we define its p-quasi-norm by

‖ξ‖p :=

⎧⎪⎨
⎪⎩

(
m∑
i=1

|ξi|p
)1/p

, 0 < p < ∞,

max{|ξi| : ti = 1, . . . ,m}, p = ∞,

(1.1)

with the usual identification of ‖ • ‖∞ as lim
p→∞

‖ • ‖p.

2. Local iterated function systems

The concept of local iterated function system is a generalization of an IFS as defined in [1,2,12]. It was 
first introduced in [4] and reconsidered in [3]. In what follows, m ∈ N always denotes a positive integer and 
Nm := {1, . . . , m}.

Definition 1. Suppose that {Xi : i ∈ Nm} is a family of nonempty subsets of a Banach space (X, ‖ • ‖X). 
Further assume that for each Xi there exists a continuous mapping fi : Xi → X, i ∈ Nm. Then Floc :=
{X; (Xi, fi) : i ∈ Nm} is called a local iterated function system (local IFS).
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Note that if each Xi = X, then Definition 1 coincides with the usual definition of a standard (global) IFS. 
However, the possibility of choosing the domain for each continuous mapping fi different from the entire 
space X adds additional flexibility as will be recognized in the sequel. Also notice that one may choose 
the same Xi as the domain for different mappings f ∈ Floc. A setting in which this occurs is discussed in 
[3, Section 4.2]; the reader who is interested in the numerical aspects of local IFSs may consult this reference.

Definition 2. A local IFS Floc is called contractive if there exists a norm ‖ • ‖∗ equivalent to ‖ • ‖X with 
respect to which all functions f ∈ Floc are contractive (on their respective domains).

We can associate with a local IFS a set-valued operator Floc : 2X → 2X by setting

Floc(S) :=
m⋃
i=1

fi(S ∩Xi). (2.1)

By a slight abuse of notation, we use the same symbol for a local IFS and its associated operator.

Definition 3. A subset A ∈ 2X is called a local attractor for the local IFS {X; (Xi, fi) : i ∈ Nm} if

A = Floc(A) =
m⋃
i=1

fi(A ∩Xi). (2.2)

In (2.2) it is allowed that A ∩Xi is the empty set. Thus, every local IFS has at least one local attractor, 
namely A = ∅. However, it may also have many distinct ones. In the latter case, if A1 and A2 are distinct 
local attractors, then A1 ∪A2 is also a local attractor. Hence, there exists a largest local attractor for Floc, 
namely the union of all distinct local attractors. We refer to this largest local attractor as the local attractor 
of a local IFS Floc.

Remark 1. There exists an alternative definition for (2.1). For given functions fi which are only defined on 
Xi ⊂ X, one could introduce set functions (also denoted by fi) that are defined on 2X by setting

fi(S) :=
{
fi(S ∩Xi), S ∩Xi �= ∅;
∅, S ∩Xi = ∅,

i ∈ Nm, S ∈ 2X .

On the right-hand side, fi(S ∩Xi) is the set of values of the original fi as in the previous definition. This 
extension of a given function fi to sets S which include elements which are not in the domain of fi basically 
just ignores these elements. In the following, we use this definition of the set function fi.

Now suppose that X is a subset of a compact Banach space and the Xi, i ∈ Nm, are closed subsets of 
X, i.e., compact in X. If in addition the local IFS {X; (Xi, fi) : i ∈ Nm} is contractive and fi(Xi) ⊂ Xi, 
∀ i ∈ Nm, then the local attractor can be computed as follows. Let K0 := X and set

K� := Floc(K�−1) =
⋃

i∈Nm

fi(K�−1 ∩Xi), m ∈ N.

Then

Aloc = lim
�→∞

K�,

where the limit is taken with respect to the Hausdorff metric. (For a proof, see [4].)
In the above setting, a relationship between the local attractor Aloc of a contractive local IFS {X; (Xi, fi) :

i ∈ Nm} and the (global) attractor A of the associated (global) IFS {X; fi : i ∈ Nm} was derived in [18]. 
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To this end, we remark that given a global IFS {X; fi : i ∈ Nm} one obtains a local IFS by simply restricting 
each continuous mapping fi to a subset Xi of X. Conversely, a local IFS {X; (Xi, fi) : i ∈ Nm} with the 
property that each mapping fi has a continuous extension, again denoted by fi, to all of X produces a 
(global) IFS {X; fi : i ∈ Nm}.

The next result, relating local and global attractor, is stated without proof. The interested reader may 
wish to consult [3,18].

Proposition 1. Let X be a subset of a compact Banach space and let Xi, i ∈ Nm, be closed subsets in X. 
Suppose that the global IFS F := {X; fi : i ∈ Nm} and the associated local IFS Floc := {X; (Xi, fi) : i ∈ Nm}
are both contractive. Then the local attractor Aloc of Floc is a subset of the attractor A of F .

We note that the assumption of X being a subset of a compact Banach space and the {Xi} closed 
subsets of X is motivated by fractal interpolation in Euclidean spaces. There, X is usually a compact subset 
of Rn. The results mentioned above hold true if one assumes that each Xi is a compact subset of X and 
fi(Xi) ⊂ Xi. As K0 one may choose for instance K0 :=

⋃
i∈Nm

Xi.
For an example of the relationship between global and local attractor as stated in Proposition 1, we refer 

the interested reader to [3, Example 1].

3. Local fractal functions

Let X be a nonempty connected set and {Xi : i ∈ Nm} a family of nonempty subsets of X. Suppose 
{ui : Xi → X : i ∈ Nm} is a family of bijective mappings with the property that

(P) {ui(Xi) : i ∈ Nm} forms a (set-theoretic) partition of X:

X =
m⋃
i=1

ui(Xi) and int(ui(Xi)) ∩ int(uj(Xj)) = ∅, ∀i �= j ∈ Nm,

where int denotes the interior of a set.

Suppose that (Y, ‖ • ‖Y ) is a Banach space. Denote by B(X, Y ) the set

B(X,Y ) := {f : X → Y : f is bounded}.

Under the usual definition of addition and scalar multiplication of mappings, and endowed with the 
norm

‖f − g‖ := sup
x∈X

‖f(x) − g(x)‖Y ,

(B(X, Y ), ‖ • ‖) becomes a Banach space, the space of bounded functions from X to Y . Similarly, 
(B(Xi, Y ), ‖ • ‖) is a Banach space.

For each i ∈ Nm, let λi ∈ B(Xi, Y ) and let Si : Xi → R be a bounded function. For the two n-tuples 
λ := {λ1, . . . , λm} and S := {S1, . . . , Sm}, we define an affine operator B(X, Y ) → Y X , called a Read–
Bajactarević (RB) operator, by

Φ(λ)(S)f :=
m∑
i=1

(λi ◦ u−1
i )χui(Xi) +

m∑
i=1

(Si ◦ u−1
i ) · (fi ◦ u−1

i )χui(Xi), (3.1)

or, equivalently,
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(Φ(λ)(S)f) ◦ ui = λi + Si · fi, on Xi, ∀ i ∈ Nm,

with fi = f |Xi
. Here, we explicitly expressed the dependence of Φ on λ and S. If one or both n-tuples of 

functions are fixed, we suppress the dependence.

Remark 2. The underlying idea behind the form of the RB operator (3.1) is to construct a global function Φf

(defined on X) out of local data, i.e., the pieces of the function f defined on the Xi. This is done by gluing 
these data together by means of the partition {ui(Xi)} of X.

As the mappings λi are bounded in Y and the functions Si in R, Φ(λ)(S)f is also bounded in Y . Hence, 
Φ(λ)(S) maps B(X, Y ) into itself.

Proposition 2. Denote by ‖ • ‖∞,Xi
the sup-norm on X restricted to Xi. If max

i∈Nm

{‖Si‖∞,Xi
} < 1, then 

Φ(λ)(S) is contractive on the Banach space B(X, Y ).

Proof. For simplicity, we suppress the dependence of Φ on λ and S. Let g, h ∈ B(X, Y ) and set φ := g− h. 
Note that, since {ui(Xi) : i ∈ Nm} is a partition of X and {ui : i ∈ Nm} is a family of bijections, we have 
that

Φg =
m∑
i=1

Φg χui(Xi) =
m∑
i=1

(Φg) ◦ ui χXi
.

Hence, for all x′ = ui(x) ∈ ui(Xi), the following hold.

|Φf(x′) − Φg(x′)| = |Φφ(x′)| = |Φφ(ui(x))| = |Si(x) · φi(x)| ≤ ‖Si‖∞,Xi
|φi(x)|

≤ ‖Si‖∞,Xi
‖φ‖ ≤

(
max
i∈Nm

‖Si‖∞,Xi

)
‖φ‖,

where φi := φ|Xi
. Thus, taking the supremum over all x′ ∈ ui(Xi) and using the fact again that {ui(Xi) :

i ∈ Nm} is a partition of X, we obtain

‖Φφ‖ ≤
(

max
i∈Nm

‖Si‖∞,Xi

)
‖φ‖,

which proves the claim. �
Therefore, by the Banach Fixed Point Theorem, Φ(λ)(S) has a unique fixed point f ∈ B(X, Y ), which 

satisfies the self-referential equation

f =
m∑
i=1

(λi ◦ u−1
i )χui(Xi) +

m∑
i=1

(Si ◦ u−1
i ) · (fi ◦ u−1

i )χui(Xi), (3.2)

or, equivalently

f ◦ ui = λi + Si · fi, on Xi, ∀ i ∈ Nm. (3.3)

The fixed point f is called a bounded local fractal function. When necessary, we denote the dependence of 
f on λ and S by f(λ)(S).

The following result found in [10] and, in more general form in [15], is the extension to the setting of 
local fractal functions: For fixed S, the mapping
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λ �
m
×
i=1

B(Xi, Y ) �−→ f(λ) ∈ B(X,Y )

is a linear isomorphism. For more details and the proof, see [3,18].
It was shown in [3] that graph f is a local attractor of a local IFS naturally associated with the RB-

operator Φ. For the sake of completeness, we state this result adapted to our setting without proof.

Theorem 1. Consider the family Wloc := {X × Y ; (Xi × Y, wi) : i ∈ NN}, where wi(x, y) := (ui(x), λi(x) +
Si(x) ·y). Then there exists a norm ‖ •‖θ on X×Y , so that Wloc is a contractive local IFS and the graph of 
the local fractal function f associated with the operator Φ given by (3.1) is an attractor of Wloc. Moreover,

graph(Φf) = Wloc(graph f), (3.4)

where Wloc denotes the set-valued operator (2.1) for the local IFS Wloc.

4. Lebesgue spaces Lp, 0 < p ≤ ∞

Let E be a real or complex vector space. A mapping ‖ · ‖ : E → R+
0 is called a quasi-norm if it satisfies 

all the usual conditions of a norm except for the triangle inequality, which is replaced by

‖x + y‖ ≤ c (‖x‖ + ‖y‖) (4.1)

for a constant c ≥ 1. If c = 1, then ‖ • ‖ is a norm. A complete quasi-normed space is called a quasi-Banach 
space.

Recall that the Lebesgue spaces Lp, 0 < p ≤ ∞, defined on Rn are quasi-Banach spaces and, for 
1 ≤ p ≤ ∞, Banach spaces. We also require the following closed subspace of Lp. Let X ⊂ Rn be a domain, 
i.e., an open subset of Rn. Define

Lp(X) := {f ∈ Lp : supp f ⊂ X}.

As Lp(X) inherits its quasi-norm from Lp, it is also a quasi-Banach space.
First, we present a result that gives conditions for a fractal function f to be an element of the quasi-Banach 

spaces Lp(X). (See, also [3,18] for the case n = 1. There, however, Lp, 0 < p < 1, was considered as a 
complete metric space.) Here, we also assume that the two n-tuples λ and S are fixed so that we may 
suppress them in the notation.

Theorem 2. Let X be a bounded domain in Rn, let Y := R, and let 0 < p ≤ ∞. In addition to satisfying 
condition (P), the family of subsets {Xi : i ∈ Nm} ∈ 2X and bijective mappings {ui : i ∈ Nm} are supposed 
to be such that each ui is a similarity (transformation), i.e., a mapping Xi → X, that enjoys the property

|ui(x) − ui(x′)| = γi|x− x′|, ∀ x, x′ ∈ Xi,

for some constant γi ∈ R+. (We do not assume that all γi < 1!) Furthermore, we assume that the functions 
λi ∈ Lp(X) and the functions Si are bounded on Xi. Then the RB-operator Φ defined in (3.1) maps Lp(X)
into itself. If, in addition, the condition

⎧⎪⎪⎨
⎪⎪⎩

(
m∑
i=1

γn
i ‖Si‖p∞,Xi

)1/p

< 1, 0 < p ≤ ∞;

max
i∈Nm

{‖Si‖∞,Xi
} < 1, p = ∞,

(4.2)

holds, then Φ is also contractive on Lp(X).
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The unique fixed point f : X ⊂ Rn → R of Φ in Lp(X) is called a local fractal function of class Lp.

Proof. Note that under the hypotheses on the functions λi and Si as well as the mappings ui, Φf is 
well-defined and an element of Lp(X). It remains to be shown that under conditions stated in the theorem, 
Φ is contractive on Lp(X).

To this end, suppose that g, h ∈ Lp(X). Let φ := g − h and denote Lebesgue measure on Rn by dm. 
Then, for 0 < p < ∞, we obtain, the following estimates:

‖Φφ‖pLp =
∫
Rn

|Φφ|pdm =
m∑
i=1

∫
ui(Xi)

|Φφ(x′)|p dx′ =
m∑
i=1

γn
i

∫
Xi

|Φφ(ui)(x)|p dx

=
m∑
i=1

γn
i

∫
Xi

|Si(x) · φi(x)|p dx ≤
m∑
i=1

γn
i ‖Si‖p∞,Xi

∫
Xi

|φi(x))|p dx

≤
(

m∑
i=1

γn
i ‖Si‖p∞,Xi

)
‖φ‖pLp .

Now let p = ∞. Then, for x′ ∈ ui(Xi), we have that

|Φφ(x′)| = |Φφ(ui(x))| = |Si(x) · φi(x)| ≤
(

max
i∈NN

‖Si‖∞,Xi

)
‖φ‖L∞ ,

which implies

‖Φφ‖L∞ ≤
(

max
i∈NN

‖Si‖∞,Xi

)
‖φ‖L∞ .

These calculations prove the claims. �
The conditions given in (4.2) can be more succinctly written in the following way. Define an Euclidean 

vector ξ := (ξ1, . . . , ξm)T ∈ Rm whose entries are given by

ξi =
{
γ
n/p
i ‖Si‖∞,Xi

, 0 < p < ∞,

‖Si‖∞,Xi
, p = ∞.

(4.3)

Then, we can express the statement of Theorem 2 as follows:

∀ 0 < p ≤ ∞ : ‖ξ‖p < 1 =⇒ f ∈ Lp(X).

Remark 3. In Theorem 2 it is assumed that the ui, i ∈ Nm, are similitudes. This will be the setting in 
Section 6. However, as the proof shows, this assumption can be replaced by the weaker condition

γi := sup
x∈Xi

| det Jacui(x)| < ∞, i ∈ Nm,

where Jac denotes the Jacobi-matrix. This condition holds, for instance, in the case when each ui is an 
affine mapping of the form ui = Ai(•) + bi, with Ai ∈ GL(n, R) and bi ∈ R, i ∈ Nm.
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5. Besov and Triebel–Lizorkin spaces

The theory of Besov and Triebel–Lizorkin spaces is very rich and has numerous applications to partial 
differential equations and approximation theory, including finite elements, splines and wavelets. Originally, 
these spaces were developed to close the gaps in the ladders of smoothness spaces such as the Hölder 
spaces Cs, s ∈ R+

0 , and the classical Sobolev spaces W k,n, k, n ∈ Z+
0 . This section provides a very rudimen-

tary introduction to these two scales of function spaces and the interested reader is referred to [20–22] and 
the references therein.

Recall that the M -th order forward difference operator ΔM
h , M ∈ N, of step size h ∈ Rn acting on a 

function f : Rn → R is given by

(ΔM
h f)(x) :=

M∑
μ=0

(−1)M−μ

(
M

μ

)
f(x + μh). (5.1)

In case f is defined on a bounded domain X ⊂ Rn, we set

ΔM
h f(x;X) :=

{
ΔM

h f(x), if x + μh ∈ X for μ = 0, 1, . . . ,M ;
0, otherwise.

In the following, we denote the canonical Euclidean norm in Rn by | • |. In addition, we define for 
0 < p ≤ ∞,

σp := n

(
1

min{p, 1} − 1
)

≥ 0,

and for 0 < p < ∞, 0 < q ≤ ∞,

σn,p,q := n

min{p, q} .

Definition 4. (See [20, Section 2.5.12].) Let 0 < p, q ≤ ∞ and let s > σp. Suppose M ∈ N is such that 
M > s ≥ M − 1. Then a function f ∈ Lp belongs to the

• homogeneous Besov space Ḃs
p,q = Ḃs

p,q(Rn) iff

|f |Ḃs
p,q

:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝∫

Rn

|h|−sq‖ΔM
h f‖qLp

dh

|h|n

⎞
⎠

1
q

< ∞, 0 < q < ∞;

sup
0�=h∈Rn

|h|−s ‖ΔM
h f‖Lp < ∞, q = ∞.

(5.2)

• inhomogeneous Besov space Bs
p,q := Bs

p,q(Rn) iff

‖f‖Bs
p,q

:= ‖f‖Lp + |f |Ḃs
p,q

< ∞. (5.3)

Bs
p,q is a Banach space for 1 ≤ p, q ≤ ∞; otherwise Bs

p,q is a quasi-Banach space.
Note that if P is a polynomial of order M , then it is in the kernel of the M -th order difference operator 

and, therefore, |P |Ḃs
p,q

= 0.

Definition 5. (See [20, Section 2.5.10].) Let 0 < p < ∞, 0 < q ≤ ∞, and suppose s > σn,p,q. If M ∈ N is 
such that M > s ≥ M − 1, then a function f ∈ Lp is said to belong to the
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• homogeneous Triebel–Lizorkin space Ḟ s
p,q(Rn) iff

|f |Ḟ s
p,q

:=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥∥∥∥
⎛
⎝∫

Rn

|h|−sq |ΔM
h f(•)|q dh

|h|n

⎞
⎠

1
q

∥∥∥∥∥∥∥
Lp

< ∞, 0 < q < ∞;

∥∥∥∥∥ sup
0�=h∈Rn

|h|−s |ΔM
h f(•)|

∥∥∥∥∥
Lp

< ∞, q = ∞.

(5.4)

• inhomogeneous Triebel–Lizorkin space F s
p,q := F s

p,q(Rn) iff

‖f‖F s
p,q

:= ‖f‖Lp + |f |Ḟ s
p,q

< ∞. (5.5)

F s
p,q is a Banach space for 1 ≤ p, q ≤ ∞; otherwise a quasi-Banach space. Again, polynomials of order M

have vanishing semi-norm | • |Ḟ s
p,q

.

Remark 4. The homogeneous Besov and Triebel–Lizorkin spaces are more compactly described as the linear 
spaces of all f ∈ Łp such that

∥∥∥ | • |−n
q −s

∥∥∥ΔM
(•)f(∗)

∥∥∥
Lp

∥∥∥
Lq

< ∞, (5.6)

respectively,

∥∥∥ ∥∥∥| ∗ |−n
q −s ΔM

(∗)f(•)
∥∥∥
Lq

∥∥∥
Lp

< ∞. (5.7)

Here, the Lp norm refers to (∗) and the Lq norm to (•).

To show the versatility of Besov and Triebel–Lizorkin spaces, some commonly known function spaces are 
expressed as special cases of these function spaces.

Hölder spaces For s > 0 and s /∈ N: Cs = Bs
∞,∞.

Sobolev spaces For 1 < p < ∞ and k ∈ N0: W k,p = F k
p,2 and W k,2 = Bk

2,2.
Slobodeckij spaces For 1 ≤ p < ∞ and < s /∈ N0: W s,p = Bs

p,p = F s
p,p.

Bessel potential spaces For 1 < p < ∞ and s > 0: Hs,p = F s
p,2.

Here, equality of function spaces is meant in the sense of equivalent quasi-norms.
Now suppose that X is a domain in Rn. Let A be either B or F .

Definition 6. Let 0 < p, q ≤ ∞ (with p < ∞ for the F -spaces) and s ∈ R+. Then As
p,q(X) is the closed 

subspace of As
p,q given by

As
p,q(X) :=

{
f ∈ As

p,q : supp f ⊆ X
}
.

As
p,q(X) inherits its norm from As

p,q and thus is a quasi-Banach space.
In addition to the Banach space C(X) of R-valued uniformly continuous functions on X and the classical 

smoothness spaces Ck(X), k ∈ N, we also require in the following the Zygmund spaces Cs, s ∈ R+, which 
are defined in the following way:
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Definition 7. (See [22, Definition 2].) Let s ∈ R+ be written as s = [s]− + {s}+, where [s]− ∈ N0 and 
0 < {s}+ ≤ 1. Then

Cs := Cs(Rn) := {f ∈ C(Rn) : ‖f‖Cs < ∞} ,

where

‖f‖Cs := ‖f‖C[s]− (Rn) +
∑

|α|=[s]−
sup

0�=h∈Rn

|h|−{s}+ ‖Δ2
hD

αf‖C(Rn).

Here, Dα denotes the ordinary differential operator with multi-index α ∈ Nn
0 .

Zygmund spaces on domains X ⊆ Rn are defined in a similar way:

Cs(X) := {f ∈ Cs : supp f ⊂ X}.

It is worthwhile stating that the Zygmund spaces Cs coincide with the classical Hölder spaces Cs in case 
s ∈ Q+ \ N, and that for s := k ∈ N, Ck(Rn) � Ck.

We introduced the Zygmund spaces since the functions in Cs are pointwise multipliers for the B- and 
F -scale of function spaces. Recall that a function g is called a pointwise multiplier for As

p,q if the mapping 
f �→ g · f is a bounded linear operator on As

p,q [20, Section 2.8].
To this end, we have the following result adapted to our setting. The proofs can be found in [21, Sec-

tion 4.2.2].

Proposition 3. Let 0 < p ≤ ∞ (0 < p < ∞ for the F -spaces), 0 < q ≤ ∞, and s ∈ R+. Suppose 

	 > max
{
s, n

(
1
p − 1

)
+
− s

}
, where (•)+ := max{•, 0}. Then

‖g · f‖As
p,q

≤ c ‖g‖C� ‖f‖As
p,q

, some c > 0,

for all g ∈ C� and all f ∈ As
p,q.

6. Local fractal functions of Besov and Triebel–Lizorkin type

In this section, we again consider the case where X ∈ Rn is a domain and Y := R. We derive conditions 
so that a fractal function defined by an RB-operator of the form (3.1) belongs to As

p,q(X). These conditions 
correct the results presented in [16], and extend and generalize those in [14–18].

To this end, we make the following set of assumptions:

(A1) X ∈ Rn is a bounded domain and Y := R.
(A2) In addition to satisfying condition (P), the family of subsets {Xi : i ∈ Nm} ∈ 2X and bijective 

mappings {ui : i ∈ Nm} are supposed to be such that each ui is a similarity (transformation), i.e., 
a mapping Xi → X, that enjoys the property that

|ui(x) − ui(x′)| = γi|x− x′|, ∀ x, x′ ∈ Xi,

for some constant γi ∈ R+. We do not assume that all γi < 1, i ∈ Nm. Note that each ui is then of 
the form ui(•) = γi Oi(•) + τi, where Oi ∈ SO(n) and τi ∈ Rn.

(A3) Let 0 < p ≤ ∞ (0 < p < ∞ for the F -spaces), 0 < q ≤ ∞, and s ∈ R+.
(A4) For i ∈ Nm, the function λi : Xi → R belongs to As

p,q(X).
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(A5) For i ∈ Nm, the function Si : Xi → R belongs to the Zygmund space C�(X), where 	 >

max
{
s, n

(
1
p − 1

)
+
− s

}
.

Examples of fractal functions f : X ⊂ Rn → R that satisfy assumptions (A1) and (A2) in the global 
setting of IFSs include the family of affine fractal hypersurfaces in Rn+1 constructed in [7–9,11,13,19]. These 
constructions may be extended to the setting of local IFSs by taking subsets of the simplicial set X that are 
mapped under similitudes onto a partition of X. We leave it to the interested reader to provide the details.

For the remainder of this paper, we assume that the two n-tuples λ and S are fixed. We also suppress 
them in the notation for Φ and its fixed point. Moreover, if a function f has support in X ⊂ Rn, we – if 
need be – regard it as defined on all of Rn by setting it equal to zero off supp f .

6.1. Local fractal functions in Besov spaces

First, we consider the case of Besov spaces and derive explicit conditions for the parameters γi and the 
functions Si, i ∈ Nm so that the associated local fractal function lies in a Besov space.

Theorem 3. Suppose the assumptions (A1)–(A5) hold and that s > σp. Then the affine RB-operator given 
by (3.1) maps Bs

p,q(X) into itself. Define a vector η := (η1, . . . , ηm)T ∈ Rm whose components are given 
by:

ηi := γ
n
p −s

i ‖Si‖∞,Xi
, i ∈ Nm. (6.1)

If

max {‖ξ‖p, ‖η‖q} < 1, 0 < p, q ≤ ∞, (6.2)

then Φ is a contraction. In this case, the unique fixed point f ∈ Bs
p,q(X) of Φ satisfies the self-referential 

equation

f ◦ ui = λi + Si · fi, on Xi, ∀ i ∈ Nm,

and is termed a fractal function of class Bs
p,q.

Proof. Suppose that f, g ∈ Bs
p,q(X) and set φ := f − g. Then, supp Φf ⊆ X and ‖Φf‖Bs

p,q
< ∞, since all 

λi ∈ Bs
p,q(X) and the functions Si are pointwise multipliers in Bs

p,q. Hence, Φ maps Bs
p,q(X) into itself.

First, we consider the case q < ∞. On ui(Xi), the following holds:

∫
Rn

|h|−sq

⎛
⎝∫

Rn

∣∣ΔM
h (Φφ)

∣∣p dm
⎞
⎠

q/p

dh

|h|n

=
∫

ui(Xi)

|h|−sq

⎛
⎜⎝ ∫

ui(Xi)

∣∣ΔM
h (Φφ)(x′;ui(Xi))

∣∣p dx′

⎞
⎟⎠

q/p

dh

|h|n ,

since only if h ∈ ui(Xi) is there any guarantee that ΔM
h (Φφ)(x′; ui(Xi)) �= 0.

Hence, using the fact that ui = γi Oi + τi, with γi > 0, Oi ∈ SO(n) and τi ∈ Rn, the last expression 
above implies that
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∫
ui(Xi)

|h|−sq

⎛
⎜⎝ ∫

ui(Xi)

∣∣ΔM
h (Φφ)(x′;ui(Xi))

∣∣p dx′

⎞
⎟⎠

q/p

dh

|h|n

=
∫

ui(Xi)

|h|−sq

⎛
⎝γn

i

∫
Xi

∣∣∣ΔM
γ−1
i O−1

i h
(Si · φi)(x;Xi)

∣∣∣p dx
⎞
⎠

q/p

dh

|h|n

≤
∫
Xi

γ−sq
i |h|−sqγ

nq/p
i ‖Si‖q∞,Xi

⎛
⎝∫

Xi

∣∣ΔM
h φi(x;Xi)

∣∣p dx
⎞
⎠

q/p

dh

|h|n

≤ γ
q(n

p −s)
i ‖Si‖q∞,Xi

∫
Rn

|h|−sq

⎛
⎝∫

Rn

∣∣ΔM
h φ

∣∣p dm
⎞
⎠

q/p

dh

|h|n ,

where we used x′ := ui(x).
Thus,

|Φφ|Ḃs
p,q

≤
(

m∑
i=1

γ
q
(

n
p −s

)
i ‖Si‖q∞

)1/q

|φ|Ḃs
p,q

.

The case q = ∞ follows from taking the limit q → ∞ in the above parenthetical expression.
Therefore, defining a vector η ∈ Rm whose components are given by (6.1), applying the p-quasinorm 

introduced in (1.1), and combining the result with that of Theorem 2, yields

∀ 0 < p, q ≤ ∞, ∀s > σp : max {‖ξ‖p, ‖η‖q} < 1 =⇒ f ∈ Bs
p,q(X).

This proves the theorem. �
Examples 1.

(a) In the special case that was considered in [15], namely the setting of global fractal functions in R, one 
obtains from (4.3) and (6.1) for n = 1, γi := 1/m, Si := si ∈ R, i ∈ Nm, s := k ∈ N0, and p = q := 2, 
the condition given in [15], namely

m∑
i=1

|si|2m2k−1 < 1 =⇒ f ∈ W k,2.

Note, that in this case ξi ≤ ηi, for all i ∈ Nm.
(b) For the Slobodeckij spaces W s,p = Bs

p,p, n := 1, 1 < p < ∞, and 0 < s /∈ N0, we immediately obtain 
the following condition:

m∑
i=1

|si|pmps−1 < 1 =⇒ f ∈ W s,p,

if we set as above γi := 1/m and Si := si ∈ R, i ∈ Nm.
(c) For p = q = ∞, one obtains requirement for a fractal function to be in Cs, namely,

max{max{‖Si‖∞,Xi
}, max{γ−s

i ‖Si‖∞,Xi
}} < 1.
i∈Nm i∈Nm
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For the special case of homogeneous Hölder spaces Ċs, the above formula extends the one presented in 
[18] for a particular one-dimensional setting.

6.2. Local fractal functions in Triebel–Lizorkin spaces

Here, we state explicit conditions for the parameters γi and the functions Si, i ∈ Nm so that the associated 
local fractal function lies in a Triebel–Lizorkin space.

Theorem 4. Suppose the assumptions (A1)–(A5) hold and that s > σn,p,q. Then the affine RB-operator given 
by (3.1) maps F s

p,q(X) into itself. Let η again be the vector with components

ηi := γ
n
p −s

i ‖Si‖∞,Xi
i ∈ Nm. (6.3)

If

max {‖ξ‖p, ‖η‖p} < 1, 0 < p < ∞, (6.4)

then Φ is a contraction. In this case, the unique fixed point f ∈ F s
p,q(X) of Φ satisfies the self-referential 

equation

f ◦ ui = λi + Si · fi, on Xi, ∀ i ∈ Nm,

and is termed a fractal function of class F s
p,q.

Remark 5. Note that condition (6.4) is independent of q. This independence is a direct consequence of the 
placement of the norms in the definition (5.7) of a Triebel–Lizorkin space. (Compare this to (5.6)!)

Proof. Suppose that f, g ∈ F s
p,q(X) and set φ := f − g. Then, suppΦf ⊆ X and ‖Φf‖F s

p,q
< ∞, since all 

λi ∈ F s
p,q(X) and the functions Si are pointwise multipliers in F s

p,q. Hence, Φ maps F s
p,q(X) into itself.

We first consider the case 0 < q < ∞. Then, on ui(Xi), the following hold:

∫
Rn

⎛
⎝∫

Rn

|h|−sq
∣∣ΔM

h Φφ
∣∣q dh

|h|n
)p/q

dm

=
∫

ui(Xi)

⎛
⎜⎝ ∫

ui(Xi)

|h|−sq
∣∣ΔM

h (Φφ)(x′;ui(Xi))
∣∣q dh

|h|n

⎞
⎟⎠

p/q

dx′

= γn
i

∫
Xi

⎛
⎜⎝ ∫

ui(Xi)

|h|−sq
∣∣∣ΔM

γ−1
i O−1

i h
Si(x) · φi(x;Xi)

∣∣∣q dh

|h|n

⎞
⎟⎠

p/q

dx

≤ γn−ps
i ‖Si‖p∞,Xi

∫
Xi

⎛
⎝∫

Xi

|h|−sq
∣∣ΔM

h φi(x;Xi)
∣∣q dh

|h|n

⎞
⎠

p/q

dx

≤ γn−ps
i ‖Si‖p∞,Xi

∫ ⎛
⎝∫

|h|−sq
∣∣ΔM

h φ
∣∣q dh

|h|n

⎞
⎠

p/q

dx.
Rn Rn
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This yields

|Φφ|Ḟ s
p,q

≤
(

m∑
i=1

γ
p(n

p −s)
i ‖Si‖p∞,Xi

)1/p

|φ|Ḟ s
p,q

.

As the above expression in parentheses is independent of q, the case q = ∞ follows immediately.
Therefore, taking the vector η ∈ Rm whose components are given by (6.3), applying the p-quasinorm 

introduced in (1.1), and combining the result with that of Theorem 2, gives

∀ 0 < p < ∞, ∀ 0 < q ≤ ∞, ∀s > σn,p,q :

max {‖ξ‖p, ‖η‖p} < 1 =⇒ f ∈ F s
p,q(X),

which yields the statement in the theorem. �
Examples 2.

(a) For a local fractal function to belong to a Bessel Potential space Hs,p = F s
p,2, we obtain in the special 

case we considered above, where n := 1, γi := 1/m, and Si := si ∈ R, the criterion:

m∑
i=1

Nps−1|si|p < 1,

for 1 < p ≤ 2 and s > 1/p.
(b) Another class of function spaces that are Triebel–Lizorkin spaces for a certain range of the indices p, q, 

and s are the local Hardy spaces. They are, for our purposes, defined as follows. Let 0 < p < ∞ and 
let D0 := D0(Rn) denote the class of all C∞-functions ϕ with compact support satisfying ϕ(0) = 1. Set 
ϕt(x) := ϕ(tx), for t > 0 and x ∈ Rn. Then

hp := hp(Rn) :=
{
f ∈ Lp :

∥∥∥∥ sup
0<t<1

∣∣(F−1 ϕt F)f
∣∣∥∥∥∥

Lp

< ∞
}
,

where F denotes the Fourier transform. It can be shown that this definition is independent of the test 
function ϕ in the sense of equivalent quasi-norms. Moreover, hp = F 0

p,2.
Using the set-up in Example (a) above, we see that a fractal function belongs to the Hardy space hp

provided that

m∑
i=1

|si|p < N,

for 0 < p < ∞.
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